JP3598643B2 - Semiconductor integrated circuit measuring device and semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit measuring device and semiconductor integrated circuit device Download PDF

Info

Publication number
JP3598643B2
JP3598643B2 JP7765796A JP7765796A JP3598643B2 JP 3598643 B2 JP3598643 B2 JP 3598643B2 JP 7765796 A JP7765796 A JP 7765796A JP 7765796 A JP7765796 A JP 7765796A JP 3598643 B2 JP3598643 B2 JP 3598643B2
Authority
JP
Japan
Prior art keywords
power supply
supply current
circuit
signal
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7765796A
Other languages
Japanese (ja)
Other versions
JPH09264931A (en
Inventor
正志 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7765796A priority Critical patent/JP3598643B2/en
Publication of JPH09264931A publication Critical patent/JPH09264931A/en
Application granted granted Critical
Publication of JP3598643B2 publication Critical patent/JP3598643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体集積回路測定装置および半導体集積回路装置に関し、特に自動試験における精度向上を図る技術に関するものである。
【0002】
【従来の技術】
半導体集積回路装置の試験項目の一つに動作時電源電流の測定がある。これについてC−MOSで構成されたLCDドライバを例にとり説明する。
【0003】
LCDドライバとは、入力として画像データを入力し、液晶表示パネルを駆動するための駆動信号を出力ドライバから出力する半導体集積回路装置である。一般にLCDドライバは使用する電源の電圧が高いこと、出力ピンが多いこと、といった特徴がある。そのため出力ドライバの状態変化時に電源電流値の変化が大きい。出力ドライバの出力波形とそのときの電源電流の変化の様子を図3に示す。
【0004】
図3において、CLKは入力クロックの変化、v1、v2、v3、v4はそれぞれ出力ドライバの出力変化(縦軸は電位、横軸は時間)、isは電源電流の変化(縦軸は電流値、横軸は時間)である。出力ドライバの状態がローレベル(以下Lレベルと記述)からハイレベル(以下Hレベルと記述)へと変化する時(図3の▲1▼部分)、あるいはHレベルからLレベルへと変化する時(図3の▲2▼部分)(▲1▼、▲2▼部分を電源電流大区間とする)の電源電流は、出力ドライバの状態変化がない時(図3の▲3▼部分。電源電流小区間とする)の電源電流と比較して、より大きい。
【0005】
従来の電源電流測定方法としては、電源電流の平均値を測定する方法と電源電流の瞬時値を測定する方法とがある。
【0006】
電源電流の平均値を測定する方法では、電源電流値を何回か測定し、その平均を計算して電源電流値の平均値とする。そして電源電流値の平均値の規格値と、先の計算によって得られた平均値とを比較し電源電流値の良否判定をする。
【0007】
また、電源電流の瞬時値を測定する方法では、電源電流値は出力ドライバの変化点における値が大きいので、この時の電源電流値に対する上限規格値を、測定するすべての瞬時値に対する上限規格値として、電源電流値の良否判定をする。
【0008】
【発明が解決しようとする課題】
しかしながら電源電流の平均値を測定する方法では、何回かの測定の平均値でしか電源電流値の良否を判定することができない。仮に電源電流測定時に1度だけ異常であるレベルの電流値が得られたとしても、その異常値自身も測定回数分で平均化されてしまう。そのため異常が見過ごされ、結果として良品と判定されることがありうる。電流値の平均値での良否の判定では、測定する区間において全体的に電流値が大きい場合でないと異常とは判定されにくい。
