JP4566087B2 - Concentrator and method of operating the same - Google Patents

Concentrator and method of operating the same Download PDF

Info

Publication number
JP4566087B2
JP4566087B2 JP2005223094A JP2005223094A JP4566087B2 JP 4566087 B2 JP4566087 B2 JP 4566087B2 JP 2005223094 A JP2005223094 A JP 2005223094A JP 2005223094 A JP2005223094 A JP 2005223094A JP 4566087 B2 JP4566087 B2 JP 4566087B2
Authority
JP
Japan
Prior art keywords
solution
concentrate
heating
heating tube
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005223094A
Other languages
Japanese (ja)
Other versions
JP2007038074A (en
Inventor
勇夫 中西
晴雄 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Priority to JP2005223094A priority Critical patent/JP4566087B2/en
Publication of JP2007038074A publication Critical patent/JP2007038074A/en
Application granted granted Critical
Publication of JP4566087B2 publication Critical patent/JP4566087B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、溶液を濃縮する濃縮装置、濃縮された溶液から結晶を成長させる晶析
装置、およびそれら濃縮装置と晶析装置を組み合わせた濃縮晶析システムに関する。
The present invention relates to a concentrating device for concentrating a solution, a crystallizing device for growing crystals from the concentrated solution, and a concentrating crystallization system in which the concentrating device and the crystallizing device are combined.

溶媒に溶質を溶解させた溶液を濃縮して溶質の結晶を生成する濃縮装置として、図6に示すバッチ式濃縮装置が非特許文献1で提案されている。このバッチ式濃縮装置100は、加熱容器101と、気液分離容器102と、加熱容器101から気液分離容器102に溶液及びその蒸気を供給する供給管103と、気液分離容器102から加熱容器101に溶液(濃縮液)を返送する返送管104と、気液分離容器102から濃縮液を取り出す排出管105を備えている。この濃縮装置100によれば、溶液は加熱容器101の中で該加熱容器101の内部に配置された加熱器106によって加熱される。加熱された溶液とその蒸気は供給管103を介して気液分離容器102に供給される。気液分離容器102では、気液分離容器102の上部に設けた気液分離器(デミスタブランケット)107によって液滴が回収される。回収された液滴は、加熱容器101から供給された溶液と共に気液分離容器102に溜まり、返送管104を介して再び加熱容器101に返送される。しかし、この濃縮装置100はバッチ式濃縮装置であることから、濃縮処理する溶液が長時間(例えば、10時間)高温状態に晒されて熱的ストレスを受ける。そのため、加熱されると物性が変化し易い材料の濃縮には適していない。
原子力工業Vol.38、NO.8(1992)
Non-Patent Document 1 proposes a batch type concentration apparatus shown in FIG. 6 as a concentration apparatus for concentrating a solution in which a solute is dissolved in a solvent to produce solute crystals. The batch type concentrator 100 includes a heating container 101, a gas-liquid separation container 102, a supply pipe 103 for supplying a solution and its vapor from the heating container 101 to the gas-liquid separation container 102, and a heating container from the gas-liquid separation container 102. A return pipe 104 for returning the solution (concentrated liquid) to 101 and a discharge pipe 105 for taking out the concentrated liquid from the gas-liquid separation container 102 are provided. According to the concentrating device 100, the solution is heated in the heating container 101 by the heater 106 disposed inside the heating container 101. The heated solution and its vapor are supplied to the gas-liquid separation container 102 through the supply pipe 103. In the gas-liquid separation container 102, droplets are collected by a gas-liquid separator (demister blanket) 107 provided on the upper part of the gas-liquid separation container 102. The collected liquid droplets are collected in the gas-liquid separation container 102 together with the solution supplied from the heating container 101, and are returned to the heating container 101 again via the return pipe 104. However, since the concentration apparatus 100 is a batch type concentration apparatus, the solution to be concentrated is exposed to a high temperature state for a long time (for example, 10 hours) and is subjected to thermal stress. Therefore, it is not suitable for the concentration of materials whose physical properties are likely to change when heated.
Nuclear Industry Vol.38, NO.8 (1992)

濃縮装置で濃縮された溶液から結晶を析出させる晶析装置として、図7に示す晶析装置が特許文献1で提案されている。この晶析装置110は、晶析容器111と、晶析容器111内に貯留された濃縮溶液を攪拌する攪拌羽根112と、晶析容器111の中で成長した結晶を含む結晶スラリーを晶析容器111の底部から抜き出して再び晶析容器111に返送する返送管113及びポンプ114を備えている。このような構成を備えた晶析装置110では、結晶成長中は濃縮溶液を効果的に冷却することで結晶成長効率を高めるため、攪拌羽根112が常に溶液を回転攪拌している。そのため、晶析容器111内に存在する溶液の量が少ない状態でポンプ114を駆動すると、攪拌羽根112の攪拌によって溶液中に混入した気泡がポンプ114に入り、ポンプ114が空転して損傷する。したがって、晶析容器111に十分に溶液が貯蔵された状態になるまで晶析処理を開始できない。
特開2005−33951号公報
As a crystallization apparatus for precipitating crystals from a solution concentrated by a concentration apparatus, a crystallization apparatus shown in FIG. The crystallizer 110 includes a crystallization vessel 111, a stirring blade 112 for stirring the concentrated solution stored in the crystallization vessel 111, and a crystal slurry containing crystals grown in the crystallization vessel 111. A return pipe 113 and a pump 114 are provided that are extracted from the bottom of 111 and returned to the crystallization vessel 111 again. In the crystallizer 110 having such a configuration, the stirring blade 112 constantly rotates and agitates the solution in order to increase the crystal growth efficiency by effectively cooling the concentrated solution during crystal growth. Therefore, when the pump 114 is driven in a state where the amount of the solution present in the crystallization vessel 111 is small, bubbles mixed in the solution by the stirring of the stirring blade 112 enter the pump 114, and the pump 114 runs idle and is damaged. Therefore, the crystallization process cannot be started until the solution is sufficiently stored in the crystallization vessel 111.
JP 2005-33951 A

そこで、本発明は、濃縮率が高く、溶液に与える熱的ストレスが少なく、連続的に溶液を濃縮できる連続式の濃縮装置及びその運転方法を提供することを目的とする。 Accordingly, the present invention has a high concentration rate, thermal stress on the solution is small, and an object thereof is to provide a continuous solution concentrator and an operating method of a continuous capable concentrated.

このような目的を達成するため、本発明に係る濃縮装置は、鉛直方向に向けて配置された少なくとも一つの加熱管(27)と、加熱管(27)にその下端開口(29)から溶液(2)を供給する供給部(3)と、加熱管(27)の上部を囲み、加熱管(27)の上端開口(28)上に位置する液滴分離室(43)と、加熱管の上端開口を囲む濃縮液回収室(39)を形成する容器(37)と、濃縮液回収室(39)と加熱管(27)の下端開口(29)を接続する濃縮液返送管(46)と、液滴分離室(43)に配置され、蒸気中に含まれる液滴を分離して濃縮液回収室(39)に落下供給する液滴分離器(45)を備えている。   In order to achieve such an object, the concentrating device according to the present invention includes at least one heating pipe (27) arranged in the vertical direction, and a solution (from the lower end opening (29) to the heating pipe (27) ( 2) a supply unit (3) for supplying the liquid, a droplet separation chamber (43) that surrounds the upper portion of the heating tube (27) and is located on the upper end opening (28) of the heating tube (27), and an upper end of the heating tube A container (37) forming a concentrate recovery chamber (39) surrounding the opening, a concentrate return pipe (46) connecting the concentrate recovery chamber (39) and the lower end opening (29) of the heating pipe (27), A droplet separator (45) is disposed in the droplet separation chamber (43), and separates the droplets contained in the vapor and supplies the droplets to the concentrate recovery chamber (39).

本発明に係る濃縮装置はまた、加熱管(27)の周囲を囲み、加熱管(27)内の溶液を加熱する加熱媒体が収容される加熱室(30)を有する。 The concentration apparatus according to the present invention also includes a heating chamber (30) that surrounds the periphery of the heating tube (27) and accommodates a heating medium that heats the solution in the heating tube (27).

本発明に係る濃縮装置はさらに、濃縮された溶液の密度を測定する密度測定部(50)と、濃縮液回収室(39)又は濃縮液返送管(46)から、濃縮された溶液を抜き出す抜き取り部(48)と、密度測定部(50)で測定された密度に基づいて抜き取り部(48)を制御して、濃縮された溶液を抜き出す第1の制御部(51)を有する。 The concentration apparatus according to the present invention further includes a density measuring unit (50) for measuring the density of the concentrated solution, and extracting the concentrated solution from the concentrated liquid recovery chamber (39) or the concentrated liquid return pipe (46). And a first control unit (51) for controlling the extraction unit (48) based on the density measured by the density measurement unit (50) and extracting the concentrated solution.

本発明に係る濃縮装置はさらに、濃縮液返送管(46)を流れる溶液の流量を測定する流量測定部(50)と、加熱管(27)に溶液を供給する溶液供給部(3)と、流量測定部(50)で測定された流量に基づいて溶液供給部(3)から加熱管(27)に供給する溶液の量を調整する第2の制御部(51)を有する。 The concentration apparatus according to the present invention further includes a flow rate measurement unit (50) for measuring the flow rate of the solution flowing through the concentrate return pipe (46), a solution supply unit (3) for supplying the solution to the heating pipe (27), A second control unit (51) is provided that adjusts the amount of solution supplied from the solution supply unit (3) to the heating tube (27) based on the flow rate measured by the flow rate measurement unit (50).

本発明に係る濃縮装置はさらに、加熱管(27)の上端位置が濃縮液返送管(46)の上端位置よりも上方に配置されており、濃縮液回収室(39)、濃縮液返送管(46)、加熱管(27)を溶液が自然循環するように構成されている。 Concentrator according to the present invention further, the upper end position of the heat pipe (27) is arranged above the upper end position of the concentrate return pipe (46), concentrate collection chamber (39), the concentrate return pipe ( 46), It is comprised so that a solution may circulate naturally through a heating tube (27).

本発明に係る濃縮装置の運転方法は、本発明の濃縮装置を用いて、第1の制御部により、密度測定部で測定された密度に基づいて抜き取り部を制御して抜き取り部から濃縮された溶液を抜き取り、第2の制御部により、流量測定部で測定された流量に基づいて溶液供給部から加熱管に供給する量を調整し、抜き取り部から一定密度の溶液を連続的に抜き取ることを特徴とする。The operation method of the concentrating device according to the present invention was concentrated from the sampling unit by controlling the sampling unit based on the density measured by the density measuring unit by the first control unit using the concentrating device of the present invention. Extracting the solution, adjusting the amount supplied from the solution supply unit to the heating tube based on the flow rate measured by the flow rate measurement unit by the second control unit, and continuously extracting a constant density solution from the extraction unit. Features.

本発明の濃縮晶析システムは、以上の濃縮装置と晶析装置を組み合わせたものである。   The concentrated crystallization system of the present invention is a combination of the above concentration apparatus and crystallization apparatus.

本発明に係る濃縮装置及びこの濃縮装置を備えたシステムによれば、溶液を任意の一定倍率に濃縮制御することができる。また、溶液供給部から連続的又はほぼ連続的に供給される溶液を連続的に濃縮して排出できる。したがって、ある時間に濃縮装置に供給された溶液が長時間に亘って加熱状態に晒されることはない。そのため、本発明の濃縮装置は、溶液に与える熱的ストレスが少ないので、熱を受けることによって物性が変化し易い材料の濃縮に適する。さらに、濃縮装置の主要部は上下に配置された2つの容器によって構成されているので、占有面積が小さく、全体として小型化できる。   According to the concentrating device and the system including the concentrating device according to the present invention, it is possible to control the concentration of the solution at an arbitrary constant magnification. Moreover, the solution supplied continuously or almost continuously from the solution supply unit can be continuously concentrated and discharged. Therefore, the solution supplied to the concentrating device at a certain time is not exposed to the heated state for a long time. Therefore, the concentration apparatus of the present invention is suitable for concentration of materials whose physical properties are easily changed by receiving heat because the thermal stress applied to the solution is small. Furthermore, since the main part of the concentrating device is composed of two containers arranged one above the other, the occupation area is small and the overall size can be reduced.

以下、添付図面を参照して本発明の最良の実施形態を説明する。なお、以下の記述では、図面に表された構成部分の状態や位置関係を説明するために「上」、「下」及びそれらの派生語を使用するが、それらの使用は発明の理解を容易にするためであって発明の技術的範囲を定めるために利用されるべきものではない。また、複数の図面に表された同一又は類似の部分には同一の符号を用いる。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. In the following description, “upper”, “lower” and their derivatives are used to describe the state and positional relationship of the components shown in the drawings, but their use makes it easier to understand the invention. And should not be used to define the technical scope of the invention. Moreover, the same code | symbol is used for the same or similar part represented by several drawing.

〔1〕濃縮晶析システム:図1は、本発明に係る濃縮晶析システム(以下、単に「システム」という。)の概略構成を示す。図示するシステム1において、該システム1で処理される溶液2は、溶液貯蔵容器(溶液供給部)3に貯蔵されている。溶液貯蔵容器3は、本発明に係る連続式濃縮装置4に溶液供給手段5を介して接続されている。溶液供給手段5は、溶液貯蔵容器3と濃縮装置4を連結する溶液供給管6と、該溶液供給管6に付設された溶液供給弁7を備えており、溶液供給弁7の開閉に基づいて、溶液供給管6を介して、溶液貯蔵容器3から濃縮装置4に溶液を供給する。 [1] Concentrated crystallization system: FIG. 1 shows a schematic configuration of a concentrated crystallization system according to the present invention (hereinafter simply referred to as “system”). In the illustrated system 1, a solution 2 to be processed by the system 1 is stored in a solution storage container (solution supply unit) 3. The solution storage container 3 is connected to the continuous concentration apparatus 4 according to the present invention via a solution supply means 5. The solution supply means 5 includes a solution supply pipe 6 that connects the solution storage container 3 and the concentrating device 4, and a solution supply valve 7 attached to the solution supply pipe 6, and is based on opening and closing of the solution supply valve 7. Then, the solution is supplied from the solution storage container 3 to the concentration device 4 through the solution supply pipe 6.

濃縮装置4は、下部構造の加熱部8と該加熱部8の上に連結された上部構造の回収部9を有する。加熱部8は、溶液貯蔵容器3から供給された溶液を加熱部8で加熱する。回収部9は、加熱された溶液を回収すると共に蒸気から液滴を分離して回収する。回収部9で回収された溶液(濃縮液)は、加熱部8に返送される。このように、溶液は加熱と気液分離のプロセスを繰り返して濃縮される。一方、回収部9で液滴が除去された蒸気は、凝縮器10で凝縮され、その凝縮液が図示しない回収装置に回収される。   The concentrating device 4 includes a heating unit 8 having a lower structure and a recovery unit 9 having an upper structure connected to the heating unit 8. The heating unit 8 heats the solution supplied from the solution storage container 3 by the heating unit 8. The recovery unit 9 recovers the heated solution and separates and recovers the droplets from the vapor. The solution (concentrated liquid) collected by the collection unit 9 is returned to the heating unit 8. In this way, the solution is concentrated by repeating the process of heating and gas-liquid separation. On the other hand, the vapor from which the droplets have been removed by the recovery unit 9 is condensed by the condenser 10, and the condensate is recovered by a recovery device (not shown).