【0009】
また、電源電流の瞬時値を測定する方法では、電源電流大区間における測定規格を測定区間全体の測定規格としている。このためLCDドライバのような電源電流の最大値と最小値との差が大きいデバイスでは電源電流大区間での異常の検出には役立つが、電源電流小区間では電源電流値の測定規格が平均値での測定規格より更に大きいため、異常であるレベルの電流値が得られたとしてもその異常は発見しにくい。
【0010】
本発明は、上記の問題点を解決するためになされたものである。
【0011】
【課題を解決するための手段】
この問題点を解決するために本発明は、
a)被測定デバイスの電源電流を測定する電源電流測定回路と、
b)前記電源電流測定回路での測定値を規格値と比較し、測定値が規格内であるか否かの信号を 出力する異なる規格値を有する複数の比較回路と、
c)前記被測定デバイスへの入力クロック信号が直接入力され、該入力クロック信号のレベルを 検出するレベル検出回路と、
d)前記レベル検出回路からの出力により、複数の前記比較回路の出力結果から1つだけを選択 する切り替え回路と、
e)前記切り替え回路から規格外時の信号が出力された際に、それを保持する保持回路を備える ことを特徴としている。
また本発明は、
a)被測定デバイスの電源電流を測定する電源電流測定回路と、
b)前記電源電流測定回路での測定値を規格値と比較し、測定値が規格内であるか否かの信号を 出力する異なる規格値を有する複数の比較回路と、
c)前記被測定デバイスの出力信号が直接入力され、該入力クロック信号のレベルを検出するレ ベル検出回路と、
d)前記レベル検出回路の出力により、複数の前記比較回路の出力結果から1つだけを選択する 切り替え回路と、
e)前記切り替え回路から規格外時の信号が出力された際に、それを保持する保持回路を備える ことを特徴としている。
【0012】
【作用】
本発明の構成によると、電源電流を測定する際に、電源電流大区間と小区間での規格値をリアルタイムで切り替えることが可能となる。これにより、電源電流を平均値で判定する方法での単発的な異常や、電源電流を瞬時値を測定する方法での電源電流小区間における異常も規格値が切り替えられることで見逃すことがなくなる。
【0013】
更に、自動検査装置の測定とデバイスの出力とが非同期であったとしても、デバイスの出力タイミングを考慮することなく電源電流測定を行うことが可能となる。
【0014】
【発明の実施の形態】
本発明の一実施例を実施例1として図1に示す。
【0015】
図1において、1は自動検査装置、2は本実施例における半導体集積回路測定装置、3は被測定デバイス、4はデバイスの電源電流を測定する電源電流測定回路(以下電源電流測定回路と記述)、5は電源電流測定回路での測定値を規格値と比較し、測定値が規格内であるか否かの信号を出力する比較回路(以下電源電流値比較回路Aと記述)、6は5と規格値が異なる比較回路(以下電源電流値比較回路Bと記述)、ここで5は電源電流大区間での規格値が、6は電源電流小区間での規格値が設定されている。7はデバイスへの入力クロックを検出するレベル検出回路(以下レベル検出回路と記述)、8はレベル検出回路の出力により複数の比較回路の出力結果から1つだけを選択する切り替え回路(以下測定規格切り替え回路と記述)、9は電源電流値比較回路から規格外時の信号が出力されたときに、それを保持する保持回路(以下判定信号保持回路と記述)である。1の中にある”CLK OUT”は自動検査装置が発生するクロックの出力、”DUT PS”は、デバイスに供給する電源電圧、”SIG IN”は2の出力を取り込む端子である。3の中にある”VDD”はデバイスのVDD電源端子、”VSS”はデバイスのVSS電源端子、”IN”は1の”CLK OUT”からのクロック入力端子である。
【0016】
たとえば、現在デバイスへの入力クロックが立ち下がりの変化点であるとする。(本実施例1で用いるデバイスは入力クロックの立ち下がりエッジで動作するものとする)(図3の▲1▼部分)入力クロックの立ち下がりに同期してドライバ出力が変化する。するとレベル検出回路において入力クロックがHレベルからLレベルへと変化した、と入力の変化信号を検出し、Hレベルの検出信号を一定期間出力する。この時間はデバイスの種類、治具やLSIテスターなどのテスト環境、印加電圧などのテスト条件によって考慮する必要があるため、適当な時間を容易に調整できるような構造にしておく。この検出信号は測定規格切り替え回路に入力される。電源電流測定回路で測定された電源電流値は電源電流値比較回路A及びBに入力され、電源電流値の良否がそれぞれの比較回路でそれぞれの規格値によって判定される。測定規格切り替え回路はレベル検出回路からのHレベルの検出信号により電源電流値比較回路Aを選択し、電源電流大区間の良否判定が判定信号保持回路に出力される。
【0017】
次に入力クロックが立ち下がりの変化点ではないとする。(図3の▲2▼部分)レベル検出回路では入力クロックは立ち下がりの変化点ではない、と検出し、Lレベルの検出信号を出力する。この検出信号は、次のクロックの立ち下がり変化点まで同じレベルが出力される。この検出信号は測定規格切り替え回路に入る。電源電流測定回路で測定された電源電流値は電源電流値比較回路A及びBに入力され、電源電流値の良否がそれぞれの比較回路でそれぞれの規格値によって判定される。測定規格切り替え回路はレベル検出回路からのLレベルの検出信号により電源電流値比較回路Bを選択し、電源電流小区間の良否判定が判定信号保持回路に出力される。
【0018】
電源電流値比較回路A、Bにおいて、電源電流値が異常であるとの信号が出力され、判定信号保持回路から最終的に異常である信号が出力された場合には、その時点で試験は終了となり、次のデバイスの試験に移る。
【0019】
このように、レベル検出回路によって入力クロックの変化点を検出することにより、その変化信号をもとにリアルタイムで測定規格切り替え回路での測定規格切り替えが可能になるので、入力クロックが立ち下がりの変化点である電源電流大区間も、入力クロックが立ち下がりではない電源電流小区間も、いずれの時も正確な電源電流測定が可能となる。
【0020】
ところで、発振回路を内蔵するデバイスの動作方法には、外部からクロック信号を入力して動作させる方法と内蔵発振回路が発生するクロック信号によって動作する方法とがある。発振回路内蔵のデバイスに対しては、前述の実施例1のように入力クロックでタイミングを決めることはできない。このような場合には、図1のレベル検出回路をデバイスの出力ドライバ端子に接続することにより、前述の実施例1と同様な自動試験が可能となる。但し、この場合レベル検出回路は、立ち上がり、立ち下がりの両方の変化を検出できなければならない。この実施例を実施例2として、図2に示す。
【0021】
図2において、被測定デバイス中の”OUT”はデバイスの出力端子である。
【0022】
ちなみに、外部からクロック信号を入力して動作させるデバイスに対しても、実施例2を適用することは可能である。レベル検出回路への入力を入力クロックからにするか、デバイスの出力ドライバからにするかの違いであり、それ以外の内部動作は同一である。
【0023】
また、本実施例を適用するには、電源電流値比較回路A及びBの規格値、レベル検出回路のコンパレータレベル、レベル検出回路が入力クロック(あるいはデバイス出力の変化)を検出してから測定規格切り替え回路が電源電流測定規格の大きい方を選択している時間、の3つのパラメータだけを設定すればよい。これにより、デバイスの種類、テスト環境、テスト条件が変わっても、容易に対応できる。
【0024】
【発明の効果】
この構成の測定回路を自動検査装置に内蔵、もしくは外付けすることにより、電源電流を測定する際に、その規格値をリアルタイムで切り替えることが可能となる。この結果、電源電流測定において、平均値で判定する方法で課題となっていた単発的な異常の検出に対しても、瞬時値で測定する方法で課題となっていた電源電流小区間での異常の検出に対しても、その異常を見逃すことなく正確に検出できる。また、自動検査装置の測定とデバイスの出力とが非同期であったとしても、簡単なパラメーター設定で電源電流大区間と小区間での規格値をデバイスの出力タイミングを考慮することなく容易に切り替えることができる。
【図面の簡単な説明】
【図1】本発明の実施例1の半導体集積回路測定装置の構成図。
【図2】本発明の実施例2の半導体集積回路測定装置の構成図。
【図3】図1の入力クロック及びドライバ出力のタイミングチャートと、そのときの電源電流値の変化の図。
【符号の説明】
1 自動検査装置
2 半導体集積回路測定装置
3 被測定デバイス
4 電源電流測定回路
5 電源電流値比較回路A
6 電源電流値比較回路B
7 レベル検出回路
8 測定規格切り替え回路
9 判定信号保持回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor integrated circuit measuring device and a semiconductor integrated circuit device, and more particularly to a technique for improving accuracy in an automatic test.