濃縮装置4で濃縮された溶液2(以下、この濃縮された溶液を「濃縮液11」という。)は、濃縮液輸送手段(濃縮液輸送管12)を介して晶析装置13に送られる。晶析装置13は晶析容器14を備えており、濃縮装置4から濃縮液輸送手段12を介して送られる濃縮液11が晶析容器14に供給される。晶析装置13には、溶質の結晶化を促進する貧溶媒(例えば、メタノール)を貯蔵する貧溶媒貯蔵容器15が付設されており、この品溶媒貯蔵容器15から晶析容器14に貧溶媒輸送手段(貧溶媒輸送管16)を介して貧溶媒17が供給されて濃縮液11と混合される。晶析容器14に供給される濃縮液11と貧溶媒17の割合は一定に管理される。   The solution 2 concentrated by the concentrator 4 (hereinafter, this concentrated solution is referred to as “concentrate 11”) is sent to the crystallizer 13 via the concentrate transport means (concentrate transport pipe 12). The crystallization apparatus 13 includes a crystallization container 14, and the concentrated liquid 11 sent from the concentration apparatus 4 via the concentrated liquid transporting means 12 is supplied to the crystallization container 14. The crystallizer 13 is provided with a poor solvent storage container 15 for storing a poor solvent (for example, methanol) that promotes crystallization of a solute, and transport of the poor solvent from the product solvent storage container 15 to the crystallization container 14. The poor solvent 17 is supplied through the means (the poor solvent transport pipe 16) and mixed with the concentrate 11. The ratio of the concentrated liquid 11 and the poor solvent 17 supplied to the crystallization container 14 is managed to be constant.

晶析装置13は、晶析容器14から濃縮液11の一部を取り出して再び晶析容器14に返送する循環手段18を有する。循環手段18は、晶析容器14の底部から出発し、晶析容器14の天井部を貫通して晶析容器14内に帰還する返送管19と、返送管19を介して晶析容器14の底部から濃縮液11を取り出して再び晶析容器14内に送り戻す循環ポンプ20を備えている。返送管19には冷却部又は冷却器(第1の冷却器)21が付設されており、返送管19を輸送される濃縮液が冷却器21で冷却されるようにしてある。また、晶析容器14の底部は固液分離装置22に接続されている。したがって、晶析容器14の濃縮液は、返送管19を通じて循環されながら冷却器21で冷却されて結晶化され、結晶スラリーになる。そして、結晶スラリーは晶析容器14から取り出されて固液分離装置22に供給され、そこで成長結晶だけが取り出される。   The crystallizer 13 has a circulation means 18 for taking out a part of the concentrated liquid 11 from the crystallizer 14 and returning it to the crystallizer 14 again. The circulation means 18 starts from the bottom of the crystallization vessel 14, passes through the ceiling portion of the crystallization vessel 14 and returns to the crystallization vessel 14, and the crystallization vessel 14 passes through the return tube 19. A circulation pump 20 is provided which takes out the concentrate 11 from the bottom and sends it back into the crystallization vessel 14 again. The return pipe 19 is provided with a cooling unit or cooler (first cooler) 21 so that the concentrated liquid transported through the return pipe 19 is cooled by the cooler 21. The bottom of the crystallization vessel 14 is connected to a solid-liquid separator 22. Therefore, the concentrated liquid in the crystallization vessel 14 is cooled by the cooler 21 while being circulated through the return pipe 19 to be crystallized into a crystal slurry. Then, the crystal slurry is taken out from the crystallization vessel 14 and supplied to the solid-liquid separator 22 where only the grown crystals are taken out.

〔2〕濃縮装置:図2を参照して濃縮装置4を説明する。濃縮装置4の下部構造である加熱部8は下部容器23を有する。下部容器23は、円筒体で形成されており、鉛直方向に配置された筒状壁部24を有し、筒状壁部24の上端部と下端部がそれぞれ上部壁25と下部壁26によって閉鎖されている。加熱部8において被加熱流体の溶液2が通過する複数の加熱管27は、筒状壁部24の内側で鉛直方向に配置されており、各加熱管27の上端部(上端開口28)と下端部(下端開口29)が上部壁25と下部壁26を貫通して突出させてある。図3に示すように、実施の形態では9本の加熱管27が水平方向に一定の間隔をあけて配置されているが、加熱管27の数や配置は実施例に限定されるものではない。図2に戻り、筒状壁部24、上部壁25及び下部壁26によって囲まれると共に加熱管27の外周面に接して形成されている加熱媒体室(加熱室)30は、筒状壁部24に設けた加熱媒体入口31と加熱媒体出口32を介して加熱媒体供給部33と加熱媒体回収部34にそれぞれ接続されており、加熱媒体供給部33から加熱媒体が加熱媒体室30に供給された後、その加熱媒体が加熱媒体室30から加熱媒体回収部34に排出されて回収されるようにしてある。 [2] Concentrator: The concentrator 4 will be described with reference to FIG. The heating unit 8, which is the lower structure of the concentrating device 4, has a lower container 23. The lower container 23 is formed of a cylindrical body, has a cylindrical wall portion 24 arranged in the vertical direction, and an upper end portion and a lower end portion of the cylindrical wall portion 24 are closed by an upper wall 25 and a lower wall 26, respectively. Has been. The plurality of heating tubes 27 through which the heated fluid solution 2 passes in the heating unit 8 are arranged in the vertical direction inside the cylindrical wall portion 24, and the upper end portion (upper end opening 28) and the lower end of each heating tube 27. A portion (lower end opening 29) projects through the upper wall 25 and the lower wall 26. As shown in FIG. 3, in the embodiment, nine heating tubes 27 are arranged at regular intervals in the horizontal direction, but the number and arrangement of the heating tubes 27 are not limited to the example. . Returning to FIG. 2, the heating medium chamber (heating chamber) 30 that is surrounded by the cylindrical wall portion 24, the upper wall 25, and the lower wall 26 and that is in contact with the outer peripheral surface of the heating tube 27 is the cylindrical wall portion 24. Are connected to the heating medium supply unit 33 and the heating medium recovery unit 34 via the heating medium inlet 31 and the heating medium outlet 32 provided in the heating medium, respectively. The heating medium is supplied from the heating medium supply unit 33 to the heating medium chamber 30. Thereafter, the heating medium is discharged from the heating medium chamber 30 to the heating medium recovery unit 34 and recovered.

筒状壁部24の底部は底蓋35によって覆われており、底蓋35と下部壁26の間に形成された分配室(供給部)36に各加熱管27の下端開口29が接続されている。分配室36は、溶液供給管6を介して溶液貯蔵容器3に接続されており、溶液供給弁7の制御に基づいて、溶液貯蔵容器3から溶液2が分配室36を介して各加熱管27に供給されるようにしてある。   The bottom of the cylindrical wall portion 24 is covered with a bottom lid 35, and a lower end opening 29 of each heating pipe 27 is connected to a distribution chamber (supply portion) 36 formed between the bottom lid 35 and the lower wall 26. Yes. The distribution chamber 36 is connected to the solution storage container 3 via the solution supply pipe 6. Based on the control of the solution supply valve 7, the solution 2 is supplied from the solution storage container 3 to each heating pipe 27 via the distribution chamber 36. To be supplied.

濃縮装置4の上部構造である回収部9は上部容器37を有する。上部容器37は、下部容器23の円筒体よりも大径の円筒体で形成されており、鉛直方向に配置された筒状壁部38を有する。上部容器37の筒状壁部38は、下部容器23の筒状壁部24と同軸上に配置されている。また、上部容器37における筒状壁部38の下部が、下部容器23における筒状壁部24の上部に間隔をあけて外装されており、下部容器23の上部外周に環状空間からなる回収室39が形成されている。上部容器37と下部容器23は、下部容器23の外周に固定された環状フランジ40上に、上部容器37の下端部に固定された環状フランジ41が連結されており、下部容器23の環状フランジ40で回収室39の底部を閉鎖している。上部容器37の上部は開放されて蒸気出口42を形成しており、この蒸気出口42が凝縮器10(図1参照)に接続されている。   The collection unit 9 that is the upper structure of the concentrating device 4 has an upper container 37. The upper container 37 is formed of a cylindrical body having a larger diameter than the cylindrical body of the lower container 23 and has a cylindrical wall portion 38 disposed in the vertical direction. The cylindrical wall portion 38 of the upper container 37 is disposed coaxially with the cylindrical wall portion 24 of the lower container 23. Further, the lower part of the cylindrical wall part 38 in the upper container 37 is externally spaced from the upper part of the cylindrical wall part 24 in the lower container 23, and a recovery chamber 39 consisting of an annular space on the upper outer periphery of the lower container 23. Is formed. The upper container 37 and the lower container 23 are connected to an annular flange 40 fixed to the lower end of the upper container 37 on an annular flange 40 fixed to the outer periphery of the lower container 23. The bottom of the recovery chamber 39 is closed. The upper part of the upper container 37 is opened to form a steam outlet 42, which is connected to the condenser 10 (see FIG. 1).