[0002]
[Prior art]
One of the test items of a semiconductor integrated circuit device is measurement of a power supply current during operation. This will be described with an example of an LCD driver constituted by a C-MOS.
[0003]
The LCD driver is a semiconductor integrated circuit device that inputs image data as input and outputs a drive signal for driving a liquid crystal display panel from an output driver. In general, LCD drivers are characterized in that the voltage of the power supply used is high and that there are many output pins. Therefore, when the state of the output driver changes, the change in the power supply current value is large. FIG. 3 shows the output waveform of the output driver and how the power supply current changes at that time.
[0004]
In FIG. 3, CLK indicates a change in input clock, v1, v2, v3, and v4 indicate output changes of the output driver (vertical axis indicates potential, horizontal axis indicates time), and is indicates power supply current change (vertical axis indicates current value, The horizontal axis is time). When the state of the output driver changes from low level (hereinafter referred to as L level) to high level (hereinafter referred to as H level) (part (1) in FIG. 3), or when the state changes from H level to L level The power supply current (part (2) in FIG. 3) (parts (1) and (2) are referred to as a large power supply current section) is when there is no change in the state of the output driver (part (3) in FIG. 3; power supply current). It is larger than the power supply current in the small section.
[0005]
Conventional power supply current measuring methods include a method of measuring the average value of the power supply current and a method of measuring the instantaneous value of the power supply current.
[0006]
In the method of measuring the average value of the power supply current, the power supply current value is measured several times, and the average is calculated to be the average value of the power supply current value. Then, the standard value of the average value of the power supply current value is compared with the average value obtained by the above calculation to determine whether the power supply current value is good or not.
[0007]
In the method of measuring the instantaneous value of the power supply current, since the power supply current value is large at the change point of the output driver, the upper limit specification value for the power supply current value at this time is set to the upper limit specification value for all instantaneous values to be measured. To judge whether the power supply current value is good or not.
[0008]
[Problems to be solved by the invention]
However, in the method of measuring the average value of the power supply current, the quality of the power supply current value can be determined only by the average value of several measurements. Even if a current value of an abnormal level is obtained only once at the time of measuring the power supply current, the abnormal value itself is averaged by the number of times of measurement. Therefore, the abnormality may be overlooked, and as a result, it may be determined that the product is good. In the pass / fail determination using the average value of the current values, it is difficult to determine that the current value is abnormal unless the current value is large as a whole in the section to be measured.
[0009]
Further, in the method of measuring the instantaneous value of the power supply current, the measurement standard in the power supply current large section is set as the measurement standard of the entire measurement section. For this reason, a device such as an LCD driver having a large difference between the maximum value and the minimum value of the power supply current is useful for detecting an abnormality in a section where the power supply current is large. Is larger than the measurement standard, even if a current value of an abnormal level is obtained, it is difficult to detect the abnormality.
[0010]
The present invention has been made to solve the above problems.
[0011]
[Means for Solving the Problems]
In order to solve this problem, the present invention
a) a power supply current measuring circuit for measuring a power supply current of the device under test;
b) a plurality of comparing circuits having different standard values for comparing the measured value of the power supply current measuring circuit with the standard value and outputting a signal indicating whether the measured value is within the standard,
c) a level detection circuit for directly inputting an input clock signal to the device under test and detecting a level of the input clock signal ;
d) a switching circuit that selects only one of the output results of the plurality of comparison circuits based on the output from the level detection circuit;
e) When a nonstandard signal is output from the switching circuit, a holding circuit for holding the signal is provided.
Also, the present invention
a) a power supply current measuring circuit for measuring a power supply current of the device under test;
b) a plurality of comparing circuits having different standard values for comparing the measured value of the power supply current measuring circuit with the standard value and outputting a signal indicating whether the measured value is within the standard,
c) a level detection circuit to which an output signal of the device under test is directly input and which detects a level of the input clock signal;
d) a switching circuit that selects only one of the output results of the plurality of comparison circuits based on the output of the level detection circuit;
e) When a nonstandard signal is output from the switching circuit, a holding circuit for holding the signal is provided.
[0012]
[Action]
According to the configuration of the present invention, when measuring the power supply current, it is possible to switch in real time the standard value between the power supply current large section and the small section. Thus, a single abnormality in the method of determining the power supply current based on the average value and an abnormality in the power supply current small section in the method of measuring the instantaneous value of the power supply current are not overlooked by switching the standard value.
[0013]
Furthermore, even if the measurement of the automatic inspection apparatus and the output of the device are asynchronous, the power supply current can be measured without considering the output timing of the device.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment of the present invention is shown in FIG.
[0015]
In FIG. 1, reference numeral 1 denotes an automatic inspection apparatus, 2 denotes a semiconductor integrated circuit measuring apparatus in the present embodiment, 3 denotes a device to be measured, and 4 denotes a power supply current measuring circuit for measuring a power supply current of the device (hereinafter referred to as a power supply current measuring circuit). Reference numeral 5 denotes a comparison circuit (hereinafter referred to as a power supply current value comparison circuit A) which compares a measured value of the power supply current measurement circuit with a standard value and outputs a signal indicating whether or not the measured value is within the standard. (Hereinafter referred to as power supply current value comparison circuit B), where 5 is a standard value in a large power supply current section and 6 is a standard value in a small power supply current section. Reference numeral 7 denotes a level detection circuit (hereinafter referred to as a level detection circuit) for detecting an input clock to the device, and reference numeral 8 denotes a switching circuit (hereinafter referred to as a measurement standard) that selects only one output result from a plurality of comparison circuits based on the output of the level detection circuit. Reference numeral 9 denotes a holding circuit (hereinafter referred to as a determination signal holding circuit) for holding a signal when the power supply current value comparison circuit outputs an out-of-specification signal. “CLK OUT” in 1 is an output of a clock generated by the automatic inspection apparatus, “DUT PS” is a power supply voltage supplied to the device, and “SIG IN” is a terminal for taking in the output of 2. 3, "VDD" is a VDD power supply terminal of the device, "VSS" is a VSS power supply terminal of the device, and "IN" is a clock input terminal from 1 "CLK OUT".
[0016]
For example, it is assumed that the input clock to the current device is a falling transition point. (It is assumed that the device used in the first embodiment operates at the falling edge of the input clock.) (Part (1) in FIG. 3) The driver output changes in synchronization with the falling of the input clock. Then, the level detection circuit detects an input change signal indicating that the input clock has changed from the H level to the L level, and outputs an H level detection signal for a certain period. Since this time needs to be considered depending on the type of device, test environment such as a jig and an LSI tester, and test conditions such as applied voltage, the structure is set so that an appropriate time can be easily adjusted. This detection signal is input to the measurement standard switching circuit. The power supply current value measured by the power supply current measurement circuit is input to the power supply current value comparison circuits A and B, and the quality of the power supply current value is determined by the respective comparison circuits based on the respective standard values. The measurement standard switching circuit selects the power supply current value comparison circuit A based on the H-level detection signal from the level detection circuit, and outputs a pass / fail judgment in the power supply large section to the judgment signal holding circuit.
[0017]
Next, it is assumed that the input clock is not at the falling transition point. (Part {circle around (2)} in FIG. 3) The level detection circuit detects that the input clock is not at the falling transition point, and outputs an L level detection signal. This detection signal is output at the same level until the next clock falling transition point. This detection signal enters a measurement standard switching circuit. The power supply current value measured by the power supply current measurement circuit is input to the power supply current value comparison circuits A and B, and the quality of the power supply current value is determined by the respective comparison circuits based on the respective standard values. The measurement standard switching circuit selects the power supply current value comparison circuit B based on the L-level detection signal from the level detection circuit, and outputs a determination of pass / fail of the power supply current small section to the determination signal holding circuit.
[0018]
If a signal indicating that the power supply current value is abnormal is output from the power supply current value comparison circuits A and B and a signal indicating that the power supply current value is abnormal is finally output from the determination signal holding circuit, the test ends at that point. Then, the test moves to the next device.