上部容器37の内側には液滴分離室43が形成されており、この液滴分離室43に気液分離手段が配置されている。実施の形態において、気液分離手段は、加熱管27の上端開口28から上方に所定距離をあけて対向し、加熱管27から放出される蒸気を径方向外側に分散させる分散板44と、分散板44で分散された蒸気と接触して該蒸気に含まれる液滴を付着させて分離回収する液滴分離器(デミスタブランケット)45が配置されている。   A droplet separation chamber 43 is formed inside the upper container 37, and gas-liquid separation means is disposed in the droplet separation chamber 43. In the embodiment, the gas-liquid separating means is opposed to the upper end opening 28 of the heating tube 27 with a predetermined distance upward, and disperses the steam discharged from the heating tube 27 radially outward, and the dispersion plate 44 A droplet separator (demister blanket) 45 that contacts and separates and collects the droplets contained in the vapor in contact with the vapor dispersed by the plate 44 is disposed.

回収室39は濃縮液返送管46を介して下部容器23の分配室36に接続されており、回収室39に回収された濃縮液(溶液)11が濃縮液返送管46を介して下部容器23の分配室36に返送されるようにしてある。図示するように、濃縮液返送管46は回収室39から水平方向に伸びており、この水平部分の内面下端が回収室39の底部から所定の高さH1に位置するようにしてある。   The collection chamber 39 is connected to the distribution chamber 36 of the lower container 23 via the concentrated liquid return pipe 46, and the concentrated liquid (solution) 11 collected in the collection chamber 39 is connected to the lower container 23 via the concentrated liquid return pipe 46. Returned to the distribution chamber 36. As shown in the figure, the concentrated liquid return pipe 46 extends in the horizontal direction from the recovery chamber 39, and the lower end of the inner surface of the horizontal portion is positioned at a predetermined height H 1 from the bottom of the recovery chamber 39.

回収室39は、濃縮液輸送管12を介して晶析容器14に接続されている。濃縮液輸送管12は濃度調整弁(抜き取り部)48を備えており、後に詳述するように、濃度調整弁48の開閉を調整することによって濃縮液11の濃度が調整されている。また、濃縮液輸送管12は、均圧管49を介して上部容器37の液滴分離室43に接続されている。さらに、図示するように、濃縮液輸送管12は回収室39に水平方向から接続されており、その内面下端が回収室39の底部から所定の高さH2に位置させてあり、この高さH2は濃縮液返送管46の高さH1よりも大きくしてある。   The collection chamber 39 is connected to the crystallization container 14 via the concentrated liquid transport pipe 12. The concentrated liquid transport pipe 12 is provided with a concentration adjusting valve (extraction portion) 48, and the concentration of the concentrated liquid 11 is adjusted by adjusting the opening and closing of the concentration adjusting valve 48 as will be described in detail later. Further, the concentrate transport pipe 12 is connected to the droplet separation chamber 43 of the upper container 37 through a pressure equalizing pipe 49. Further, as shown in the figure, the concentrate transport pipe 12 is connected to the recovery chamber 39 from the horizontal direction, and the lower end of the inner surface thereof is located at a predetermined height H2 from the bottom of the recovery chamber 39, and this height H2 Is larger than the height H1 of the concentrate return pipe 46.

濃縮装置4における濃縮率及び濃縮装置4に対する溶液の供給量を制御するために、流量と質量密度を計測可能な質量流量計(密度測定部)50が濃縮液返送管46に設けてある。質量流量計50の出力部は制御部(濃縮率及び供給量制御部)51の入力部に接続されており、質量流量計50で計測された濃縮液11の密度と返送流量が制御部51に出力されるようにしてある。制御部51の出力部は、濃縮液輸送管12に設けた濃度調整弁48に接続されており、制御部51からの出力に基づいて濃度調整弁48が開閉制御されるようにしてある。また、制御部51の出力部は、溶液供給管6に設けた溶液供給弁7と流量計52に接続されており、流量計52で計測された溶液供給量を参考にしながら、制御部51が溶液供給弁7を制御するようにしてある。濃縮液返送管46はまた、濃縮装置4に存在する溶液2又は濃縮液11の残留量(ホールアップ量)を監視するための観察窓又はサイトグラス53を備えており、サイトグラス53を通して濃縮液返送管46内にある濃縮液11の液面が目視できるようにしてある。   In order to control the concentration rate in the concentrating device 4 and the supply amount of the solution to the concentrating device 4, a mass flow meter (density measuring unit) 50 capable of measuring the flow rate and the mass density is provided in the concentrated liquid return pipe 46. The output unit of the mass flow meter 50 is connected to the input unit of the control unit (concentration rate and supply amount control unit) 51, and the density of the concentrate 11 and the return flow rate measured by the mass flow meter 50 are transferred to the control unit 51. It is supposed to be output. The output unit of the control unit 51 is connected to a concentration adjustment valve 48 provided in the concentrate transport pipe 12, and the concentration adjustment valve 48 is controlled to open and close based on the output from the control unit 51. Further, the output unit of the control unit 51 is connected to the solution supply valve 7 provided in the solution supply pipe 6 and the flow meter 52, and the control unit 51 refers to the solution supply amount measured by the flow meter 52. The solution supply valve 7 is controlled. The concentrated liquid return tube 46 is also provided with an observation window or sight glass 53 for monitoring the residual amount (hole up amount) of the solution 2 or the concentrated liquid 11 present in the concentrating device 4, and the concentrated liquid is passed through the sight glass 53. The liquid level of the concentrated liquid 11 in the return pipe 46 is made visible.

このような構成を備えた濃縮装置4によれば、溶液供給弁7の制御に基づいて溶液貯蔵容器3から溶液供給管6を介して供給された溶液2は、加熱部8における下部容器23の分配室36に入り、そこで複数の加熱管27に分配される。一方、下部容器23の加熱媒体室30には加熱媒体供給部33から加熱された加熱媒体が供給され、この加熱媒体によって加熱管27内にある溶液2が加熱される。加熱媒体は気体又は液体のいずれであってもよい。   According to the concentration device 4 having such a configuration, the solution 2 supplied from the solution storage container 3 via the solution supply pipe 6 based on the control of the solution supply valve 7 is supplied to the lower container 23 in the heating unit 8. It enters the distribution chamber 36 where it is distributed to a plurality of heating tubes 27. On the other hand, a heating medium heated from the heating medium supply unit 33 is supplied to the heating medium chamber 30 of the lower container 23, and the solution 2 in the heating tube 27 is heated by this heating medium. The heating medium may be either gas or liquid.

加熱された溶液2は、加熱管27内で気体と液体が混在する気液混相状態になり、加熱管27の上端開口28から液滴分離室43に流出した溶液(濃縮液)11が、下部容器23の上部壁25上を外側に移動し、回収室39に流れ込む。一方、溶液2の蒸気は、加熱管27の上端開口28から液滴分離室43を上昇し、分散板44によって分散された後、液滴分離器45によって液滴(溶液の濃縮液)が分離されて回収される。液滴分離器45で回収された液滴は上部容器37の底部に落下し、回収室39に回収される。回収室39に貯まった濃縮液11は、濃縮液返送管46内にある濃縮液11と加熱管27内にある気液混相状態の溶液2の密度差に基づいて、濃縮液返送管46を介して分配室36に自然に移動する。つまり、溶液2(濃縮液11)は、分配室36から加熱管27、回収室39、濃縮液返送管46を結ぶ循環経路(濃縮液循環系)に沿って自然循環する。この自然循環の原理は後述する。   The heated solution 2 is in a gas-liquid mixed phase in which gas and liquid are mixed in the heating tube 27, and the solution (concentrated liquid) 11 flowing out from the upper end opening 28 of the heating tube 27 into the droplet separation chamber 43 is the lower part. It moves outward on the upper wall 25 of the container 23 and flows into the collection chamber 39. On the other hand, the vapor of the solution 2 rises from the upper end opening 28 of the heating tube 27 to the droplet separation chamber 43 and is dispersed by the dispersion plate 44, and then the droplet (concentrated solution) is separated by the droplet separator 45. And recovered. The droplets collected by the droplet separator 45 fall to the bottom of the upper container 37 and are collected in the collection chamber 39. The concentrated liquid 11 stored in the recovery chamber 39 passes through the concentrated liquid return pipe 46 based on the density difference between the concentrated liquid 11 in the concentrated liquid return pipe 46 and the gas-liquid mixed phase solution 2 in the heating pipe 27. And move naturally to the distribution chamber 36. That is, the solution 2 (concentrated liquid 11) naturally circulates along a circulation path (concentrated liquid circulation system) connecting the distribution chamber 36 to the heating pipe 27, the recovery chamber 39, and the concentrated liquid return pipe 46. The principle of this natural circulation will be described later.