[0019]
As described above, by detecting the change point of the input clock by the level detection circuit, the measurement standard can be switched by the measurement standard switching circuit in real time based on the change signal. Accurate power supply current measurement is possible in both the large power supply current section which is a point and the small power supply current section where the input clock does not fall.
[0020]
By the way, as a method of operating a device having a built-in oscillation circuit, there are a method of operating by inputting a clock signal from the outside and a method of operating by a clock signal generated by the built-in oscillation circuit. For a device having a built-in oscillation circuit, the timing cannot be determined by the input clock as in the first embodiment. In such a case, by connecting the level detection circuit of FIG. 1 to the output driver terminal of the device, an automatic test similar to that of the first embodiment can be performed. However, in this case, the level detection circuit must be able to detect both rising and falling changes. This embodiment is shown in FIG.
[0021]
In FIG. 2, “OUT” in the device under test is an output terminal of the device.
[0022]
The second embodiment can be applied to a device that operates by inputting a clock signal from the outside. The difference is whether the input to the level detection circuit is from the input clock or from the output driver of the device, and the other internal operations are the same.
[0023]
Further, in order to apply this embodiment, the standard values of the power supply current value comparison circuits A and B, the comparator level of the level detection circuit, and the measurement standard after the level detection circuit detects an input clock (or a change in device output). Only the three parameters of the time when the switching circuit selects the larger one of the power supply current measurement standards need be set. This makes it easy to respond to changes in device type, test environment, and test conditions.
[0024]
【The invention's effect】
By incorporating or externally attaching the measuring circuit having this configuration to the automatic inspection apparatus, it becomes possible to switch the standard value in real time when measuring the power supply current. As a result, in the measurement of the power supply current, even in the case of the detection of a single abnormality, which has been a problem in the method of judging by the average value, the abnormality in the small section of the power supply current has been a problem in the method of measuring the instantaneous value. Can be accurately detected without overlooking the abnormality. In addition, even if the measurement of the automatic inspection device and the output of the device are asynchronous, it is possible to easily switch the standard value between the large section and the small section of the power supply current without considering the output timing of the device by simple parameter setting. Can be.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a semiconductor integrated circuit measurement device according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a semiconductor integrated circuit measurement device according to a second embodiment of the present invention.
FIG. 3 is a timing chart of an input clock and a driver output of FIG. 1 and a diagram of a change in a power supply current value at that time.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Automatic inspection apparatus 2 Semiconductor integrated circuit measuring apparatus 3 Device under test 4 Power supply current measuring circuit 5 Power supply current value comparing circuit A
6. Power supply current value comparison circuit B
7 Level detection circuit 8 Measurement standard switching circuit 9 Judgment signal holding circuit

Claims (3)

a)被測定デバイスの電源電流を測定する電源電流測定回路と、
b)前記電源電流測定回路での測定値を規格値と比較し、測定値が規格内であるか否かの信号を 出力する異なる規格値を有する複数の比較回路と、
c)前記被測定デバイスへの入力クロック信号が直接入力され、該入力クロック信号のレベルを 検出するレベル検出回路と、
d)前記レベル検出回路からの出力により、複数の前記比較回路の出力結果から1つだけを選択 する切り替え回路と、
e)前記切り替え回路から規格外時の信号が出力された際に、それを保持する保持回路を備える ことを特徴とする半導体集積回路測定装置。
a) a power supply current measuring circuit for measuring a power supply current of the device under test;
b) a plurality of comparing circuits having different standard values for comparing the measured value of the power supply current measuring circuit with the standard value and outputting a signal indicating whether the measured value is within the standard,
c) a level detection circuit for directly inputting an input clock signal to the device under test and detecting a level of the input clock signal ;
d) a switching circuit that selects only one of the output results of the plurality of comparison circuits based on the output from the level detection circuit;
e) a semiconductor integrated circuit measuring device, comprising: a holding circuit for holding a signal when the signal is out of specification from the switching circuit.
a)被測定デバイスの電源電流を測定する電源電流測定回路と、
b)前記電源電流測定回路での測定値を規格値と比較し、測定値が規格内であるか否かの信号を 出力する異なる規格値を有する複数の比較回路と、
c)前記被測定デバイスの出力信号が直接入力され、該入力クロック信号のレベルを検出するレ ベル検出回路と、
d)前記レベル検出回路の出力により、複数の前記比較回路の出力結果から1つだけを選択する 切り替え回路と、
e)前記切り替え回路から規格外時の信号が出力された際に、それを保持する保持回路を備える ことを特徴とする半導体集積回路測定装置。
a) a power supply current measuring circuit for measuring a power supply current of the device under test;
b) a plurality of comparing circuits having different standard values for comparing the measured value of the power supply current measuring circuit with the standard value and outputting a signal indicating whether the measured value is within the standard,
c) a level detection circuit to which an output signal of the device under test is directly input and which detects a level of the input clock signal ;
d) a switching circuit that selects only one of the output results of the plurality of comparison circuits based on the output of the level detection circuit;
e) a semiconductor integrated circuit measuring device, comprising: a holding circuit for holding a signal when the signal is out of specification from the switching circuit.
請求項1乃至2のいずれかに記載の測定装置を使用して検査を行った半導体集積回 路装置。A semiconductor integrated circuit device which has been inspected using the measuring device according to claim 1 .
JP7765796A 1996-03-29 1996-03-29 Semiconductor integrated circuit measuring device and semiconductor integrated circuit device Expired - Lifetime JP3598643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7765796A JP3598643B2 (en) 1996-03-29 1996-03-29 Semiconductor integrated circuit measuring device and semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7765796A JP3598643B2 (en) 1996-03-29 1996-03-29 Semiconductor integrated circuit measuring device and semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH09264931A JPH09264931A (en) 1997-10-07
JP3598643B2 true JP3598643B2 (en) 2004-12-08

Family

ID=13639962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7765796A Expired - Lifetime JP3598643B2 (en) 1996-03-29 1996-03-29 Semiconductor integrated circuit measuring device and semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP3598643B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10029835C1 (en) * 2000-06-16 2001-10-25 Infineon Technologies Ag Integrated circuit with test facility has test switch closed by applied test signal to allow test voltage to be applied to irreversible programmable switches

Also Published As

Publication number Publication date
JPH09264931A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
KR101045036B1 (en) Ic tester
US20030001562A1 (en) Inspecting apparatus and inspecting method for circuit board
JP3598643B2 (en) Semiconductor integrated circuit measuring device and semiconductor integrated circuit device
JP4314096B2 (en) Semiconductor integrated circuit inspection apparatus and semiconductor integrated circuit inspection method
US6738940B1 (en) Integrated circuit including a test signal generator
JPH11142471A (en) Burn-in test method and burn-in test device
JP4409039B2 (en) Path fault diagnostic device, path fault diagnostic method, and semiconductor integrated circuit device having self-diagnosis function
JP3353288B2 (en) LSI test equipment
US6815969B2 (en) Semiconductor inspection device capable of performing various inspections on a semiconductor device
KR100463335B1 (en) Semiconductor tester, semiconductor intergrated circuit and semiconductor testing method
JPH01156681A (en) Circuit board inspecting method
JPH1194919A (en) Method for inspecting electronic unit
JPH08226942A (en) Method for judging contact failure of test probe pin and in-circuit tester
JPH05281307A (en) Semiconductor circuit
JPH07146330A (en) Burn-in testing device
JPH0980114A (en) Apparatus for measuring current of ic tester
JP2001174516A (en) Semiconductor test device
JPH04190175A (en) Ic tester
JPH10253715A (en) Circuit for diagnosing semiconductor tester and method for testing semiconductor
JP2001091920A (en) Testing circuit
JPH0917951A (en) Circuit and method for testing semiconductor integrated circuit
JPH11271398A (en) Apparatus for inspecting semiconductor integrated circuit and method for detecting failure of the same
KR20000042724A (en) Apparatus for testing integrated circuit
JPH0972944A (en) Interface circuit and inspecting apparatus
JPH06194410A (en) Burn-in apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8