このようにして濃縮液11が循環される過程で該濃縮液11の密度は次第に上昇する。この濃縮液11の密度は、濃縮液返送管46に設けた質量流量計50によって計測され、制御部51に出力される。制御部51は、計測された密度が目標濃縮率に対応する密度(既定値)に達しているか否か判断し、計測密度が既定値以上になれば、濃度調整弁48を開いて回収室39の濃縮液11を晶析装置13に排出する。逆に、計測密度が既定値未満の場合、制御部51は濃度調整弁48を閉じて濃縮液11の抜き取りを中断する。このように、濃縮装置4では、濃縮液11の濃度に応じて抜き取り量を調整し、それによって晶析装置13に供給する濃縮液11の密度(濃縮率)を適正に管理している。   In this way, the density of the concentrate 11 gradually increases in the process of circulating the concentrate 11. The density of the concentrate 11 is measured by a mass flow meter 50 provided in the concentrate return pipe 46 and output to the control unit 51. The control unit 51 determines whether or not the measured density has reached a density (predetermined value) corresponding to the target concentration rate. If the measured density is equal to or higher than the predetermined value, the concentration adjusting valve 48 is opened to collect the recovery chamber 39. The concentrated liquid 11 is discharged to the crystallizer 13. Conversely, when the measured density is less than the predetermined value, the control unit 51 closes the concentration adjustment valve 48 and interrupts the extraction of the concentrate 11. As described above, in the concentration device 4, the extraction amount is adjusted according to the concentration of the concentrated solution 11, thereby appropriately managing the density (concentration rate) of the concentrated solution 11 supplied to the crystallizer 13.

密度(濃縮率)制御は、溶液貯蔵容器3から濃縮装置4に対する溶液供給量の管理と密接に関連している。そのため、制御部51は、質量流量計50の出力に基づいて、濃縮液返送管46を輸送される濃縮液の流量を参照しながら、溶液供給管6を通じて濃縮装置4に溶液2を供給する。このとき、制御部51は、溶液供給管6に設けた流量計52の出力に基づいて供給量を確認しながら溶液供給弁7をカスケード制御し、これにより、濃縮液返送管46を流れる濃縮液11の流量、すなわち、濃縮装置4のホールドアップ量を一定に維持する。なお、実施の形態の濃縮装置4は濃縮液返送管46にサイトグラス53を備えており、サイトグラス53を通じて確認される液面が一定していればホールドアップ量が一定に維持されており、ホールドアップ量が増加又は減少すると液面が上昇又は下降することから、サイトグラス53を介してホールドアップ量が一定に維持されているか否か目視で確認できる。   The density (concentration rate) control is closely related to the management of the solution supply amount from the solution storage container 3 to the concentration device 4. Therefore, the control unit 51 supplies the solution 2 to the concentration device 4 through the solution supply pipe 6 while referring to the flow rate of the concentrated liquid transported through the concentrated liquid return pipe 46 based on the output of the mass flow meter 50. At this time, the control unit 51 cascade-controls the solution supply valve 7 while confirming the supply amount based on the output of the flow meter 52 provided in the solution supply pipe 6, thereby the concentrate flowing through the concentrate return pipe 46. 11, that is, the hold-up amount of the concentrator 4 is kept constant. In addition, the concentration apparatus 4 of the embodiment includes the sight glass 53 in the concentrated liquid return pipe 46, and if the liquid level confirmed through the sight glass 53 is constant, the hold-up amount is maintained constant. When the hold-up amount increases or decreases, the liquid level rises or falls, so it can be visually confirmed whether or not the hold-up amount is maintained constant via the sight glass 53.

図5を参照して自然循環の原理を説明する。図において、符号L1は加熱管27の下端高さ、符号L2は加熱管27の上端高さ、符号L2’は回収室から返送管に濃縮液が流れ込む最低の高さを示す。符号h1はL1からL2までの距離、符号h1’はL1からL2’までの距離を示す。符号ρは加熱管27内で気液混相状態にある溶液2の比重、符号ρ’(>ρ)は濃縮液11の比重を示す。そして、濃縮装置4では、ρ・h<ρ’h’の関係が成立するように、高さh1、h1’が決められている。その結果、加熱管27内で気液混相状態にある溶液2は上昇流を形成し、濃縮液返送管46内の濃縮液11は下降流を形成し、全体的には加熱管27と濃縮液返送管46を循環する循環流が形成される。なお、加熱管の上端開口は、濃縮液返送管の上端位置よりも上方にある。   The principle of natural circulation will be described with reference to FIG. In the figure, symbol L1 indicates the lower end height of the heating tube 27, symbol L2 indicates the upper end height of the heating tube 27, and symbol L2 'indicates the minimum height at which the concentrate flows from the recovery chamber into the return tube. The symbol h1 indicates the distance from L1 to L2, and the symbol h1 'indicates the distance from L1 to L2'. The symbol ρ indicates the specific gravity of the solution 2 in the gas-liquid mixed phase in the heating tube 27, and the symbol ρ ′ (> ρ) indicates the specific gravity of the concentrated liquid 11. In the concentrating device 4, the heights h <b> 1 and h <b> 1 ′ are determined so that the relationship of ρ · h <ρ′h ′ is established. As a result, the solution 2 in the gas-liquid mixed phase in the heating pipe 27 forms an upward flow, the concentrated liquid 11 in the concentrated liquid return pipe 46 forms a downward flow, and the heating pipe 27 and the concentrated liquid as a whole. A circulation flow that circulates through the return pipe 46 is formed. Note that the upper end opening of the heating tube is above the upper end position of the concentrate return tube.

このように、本発明に係る濃縮装置4によれば、溶液貯蔵容器3から連続的又はほぼ連続的に供給される溶液を連続的に目標倍率に濃縮して排出できる。また、濃縮度の制御が可能であることから、濃縮不足等を補うために追加濃縮するという必要もない。したがって、ある時間に濃縮装置4に供給された溶液が長時間に亘って加熱状態に晒されることはない。そのため、本発明の濃縮装置は、溶液に与える熱的ストレスが少ないので、熱を受けることによって物性が変化し易い材料の濃縮に適する。また、加熱部8と回収部9が上下に配置されており、濃縮装置4の主要部は加熱部8の下部容器23と回収部9の上部容器37を組み合わせた一つの容器で構成されている。さらに、濃縮装置の占有面積が小さく、全体として、従来の濃縮装置に比べて小型化できる。   Thus, according to the concentration apparatus 4 according to the present invention, the solution supplied continuously or almost continuously from the solution storage container 3 can be continuously concentrated to the target magnification and discharged. In addition, since the degree of concentration can be controlled, there is no need for additional concentration to compensate for insufficient concentration. Therefore, the solution supplied to the concentrating device 4 at a certain time is not exposed to the heated state for a long time. Therefore, the concentration apparatus of the present invention is suitable for concentration of materials whose physical properties are easily changed by receiving heat because the thermal stress applied to the solution is small. Moreover, the heating unit 8 and the recovery unit 9 are arranged one above the other, and the main part of the concentrating device 4 is composed of one container in which the lower container 23 of the heating unit 8 and the upper container 37 of the recovery unit 9 are combined. . Further, the area occupied by the concentrator is small, and as a whole, the concentrator can be reduced in size as compared with the conventional concentrator.

なお、以上の説明では、下部容器23の外側に環状の濃縮液回収室39を形成したが、加熱管27を下部容器上部壁25から十分突出させ、この下部容器上部壁25に隣接し且つ加熱管突出部を囲む周囲の空間を濃縮液回収室として利用することもできる。   In the above description, the annular concentrated liquid recovery chamber 39 is formed outside the lower container 23. However, the heating tube 27 is sufficiently protruded from the lower container upper wall 25 and is adjacent to the lower container upper wall 25 and heated. The surrounding space surrounding the tube protrusion can also be used as a concentrate recovery chamber.

〔3〕晶析装置:図4を参照して晶析装置13を説明する。図示するように、晶析装置13は、濃縮装置4と貧溶媒貯蔵容器15からそれぞれ供給される濃縮液11と貧溶媒17を混合攪拌して結晶スラリーを生成するための晶析容器14を有する。晶析容器14は、鉛直軸を中心とする略円筒形の周壁55と、上方に向けて突出する略球面形の天井部56と、下方に向けて突出する略球面形の底部57を有し、底部57の上に大容積の上部濃縮液収容室(第1の濃縮液収容室)58が形成されている。また、底部57は、その中央部を下方に膨出させ、上部濃縮液収容室58よりも小径で小容積の下部濃縮液収容室(第2の濃縮液収容室)59が形成されている。以下、必要に応じて、上部濃縮液収容室58と下部濃縮液収容室59を合わせた全体を「濃縮液収容室60」という。 [3] Crystallizer: The crystallizer 13 will be described with reference to FIG. As shown in the figure, the crystallizer 13 has a crystallizer 14 for mixing and stirring the concentrate 11 and the poor solvent 17 respectively supplied from the concentrator 4 and the poor solvent storage container 15 to produce a crystal slurry. . The crystallization vessel 14 has a substantially cylindrical peripheral wall 55 centered on the vertical axis, a substantially spherical ceiling portion 56 projecting upward, and a substantially spherical bottom portion 57 projecting downward. A large-capacity upper concentrated liquid storage chamber (first concentrated liquid storage chamber) 58 is formed on the bottom 57. Further, the bottom 57 has a central portion bulging downward, and a lower concentrated liquid storage chamber (second concentrated liquid storage chamber) 59 having a smaller diameter and a smaller volume than the upper concentrated liquid storage chamber 58 is formed. Hereinafter, the whole of the upper concentrated liquid storage chamber 58 and the lower concentrated liquid storage chamber 59 is referred to as a “concentrated liquid storage chamber 60” as necessary.

晶析容器14に収容されている濃縮液11を冷却するために、下部濃縮液収容室59の底部中央にスラリー輸送管61の一端が接続されている。スラリー輸送管61は、スラリー循環ポンプ20、冷却器21を備えており、晶析容器14の天井部56を貫通して濃縮液収容室60内に伸びている。濃縮液収容室60内に位置するスラリー輸送管61の端部は円周水平方向に向けられて噴射ノズル63が形成されており、該噴射ノズル63から噴射されるスラリーによって上部濃縮液収容室58及び下部濃縮液収容室59に回転攪拌流を形成するようにしてある。   In order to cool the concentrate 11 stored in the crystallization vessel 14, one end of a slurry transport pipe 61 is connected to the center of the bottom of the lower concentrate storage chamber 59. The slurry transport pipe 61 includes the slurry circulation pump 20 and the cooler 21, and extends through the ceiling portion 56 of the crystallization container 14 into the concentrated liquid storage chamber 60. An end of the slurry transport pipe 61 located in the concentrate storage chamber 60 is directed in the circumferential horizontal direction to form an injection nozzle 63, and the upper concentrate storage chamber 58 is formed by the slurry injected from the injection nozzle 63. In addition, a rotary stirring flow is formed in the lower concentrated liquid storage chamber 59.

濃縮液輸送管12と貧溶媒輸送管16は、天井部56を貫通して濃縮液収容室60に接続されている。同様に、種晶貯蔵容器64からの種晶供給管65が天井部56を濃縮液収容室60に接続されている。   The concentrated liquid transport pipe 12 and the poor solvent transport pipe 16 pass through the ceiling portion 56 and are connected to the concentrated liquid storage chamber 60. Similarly, a seed crystal supply pipe 65 from the seed crystal storage container 64 connects the ceiling portion 56 to the concentrated liquid storage chamber 60.

このように構成された晶析装置13によれば、濃縮装置4、貧溶媒貯蔵容器15、種晶貯蔵容器64からそれぞれ濃縮液、貧溶媒、種晶が晶析容器14に供給される。そして、晶析処理の開始時、供給された濃縮液等は下部濃縮液収容室59に溜まる。下部濃縮液収容室59に所定量(所定深さ)の濃縮液等が溜まると、スラリー循環ポンプ20が駆動を開始し、下部濃縮液収容室59から抽出された濃縮液等がスラリー輸送管61を介して循環されるとともに、スラリー輸送管61を移動する濃縮液等が冷却器21によって冷却される。このとき、スラリー循環ポンプ20の駆動に基づいて下部濃縮液収容室59の底部から濃縮液等が抜き出されることにより下部濃縮液収容室59に収容されている濃縮液等が周方向に移動してその液面中央部が下がる。しかし、下部濃縮液収容室59の横断面積は上部濃縮液収容室58の横断面積に比べて極めて小さいので、小量の濃縮液をもって循環に必要な液面高さを確保できる。また、従来の晶析装置にある攪拌羽根が存在しない。そのため、晶析容器14から抜き出される濃縮液等に空気を巻き込むことがなく、この巻き込み空気によって生じるスラリー循環ポンプ20の空転を回避できる。   According to the crystallization apparatus 13 configured in this way, the concentrate, the poor solvent, and the seed crystal are supplied to the crystallization container 14 from the concentration apparatus 4, the poor solvent storage container 15, and the seed crystal storage container 64, respectively. Then, at the start of the crystallization process, the supplied concentrated liquid or the like accumulates in the lower concentrated liquid storage chamber 59. When a predetermined amount (a predetermined depth) of concentrated liquid or the like is accumulated in the lower concentrated liquid storage chamber 59, the slurry circulation pump 20 starts to drive, and the concentrated liquid extracted from the lower concentrated liquid storage chamber 59 is transferred to the slurry transport pipe 61. The concentrated liquid or the like moving through the slurry transport pipe 61 is cooled by the cooler 21. At this time, the concentrated liquid or the like stored in the lower concentrated liquid storage chamber 59 moves in the circumferential direction by extracting the concentrated liquid or the like from the bottom of the lower concentrated liquid storage chamber 59 based on the driving of the slurry circulation pump 20. The center of the liquid level drops. However, since the cross-sectional area of the lower concentrated liquid storage chamber 59 is extremely smaller than the cross-sectional area of the upper concentrated liquid storage chamber 58, the liquid level required for circulation can be secured with a small amount of concentrated liquid. Moreover, there is no stirring blade in the conventional crystallizer. Therefore, air is not involved in the concentrated liquid or the like extracted from the crystallization vessel 14, and the idling of the slurry circulation pump 20 caused by the entrained air can be avoided.

このようにして下部濃縮液収容室59から抜き出された濃縮液等はスラリー輸送管61を介して冷却器21に供給され、ここで冷却されて結晶の析出が行われた後、噴射ノズル63から濃縮液収容室60に返送される。このとき、噴射ノズル63から噴射される結晶スラリーは、下部濃縮液収容室59に攪拌流を形成し、これにより濃縮液、貧溶媒及び種晶の混合攪拌が行われる。通常結晶化には所定の時間(例えば、1時間)を要する。したがって、濃縮液等の供給が終了後約1時間経過した時点で晶析を終了し、スラリー輸送管61から分岐したスラリー排出管66の弁67を開放し、固液分離装置22に供給する。   The concentrated liquid or the like extracted from the lower concentrated liquid storage chamber 59 in this way is supplied to the cooler 21 via the slurry transport pipe 61 and cooled here to precipitate crystals, and then the injection nozzle 63. To the concentrate storage chamber 60. At this time, the crystal slurry sprayed from the spray nozzle 63 forms a stirring flow in the lower concentrated liquid storage chamber 59, whereby the mixed liquid, the poor solvent, and the seed crystal are mixed and stirred. Usually, a predetermined time (for example, 1 hour) is required for crystallization. Therefore, when about 1 hour has passed after the supply of the concentrated liquid or the like is completed, the crystallization is completed, the valve 67 of the slurry discharge pipe 66 branched from the slurry transport pipe 61 is opened, and the solid-liquid separator 22 is supplied.

このように、本発明に係る晶析装置13によれば、下部濃縮液収容室59に所定量の濃縮液等が溜まった時点から冷却及び結晶成長プロセスを開始できるため、従来の晶析装置に比べて、晶析開始までに要する時間が短縮できる。また、晶析開始直後はスラリー輸送管61に設けた冷却器21のみを駆動してスラリーを冷却すればよい。   As described above, according to the crystallizer 13 according to the present invention, the cooling and crystal growth process can be started from the time when a predetermined amount of concentrate or the like is accumulated in the lower concentrate storage chamber 59. In comparison, the time required to start crystallization can be shortened. Further, immediately after the start of crystallization, only the cooler 21 provided in the slurry transport pipe 61 may be driven to cool the slurry.

本発明に係る濃縮晶析システムの概略構成を示す図。1 is a diagram showing a schematic configuration of a concentrated crystallization system according to the present invention. 本発明に係る濃縮装置の縦断面図。The longitudinal cross-sectional view of the concentration apparatus which concerns on this invention. 図2に示す濃縮装置のIII-III線に沿った横断面図。FIG. 3 is a transverse cross-sectional view of the concentrator shown in FIG. 2 taken along line III-III. 本発明に係る晶析装置の縦断面図。1 is a longitudinal sectional view of a crystallization apparatus according to the present invention. 濃縮装置に循環流が形成される原理を説明する図。The figure explaining the principle by which a circulating flow is formed in a concentration apparatus. 従来の濃縮装置の斜視図。The perspective view of the conventional concentration apparatus. 従来の晶析装置の断面図。Sectional drawing of the conventional crystallizer.

符号の説明Explanation of symbols

1:システム、2:溶液、3:溶液貯蔵容器(溶液供給部)、4:濃縮装置、5:溶液供給手段、6:溶液供給管、7:溶液供給弁、8:加熱部、9:回収部、10:凝縮器、11:濃縮液、12:濃縮液輸送手段(濃縮液輸送管)、13:晶析装置、14:晶析容器、15:貧溶媒貯蔵容器、16:貧溶媒輸送手段(貧溶媒輸送管)、17:貧溶媒、18:循環手段、19:返送管、20:循環ポンプ、21:冷却器、22:固液分離装置、23:下部容器、24:筒状壁部、25:上部壁、26:下部壁、27:加熱管、28:上端開口、29:下端開口、30:加熱媒体室(加熱室)、31:加熱媒体入口、32:加熱媒体出口、33:加熱媒体供給部、34:加熱媒体回収部、35:底蓋、36:分配室(供給部)、37:上部容器、38:筒状壁部、39:回収室、40:環状フランジ、41:環状フランジ、42:蒸気出口、43:液滴分離室、44:分散板、45:液滴分離器、46:濃縮液返送管、48:濃度調整弁(抜き取り部)、49:均圧管、50:質量流量計、51:制御部、52:流量計、53:サイトグラス、55:周壁、56:天井部、57:底部、58:上部濃縮液収容室、59:下部濃縮液収容室、60:濃縮液収容室、61:スラリー輸送管、63:噴射ノズル、64:種晶貯蔵容器、65:種晶供給管。
1: system, 2: solution, 3: solution storage container (solution supply unit), 4: concentrator, 5: solution supply means, 6: solution supply pipe, 7: solution supply valve, 8: heating unit, 9: recovery Parts: 10: condenser, 11: concentrate, 12: concentrate transport means (concentrate transport pipe), 13: crystallizer, 14: crystallizer, 15: poor solvent storage container, 16: poor solvent transport means (Poor solvent transport pipe), 17: Poor solvent, 18: Circulation means, 19: Return pipe, 20: Circulation pump, 21: Cooler, 22: Solid-liquid separator, 23: Lower container, 24: Cylindrical wall 25: upper wall, 26: lower wall, 27: heating pipe, 28: upper end opening, 29: lower end opening, 30: heating medium chamber (heating chamber), 31: heating medium inlet, 32: heating medium outlet, 33: Heating medium supply unit, 34: heating medium recovery unit, 35: bottom lid, 36: distribution chamber (supply unit), 37: upper container 38: cylindrical wall part, 39: recovery chamber, 40: annular flange, 41: annular flange, 42: steam outlet, 43: droplet separation chamber, 44: dispersion plate, 45: droplet separator, 46: concentrate Return pipe, 48: Concentration adjustment valve (extraction part), 49: Pressure equalizing pipe, 50: Mass flow meter, 51: Control part, 52: Flow meter, 53: Cytoglass, 55: Peripheral wall, 56: Ceiling part, 57: Bottom: 58: Upper concentrate storage chamber, 59: Lower concentrate storage chamber, 60: Concentrate storage chamber, 61: Slurry transport pipe, 63: Injection nozzle, 64: Seed crystal storage container, 65: Seed crystal supply pipe.

Claims (2)

鉛直方向に向けて配置された少なくとも一つの加熱管と、
加熱管にその下端開口から溶液を供給する溶液供給部と、
加熱管の上部を囲み、加熱管の上端開口上に位置する液滴分離室加熱管の上端開口を囲む濃縮液回収室を形成する容器と、
液滴分離室に配置され、蒸気中に含まれる液滴を分離して濃縮液回収室に落下供給する液滴分離器と、
濃縮液回収室と溶液供給部を接続し、濃縮液回収室に回収された濃縮された溶液を溶液供給部に返送する濃縮液返送管と、
加熱管の周囲を囲み、加熱管内の溶液を加熱する加熱媒体が収容される加熱室と、
濃縮液回収室又は濃縮液返送管から、濃縮された溶液を抜き出す抜き取り部と、
濃縮された溶液の密度を測定する密度測定部と、
密度測定部で測定された密度に基づいて抜き取り部を制御して、濃縮された溶液を抜き出す第1の制御部と、
濃縮液返送管を流れる溶液の流量を測定する流量測定部と、
加熱管に溶液を供給する溶液供給部と、
流量測定部で測定された流量に基づいて溶液供給部から加熱管に供給する溶液の量を調整する第2の制御部を備えており、
加熱管の上端位置が濃縮液返送管の上端位置よりも上方に配置されており、濃縮液回収室、濃縮液返送管、加熱管を溶液が自然循環するように構成されていることを特徴とする濃縮装置。
At least one heating tube arranged in a vertical direction;
A solution supply section for supplying a solution to the heating tube from its lower end opening;
Surrounds the upper part of the heating tube, a container forming a concentrate collection chamber surrounding the upper end opening of the heating tube and the droplet separation chamber located on the upper end opening of the heating tube,
A droplet separator that is disposed in the droplet separation chamber, separates the droplets contained in the vapor, and drops the droplets to the concentrate recovery chamber ;
A concentrated liquid return tube for connecting the concentrated liquid recovery chamber and the solution supply unit, and returning the concentrated solution recovered in the concentrated liquid recovery chamber to the solution supply unit;
A heating chamber surrounding a heating tube and containing a heating medium for heating the solution in the heating tube;
An extractor for extracting the concentrated solution from the concentrate recovery chamber or the concentrate return pipe;
A density measuring unit for measuring the density of the concentrated solution;
A first control unit for controlling the extraction unit based on the density measured by the density measurement unit to extract the concentrated solution;
A flow rate measuring unit for measuring the flow rate of the solution flowing through the concentrate return pipe,
A solution supply unit for supplying a solution to the heating tube;
A second control unit that adjusts the amount of the solution supplied from the solution supply unit to the heating tube based on the flow rate measured by the flow rate measurement unit;
The upper end position of the heating pipe is disposed above the upper end position of the concentrate return pipe, and the solution is configured so that the solution naturally circulates in the concentrate recovery chamber, the concentrate return pipe, and the heating pipe. To concentrate.
鉛直方向に向けて配置された少なくとも一つの加熱管と、At least one heating tube arranged in a vertical direction;
加熱管にその下端開口から溶液を供給する溶液供給部と、A solution supply unit for supplying a solution to the heating tube from its lower end opening;
加熱管の上部を囲み、加熱管の上端開口上に位置する液滴分離室と加熱管の上端開口を囲む濃縮液回収室を形成する容器と、A container that surrounds the upper portion of the heating tube and forms a liquid droplet separation chamber located on the upper end opening of the heating tube and a concentrated liquid recovery chamber surrounding the upper end opening of the heating tube;
液滴分離室に配置され、蒸気中に含まれる液滴を分離して濃縮液回収室に落下供給する液滴分離器と、A droplet separator that is disposed in the droplet separation chamber, separates the droplets contained in the vapor, and drops the droplets to the concentrate recovery chamber;
濃縮液回収室と溶液供給部を接続し、濃縮液回収室に回収された濃縮された溶液を溶液供給部に返送する濃縮液返送管と、A concentrated liquid return pipe for connecting the concentrated liquid recovery chamber and the solution supply unit, and returning the concentrated solution recovered in the concentrated liquid recovery chamber to the solution supply unit;
加熱管の周囲を囲み、加熱管内の溶液を加熱する加熱媒体が収容される加熱室と、A heating chamber that surrounds the heating tube and contains a heating medium that heats the solution in the heating tube;
濃縮液回収室又は濃縮液返送管から、濃縮された溶液を抜き出す抜き取り部と、An extractor for extracting the concentrated solution from the concentrate recovery chamber or the concentrate return tube;
濃縮された溶液の密度を測定する密度測定部と、A density measuring unit for measuring the density of the concentrated solution;
密度測定部で測定された密度に基づいて抜き取り部を制御して、濃縮された溶液を抜き出す第1の制御部と、A first control unit for controlling the extraction unit based on the density measured by the density measurement unit and extracting the concentrated solution;
濃縮液返送管を流れる溶液の流量を測定する流量測定部と、A flow rate measuring unit for measuring the flow rate of the solution flowing through the concentrate return pipe,
加熱管に溶液を供給する溶液供給部と、A solution supply unit for supplying a solution to the heating tube;
流量測定部で測定された流量に基づいて溶液供給部から加熱管に供給する溶液の量を調整する第2の制御部を備えており、A second control unit that adjusts the amount of the solution supplied from the solution supply unit to the heating tube based on the flow rate measured by the flow rate measurement unit;
加熱管の上端位置が濃縮液返送管の上端位置よりも上方に配置されており、濃縮液回収室、濃縮液返送管、加熱管を溶液が自然循環するように構成されている濃縮装置を用い、  Using the concentrator configured so that the upper end position of the heating pipe is located above the upper end position of the concentrate return pipe, and the solution is naturally circulated through the concentrate recovery chamber, the concentrate return pipe, and the heating pipe. ,
第1の制御部により、密度測定部で測定された密度に基づいて抜き取り部を制御して抜き取り部から濃縮された溶液を抜き取り、  The first control unit controls the extraction unit based on the density measured by the density measurement unit to extract the concentrated solution from the extraction unit,
第2の制御部により、流量測定部で測定された流量に基づいて溶液供給部から加熱管に供給する量を調整し、  The second control unit adjusts the amount supplied from the solution supply unit to the heating tube based on the flow rate measured by the flow rate measurement unit,
抜き取り部から一定密度の溶液を連続的に抜き取ることを特徴とする、濃縮装置の運転方法。  A method for operating a concentrator, wherein a solution having a constant density is continuously extracted from the extraction portion.
JP2005223094A 2005-08-01 2005-08-01 Concentrator and method of operating the same Expired - Fee Related JP4566087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223094A JP4566087B2 (en) 2005-08-01 2005-08-01 Concentrator and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223094A JP4566087B2 (en) 2005-08-01 2005-08-01 Concentrator and method of operating the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010152737A Division JP4995947B2 (en) 2010-07-05 2010-07-05 Crystallizer, crystallization method, and concentrated crystallization system

Publications (2)

Publication Number Publication Date
JP2007038074A JP2007038074A (en) 2007-02-15
JP4566087B2 true JP4566087B2 (en) 2010-10-20

Family

ID=37796552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223094A Expired - Fee Related JP4566087B2 (en) 2005-08-01 2005-08-01 Concentrator and method of operating the same

Country Status (1)

Country Link
JP (1) JP4566087B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176493B2 (en) * 2007-11-08 2013-04-03 住友金属鉱山株式会社 Method and apparatus for nickel removal from copper removal electrolyte
KR101236861B1 (en) * 2008-01-18 2013-02-26 고도가이샤 야베가꾸쥬쯔신꼬까이 Energy saving fresh water production equipment
WO2010113241A1 (en) * 2009-03-31 2010-10-07 株式会社島津製作所 Batching-off and refining device
JP5599168B2 (en) * 2009-07-17 2014-10-01 株式会社ササクラ Solidification equipment for solution and waste liquid
CN107376401A (en) * 2017-08-31 2017-11-24 北京金隅琉水环保科技有限公司 A kind of lengthening formula crystallization cylinder and crystal system
CN109731361B (en) * 2019-03-18 2024-05-24 河北中然制药设备有限公司 Integral type climbing film evaporator
CN117299002B (en) * 2023-11-29 2024-03-19 崇义绿冶新能源有限公司 Lithium bicarbonate pyrolysis device for preparing lithium carbonate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210901A (en) * 2001-11-14 2003-07-29 Daicel Chem Ind Ltd Concentration apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319974A (en) * 1976-08-09 1978-02-23 Ebara Corp Evaporation concentration apparatus
JPS5356439U (en) * 1976-10-18 1978-05-15
JPS59169501A (en) * 1983-03-14 1984-09-25 Ebara Corp Control method of solution concentrating boiler
JPS6083001U (en) * 1983-11-15 1985-06-08 石川島播磨重工業株式会社 evaporator
JPH07241402A (en) * 1994-03-07 1995-09-19 Hitachi Ltd Evaporator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210901A (en) * 2001-11-14 2003-07-29 Daicel Chem Ind Ltd Concentration apparatus

Also Published As

Publication number Publication date
JP2007038074A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4566087B2 (en) Concentrator and method of operating the same
CN103071310B (en) Evaporating crystallizer
US4314455A (en) Freeze concentration apparatus and process
EP0968746B1 (en) Crystallization apparatus and crystallization method
US20110100561A1 (en) Vertical Wiped Thin-Film Evaporator
EP1997545A2 (en) Controlling condensation in combination with evaporation
JP4995947B2 (en) Crystallizer, crystallization method, and concentrated crystallization system
US9254451B2 (en) Method and apparatus for evaporating hydrogen halide and water from biomass hydrolyzates containing halogen acid
US4329198A (en) Apparatus for forced circulation evaporation
US1860741A (en) Crystallization apparatus
US4457769A (en) Freeze concentration apparatus and process
KR900006420B1 (en) Spray cryslallization
US6849155B2 (en) Concentrator
JP5097269B2 (en) Forced circulation type crystallizer
CN101626998B (en) Process for production of bisphenol a
EP1334069A2 (en) System and method for precipitating salts
KR101645472B1 (en) Multifunctional chemical equipment
US20220267173A1 (en) Systems and methods for separating soluble solutions
JP2009529911A (en) Improved vertical continuous vacuum kettle
KR20200123895A (en) Sublimation apparatus capable of continuous process and refining apparatus of organic material having the same
JPH10244250A (en) Non-boiling type distillation-purification device
JP3598692B2 (en) Crystallization method and crystallizer
CN214735119U (en) Low-temperature evaporation crystallization equipment
JP5860563B1 (en) Complex liquid separation and purification equipment
US5003784A (en) Apparatus and method of producing an ice slurry at the triple point of a solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees