JP3596711B2 - Machine tool motor winding switching device - Google Patents
Machine tool motor winding switching device Download PDFInfo
- Publication number
- JP3596711B2 JP3596711B2 JP27846796A JP27846796A JP3596711B2 JP 3596711 B2 JP3596711 B2 JP 3596711B2 JP 27846796 A JP27846796 A JP 27846796A JP 27846796 A JP27846796 A JP 27846796A JP 3596711 B2 JP3596711 B2 JP 3596711B2
- Authority
- JP
- Japan
- Prior art keywords
- winding
- windings
- motor
- phase
- machine tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Control Of Ac Motors In General (AREA)
- Windings For Motors And Generators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、工作機の主軸を駆動する工作機用モータの巻線切替装置に関するものである。
【0002】
【従来の技術】
工作機の主軸を駆動する工作機用モータにおいては、近年、変速機構をなくして直接主軸をドライブするものが各種提案されているが、このようなモータ制御装置には高速から低速までの広域の速度範囲にわたって、出力一定制御が要求される。特に、主軸に割り出し(インデックス)機能を持たせた場合、低速時の大トルク、高精度のサーボ性能も必要となる。
これを実現するために、交流モータを工作機用モータとして使用したドライブ装置においては、低速時と高速時で異なる二つの出力特性を得る巻線切替制御が行われている。
【0003】
特開平4−105587号公報には、図4に示すような巻線切替方法の例が記載されている。図4の例は、三相電源R,S,Tを印加すべきU,V,W相の各固定子巻線をそれぞれ直列の2つの巻線C1U,C2U、C1V,C2V、C1W,C2Wとし、これらを多相コンタクタM1U,M1V,M1W及びM2U,M2V,M2Wの群をいずれかオン・オフすることにより、低速時に2つの巻線を直列に接続し鎖交磁束数を増やして大トルクを出せるようにし、高速時には、コンタクタの接続を変えて1つの巻線にして鎖交磁束を減らし高速回転ができるように制御するものである。
また、特開平4−244771号公報には、図5に示すような例が開示されている。これは同期電動機の巻線切替による工作機主軸駆動方式の例であり、三相の各相を直列の3巻線にして、低速時には固定子巻線の巻回数を多くし、高速時には固定子巻線の巻回数を少なくするように3巻線のタップ切り替えをするものである。
【0004】
【発明が解決しようとする課題】
しかしながら、前記の特開平4−105587号公報に示すコンタクタの挿入方法では、リード線が12本必要となり、接続作業も複雑であり、また電機子巻線のリード線処理時、結線側のコイルエンド部が大きくなり、モータの軸方向寸法が長くなるという問題があった。
また前記の特開平4−244771号公報に示す例の場合は、3コイルの直列接続のタップ出しの例については、特開平4−105587号公報に示す例の場合に比べて、リード線数が9本と少なくて済むが、3つの巻線を切替制御するには、コンタクタ接点数が必要となり、また電機子巻線の巻線作業も複雑になるという問題があった。
また、特開平4−244771号公報記載の従来例では、最高回転速度時、何かのトラブルで無制御状態になったとき、本従来例はタップ出し構成であるため、各端子には、磁石の磁束により大電圧が誘起し、巻線絶縁の信頼性、また安全性に問題があった。
このため、上記従来例では主軸モータの必須機能である(1)割り出し機能、(2)低速重切削機能、(3)高速仕上げ機能の3モード切替えを行うのに、リード線数が多くなるか、コンタクタの接点数が増え、制御アルゴリズムが複雑になり、さらに絶縁の信頼性、安全性に欠けるという問題があった。
そこで本発明が解決すべき課題は、永久磁石同期電動機のリード線数を減らした巻線構成で広範囲の定出力制御ができる工作機用モータの巻線切替装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の工作機用モータの巻線切替装置は、工作機用モータの固定子巻線の各相を複数の巻線で構成し、高速回転の主軸制御時は各相の巻線の巻回数が少なくなるように、低速回転の主軸割り出し制御時は各相の巻線の巻回数が多くなるように、前記巻線をコンタクタにより切り替える工作機用モータの巻線切替装置において、 前記固定子巻線の各相の巻線を巻回数の多い第1の巻線と巻回数の少ない第2の巻線とで構成し、前記各相の第2の巻線同志は巻終わりを結線してスター結線し、前記各相の第1の巻線の巻始めをそれぞれ各相の電源に接続し、前記各相の第2の巻線の巻始めと第1の巻線の巻終わり各相の電源との間に、第1の巻線と第2の巻線を直列接続にするか、第1の巻線を前記各相の電源にスター接続するか、または前記各相の電源に第2の巻線をスター接続するかの選択的切替を行うコンタクタを設置し、前記主軸の割り出し、高速仕上げ、低速重切削の3モードで、割り出し機能は第1の巻線のみ、高速仕上げ加工は第2の巻線のみ、低速重切削は第1及び第2の巻線を直列に用いるように切り替え、さらに前記工作機用モータの基底回転速度と最高回転速度との比が1:mの場合、前記第1の巻線と第2の巻線の巻回数の比をn:1(ただし、n<(√m)−1)に設定し、使用する工作機用モータとして、永久磁石をロータコア内部に内装し、モータのd軸方向インダクタンスLdとq軸方向インダクタンスLqの関係がLd<Lqとなる突極性を有する永久磁石同期機形モータを用いたことを特徴とする。
【0006】
【発明の実施の形態】
図1は本発明の実施の形態を示すものである。図において、2分割する1相の巻線を、巻回数の多いコイルwaと少ないコイルwbとに分割し、
1)低速回転領域の場合は wa+wb(直列接続)
2)高速回転領域の場合は wb
3)主軸割り出し制御の場合は wa
に電流が流れるように、コンタクタC1,C2を用いて巻線切替制御を行う。
【0007】
【実施例】
以下本発明の実施例を図に基づいて説明する。
ここで使用するモータは、図3に示すような永久磁石をロータに有する永久磁石同期機形モータで、かつ永久磁石4aをロータコア1内部の磁石挿入穴2に内装し、モータのd軸方向インダクタンスLd、q軸方向インダクタンスLqの関係がLd<Lqとなる突極性を有した内磁形モータ(IPMM)を対象にしている。このIPMMは、インダクションモータが出せる定出力特性とほぼ同等の特性を有し、工作機として嫌われるロータ(2次側)の損失が無いというメリットがある反面、インダクタンスが大きく、特に割り出し機能モードの巻線接続を低速重切削モードと同一(wa+wb)にした場合、インダクタンスが特に大きくなり、割り出し機能モードの制御において、電流ループ、速度ループの周波数特性を著しく低下させるものである。本発明は、このようなIPMMを対象として巻線切換を行うものである。
【0008】
図1に、本発明における巻線とコンタクタの接続の関係を示す。
使用する3相電動機の交流電機子巻線の各相を巻回数の多い第1の巻線waと巻回数の少ない第2の巻線wbに分割し、第1の巻線waと第2の巻線wbの巻回数を、n1:n2(n1≧n2)の比率とする。第1の巻線waの巻始め、巻終わりは双方ともリードとして出し、その端子は[U1,X1][V1,Y1][W1,Z1]とし、第2のコイルwbは、巻終わりを3相スター結線し、巻始めはリード出しとし、その端子はX2,Y2,Z2とする。これによりモータからは、計9本のリードが出されることになる。そして、リード端U1−U2間、X1−U2間はそれぞれにコンタクタC1のa接点,C1のb接点を入れ、他の2相も同様に接続する。さらに、それぞれの相の第2巻線wbの巻始めとリード端子間にコンタクタC2のa接点を入れ、U2−V2間、W2−U2間にそれぞれコンタクタC2のb接点を入れた巻線切替方式をとる。
主軸の特性を図2に示すような定出力特性とし、0から巻線切替速度Ncontまでを低速、巻線切替速度Ncontから最高回転速度Ntopまでを高速と称し、さらには前記主軸割り出し制御と、これらの3つの切替モードのシーケンスを表1のように行う。
【0009】
【表1】
【0010】
また、定出力範囲(Nbase:Ntop)が1:12以下の場合は、前記第1の巻線waと第2の巻線wbの比を、n1:n2=2:1に設計している。
これについて以下に説明する。
第1の巻線と第2の巻線の巻数比、いわゆる定出力比が1:m程度の場合、
低速巻線で、約1:√m
高速巻線で、約1:√m
の定出力特性を出すことになる。
駆動対象となるIPMMは、一般的な誘導電動機とは異なり、回転時、磁石磁束による誘起電圧が発生する。
インバータ駆動時、非常停電が生じ、モータが無制御状態になった場合モータ端子には、この誘起電圧が発生することになり、その値は、下記の各巻線での最高回転速度で最大値となる。
基底回転速度をNbaseとした場合、
1)低速巻線での最高回転速度:NLmax=(√m)・Nbase
2)高速巻線での最高回転速度:NHmax=m・Nbase
となり、200Vインバータの場合、その最大許容値は、280V(r.m.s.)となる。つまり、
1)低速巻線での最高回転速度時の誘起電圧:ELmax=(√m)・Nbase×KeL
(KeL:低速巻線での誘起電圧定数)
2)高速巻線での最高回転速度時の誘起電圧:EHmax=m・Nbase×KeH
(KeH:高速巻線での誘起電圧定数)
である。
ELmax=EHmax=280V(r.m.s)
であるので、この条件を満たすには、
(低速巻線巻数WL):(高速巻線巻数WH)=m:1
となり、従って、
(第1の巻線wa):(第2の巻線wb)=((√m)−1):1
というように決める。
実際に数値を当てはめると、定出力比が1:12(m=12)の場合、
(第1の巻線wa):(第2の巻線wb)=2.5:1
となるが、小数点以下を切り捨てて、(第1の巻線wa):(第2の巻線wb)=2:1とする。小数点以下を切り捨てるのは、四捨五入したのでは、五入時、低速巻線接続の時、
ELmax>280V
となり、インバータが壊れる恐れがあるからである。
一般的には、(第1の巻線wa):(第2の巻線wb)=n:1、ただしn<((√m)−1)とし、低速巻線接続時の安全のための余裕を持たせる。
上記手段により、ロータに発熱がない特徴を持つ永久磁石同期電動機であるIPMMで、リード線数を少なくし、S軸動作モード(低速、高速)では広範囲の定出力制御が行え、かつ主軸割り出し制御に必要十分条件となる速度ループの応答周波数特性を上げることができる。
【0011】
【発明の効果】
以上述べたように、本発明によれば、永久磁石同期電動機のリード線数を減らした巻線構成で広範囲の定出力制御ができ、コイル数も1相当たり2つのコイルで構成されるので巻線作業性も良好となる。さらには、絶縁の信頼性、使用上の安全性も確保できる。
また、リード線数、コンタクタ接点を少なくして、低速重切削、高速仕上げ加工、さらには、本発明の最重要課題であるIPMM主軸モータでの主軸割り出し制御の際、多巻線waのみスター結線されるようにコンタクタを切替制御することで、同モータでの従来方式の切替制御の場合に比べてモータのインダクタンスを約1/2以下にすることができ、電流ループの応答周波数特性を2倍以上に向上でき、速度ループもこれにならい改善できる。この結果、外乱トルクに対する制御性能が向上し、主軸割り出し機能を利用した加工の精度を向上させる効果がある。
【図面の簡単な説明】
【図1】本発明を示す巻線およびコンタクタ接続図である。
【図2】主軸モータの定出力特性図である。
【図3】内磁形モータのロータの正断面図である。
【図4】従来の巻線及びコンタクタの接続図である。
【図5】従来の巻線及びコンタクタの接続図である。
【符号の説明】
1 ロータコア、2 磁石挿入穴、4a 永久磁石[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a winding switching device for a machine tool motor that drives a main shaft of a machine tool.
[0002]
[Prior art]
In recent years, various types of machine tool motors that drive the main shaft of a machine tool have been proposed that directly drive the main shaft without a transmission mechanism.However, such a motor control device has a wide range from high speed to low speed. Output constant control is required over the speed range. In particular, when the spindle has an indexing function, a large torque at low speed and high-precision servo performance are required.
In order to realize this, in a drive device using an AC motor as a machine tool motor, a winding switching control for obtaining two different output characteristics at a low speed and at a high speed is performed.
[0003]
Japanese Unexamined Patent Publication No. 4-105587 describes an example of a winding switching method as shown in FIG. In the example of FIG. 4, each of the U, V, and W phase stator windings to which the three-phase power supplies R, S, and T are to be applied is connected in series with two windings C 1U , C 2U , C 1V , C 2V , C 1W , C 2W, and by turning on / off any of the groups of the multi-phase contactors M 1U , M 1V , M 1W and M 2U , M 2V , M 2W , the two windings are connected in series at low speed. A large torque can be output by increasing the number of interlinkage magnetic fluxes, and at high speed, the connection of the contactors is changed to form a single winding to reduce the interlinkage magnetic flux so as to perform high-speed rotation.
In addition, Japanese Patent Application Laid-Open No. Hei 4-244771 discloses an example as shown in FIG. This is an example of a machine tool spindle drive system by switching the windings of a synchronous motor. Each of the three phases is made up of three serial windings. The tap of three windings is switched so as to reduce the number of windings of the winding.
[0004]
[Problems to be solved by the invention]
However, the method of inserting a contactor disclosed in Japanese Patent Application Laid-Open No. 4-105587 requires twelve lead wires, complicates the connection work, and requires a coil end on the connection side when the lead wire of the armature winding is processed. There is a problem that the size of the motor becomes large and the axial dimension of the motor becomes long.
In addition, in the case of the example disclosed in Japanese Patent Application Laid-Open No. Hei 4-244471, the number of lead wires in the example of tapping of three coils connected in series is smaller than that in the example described in Japanese Patent Application Laid-Open No. 4-105587. Although only nine windings are required, switching control of three windings requires the number of contactors, and also has a problem that the winding work of armature windings is complicated.
Further, in the conventional example described in Japanese Patent Application Laid-Open No. 4-244777, at the maximum rotation speed, when a non-control state occurs due to some trouble, the conventional example has a tap-out configuration. A large voltage was induced by the magnetic flux, and there was a problem in the reliability and safety of winding insulation.
For this reason, in the above-described conventional example, the number of lead wires is increased in order to perform three mode switching of (1) indexing function, (2) low-speed heavy cutting function, and (3) high-speed finishing function, which are essential functions of the spindle motor. In addition, the number of contactors of the contactor increases, the control algorithm becomes complicated, and the reliability and safety of insulation are lacking.
SUMMARY OF THE INVENTION An object of the present invention is to provide a machine tool motor winding switching device capable of performing a wide range of constant output control with a winding configuration in which the number of lead wires of a permanent magnet synchronous motor is reduced.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the winding switching device for a machine tool motor according to the present invention is configured such that each phase of the stator winding of the machine tool motor is configured with a plurality of windings, and when controlling a high-speed spindle. The winding of the machine tool motor is switched by a contactor so that the number of windings of each phase is reduced, and the number of windings of each phase is increased during the spindle indexing control at low speed rotation. In the switching device, the winding of each phase of the stator winding is configured by a first winding having a large number of windings and a second winding having a small number of windings, and the second winding of each of the phases is connected to each other. Is connected in a star connection by connecting the end of winding, connecting the beginning of winding of the first winding of each phase to the power supply of each phase, and starting the winding of the second winding of each phase and the first winding. The first winding and the second winding are connected in series between the power supply of each phase at the end of the wire, or the first winding is connected to the power supply of each phase. Or terpolymers connection or the second winding is placed a contactor that performs one of selective switching to star connected to the respective phases of the power source, indexing of the spindle, finishing fast, three modes of low speed heavy cutting, indexing feature only the first winding, fast finishing only second winding, slow heavy cutting is switched to use the first and second windings in series, further base rotational speed of the motor for the machine tool When the ratio between the first winding and the maximum rotation speed is 1: m, the ratio of the number of turns of the first winding and the second winding is set to n: 1 (where n <(√m) −1). , as a motor for a machine tool to be used, and interior permanent magnet inside a rotor core, a permanent magnet synchronous with saliency relationship d axis inductance of the motor L d and q-axis inductance L q is L d <L q It is characterized by using a machine-shaped motor .
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention. In the figure, the one-phase winding divided into two is divided into a coil w a having a large number of turns and a coil w b having a small number of turns.
1) In the case of the low-speed rotation region, w a + w b (series connection)
2) In the case of high-speed rotation region w b
3) If the spindle indexing control w a
The winding switching control is performed using the contactors C 1 and C 2 so that the current flows through the windings.
[0007]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The motor used here is a permanent magnet synchronous machine type motor having a permanent magnet in a rotor as shown in FIG. 3, and a
[0008]
FIG. 1 shows a connection relationship between a winding and a contactor according to the present invention.
Dividing the phase of AC armature winding of a three-phase electric motor used in the second winding w b less busy winding number first winding w a and the number of windings, a first winding w a the number of turns of the second winding w b, n 1: the ratio of n 2 (n 1 ≧ n 2 ). Winding start of the first winding w a, winding end issues a read both, and its terminal [U 1, X 1] [ V 1, Y 1] [W 1, Z 1], the second coil w b is, to a three-phase star connection the end winding, winding start is the lead out, the terminal is set to X 2, Y 2, Z 2 . As a result, a total of nine leads are output from the motor. Then, between the lead ends U 1 and U 2 and between X 1 and U 2 , the a contact of the contactor C 1 and the b contact of C 1 are respectively inserted, and the other two phases are connected in the same manner. Furthermore, putting the winding start and a contact point of the contactor C 2 between the lead terminals of the second winding w b of the respective phases, U 2 between -V 2, W 2 -U 2 b contacts of the contactor C 2 respectively between Take the winding switching method with.
The characteristics of the main shaft are constant output characteristics as shown in FIG. 2, and the speed from 0 to the winding switching speed N cont is referred to as low speed, and the speed from the winding switching speed N cont to the maximum rotation speed N top is high speed. The control and the sequence of these three switching modes are performed as shown in Table 1.
[0009]
[Table 1]
[0010]
The constant output range: If (N base N top) is 1:12 or less, the ratio of the first winding w a and second windings w b, n 1: n 2 = 2: 1 It is designed to.
This will be described below.
When the turns ratio of the first winding and the second winding, that is, the constant output ratio is about 1: m,
For low speed winding, approx. 1: √m
With high speed winding, about 1: √m
Will be obtained.
The IPMM to be driven is different from a general induction motor, and generates an induced voltage due to magnet magnetic flux when rotating.
When the inverter is driven, an emergency power failure occurs, and if the motor enters the uncontrolled state, this induced voltage will be generated at the motor terminal, and its value will be the maximum value at the maximum rotation speed of each winding below. Become.
When the base rotation speed is N base ,
1) Maximum rotation speed in low-speed winding: N Lmax = (√m) · N base
2) Maximum rotation speed in high-speed winding: N Hmax = m · N base
In the case of a 200 V inverter, the maximum allowable value is 280 V (rms). That is,
1) Induced voltage at the maximum rotation speed in low-speed winding: E Lmax = (√m) · N base × K eL
( KeL : induced voltage constant in low-speed winding)
2) Induced voltage at the maximum rotation speed in high-speed winding: E Hmax = m · N base × K eH
(K eH : induced voltage constant in high-speed winding)
It is.
E Lmax = E Hmax = 280V ( r.m.s)
Therefore, to satisfy this condition,
(Low-speed winding number W L ): (High-speed winding number W H ) = m: 1
And therefore
(First winding w a ) :( second winding w b ) = ((√m) −1): 1
Decide so on.
When the numerical values are actually applied, when the constant output ratio is 1:12 (m = 12),
(First winding w a ) :( second winding w b ) = 2.5: 1
However, the fraction below the decimal point is rounded down, and (first winding w a ) :( second winding w b ) = 2: 1. The reason for rounding off the decimal point is that when rounding off,
E Lmax > 280V
And the inverter may be broken.
Generally, (first winding w a ) :( second winding w b ) = n: 1, where n <((√m) −1), and the safety of the low-speed winding connection To have room for it.
By the above means, the IPMM, which is a permanent magnet synchronous motor having a feature that the rotor does not generate heat, reduces the number of lead wires, can perform a wide range of constant output control in the S-axis operation mode (low speed, high speed), and can control spindle indexing. The response frequency characteristic of the speed loop, which is a necessary and sufficient condition, can be improved.
[0011]
【The invention's effect】
As described above, according to the present invention, a constant-power control over a wide range can be performed with a winding configuration in which the number of lead wires of a permanent magnet synchronous motor is reduced, and the number of coils is two. The line workability is also improved. Furthermore, insulation reliability and safety in use can be ensured.
The lead wire number, with less contactor contacts, the slow heavy cutting, high speed finishing, further, when the spindle indexing control in IPMM spindle motor is the most important issue of the present invention, a star only Tamakisen w a By controlling the contactors so that they are connected, the inductance of the motor can be reduced to about 1/2 or less as compared with the case of the conventional switching control using the same motor, and the response frequency characteristic of the current loop can be reduced by 2%. The speed loop can be improved more than twice. As a result, the control performance for disturbance torque is improved, and there is an effect that the accuracy of machining using the spindle indexing function is improved.
[Brief description of the drawings]
FIG. 1 is a winding and contactor connection diagram showing the present invention.
FIG. 2 is a constant output characteristic diagram of a spindle motor.
FIG. 3 is a front sectional view of a rotor of the inner magnet type motor.
FIG. 4 is a connection diagram of a conventional winding and a contactor.
FIG. 5 is a connection diagram of a conventional winding and a contactor.
[Explanation of symbols]
1 rotor core, 2 magnet insertion holes, 4a permanent magnet
Claims (1)
前記固定子巻線の各相の巻線を巻回数の多い第1の巻線と巻回数の少ない第2の巻線とで構成し、前記各相の第2の巻線同志は巻終わりを結線してスター結線し、前記各相の第1の巻線の巻始めをそれぞれ各相の電源に接続し、
前記各相の第2の巻線の巻始めと第1の巻線の巻終わり各相の電源との間に、第1の巻線と第2の巻線を直列接続にするか、第1の巻線を前記各相の電源にスター接続するか、または前記各相の電源に第2の巻線をスター接続するかの選択的切替を行うコンタクタを設置し、
前記工作機用モータの基底回転速度と最高回転速度との比が1:mの場合、前記第1の巻線と第2の巻線の巻回数の比をn:1(ただし、n<(√m)−1)に設定し、
使用する工作機用モータとして、永久磁石をロータコア内部に内装し、モータのd軸方向インダクタンスL d とq軸方向インダクタンスL q の関係がL d <L q となる突極性を有する永久磁石同期機形モータを用いたことを特徴とする工作機用モータの巻線切替装置。Each phase of the stator winding of the machine tool motor is composed of a plurality of windings.When controlling the spindle for high-speed rotation, the number of turns of each phase winding is reduced. In a winding switching device of a machine tool motor, which switches the winding by a contactor so that the number of windings of the winding of each phase is increased,
The winding of each phase of the stator winding is composed of a first winding having a large number of windings and a second winding having a small number of windings. Connection, star connection, connecting the beginning of the first winding of each phase to the power supply of each phase,
The first winding and the second winding may be connected in series between the start of the winding of the second winding of each phase and the end of the winding of the first winding, A contactor for selectively switching whether the windings of the respective phases are star-connected to the power supplies of the respective phases or the respective windings are star-connected to the second windings ,
When the ratio between the base rotation speed and the maximum rotation speed of the machine tool motor is 1: m, the ratio of the number of turns of the first winding to the second winding is n: 1 (where n <( √m) -1)
As motor machine tool to be used, and interior permanent magnet inside a rotor core, the motor of the d-axis direction inductance L d and q axis inductance L q relationship L d <L q become salient permanent magnet synchronous machine with A winding switching device for a machine tool motor, wherein a winding motor is used .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27846796A JP3596711B2 (en) | 1996-10-21 | 1996-10-21 | Machine tool motor winding switching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27846796A JP3596711B2 (en) | 1996-10-21 | 1996-10-21 | Machine tool motor winding switching device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10126993A JPH10126993A (en) | 1998-05-15 |
JP3596711B2 true JP3596711B2 (en) | 2004-12-02 |
Family
ID=17597743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27846796A Expired - Lifetime JP3596711B2 (en) | 1996-10-21 | 1996-10-21 | Machine tool motor winding switching device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3596711B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100982252B1 (en) * | 2008-02-12 | 2010-09-15 | 주식회사 효성 | Polyphase motor and method for control thereof |
CN102468732A (en) * | 2010-11-15 | 2012-05-23 | Hrs风电技术有限公司 | Low-loss low-speed permanent magnet synchronous motor |
WO2012102400A1 (en) | 2011-01-27 | 2012-08-02 | 学校法人 芝浦工業大学 | Stator teeth, stator, rotating armature, and method for controlling rotating armature |
EP3331150A4 (en) * | 2015-07-31 | 2019-05-15 | Koki Holdings Co., Ltd. | Electric tool |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5648469B2 (en) * | 2010-12-23 | 2015-01-07 | 日立工機株式会社 | Electric tool |
JP2012244726A (en) * | 2011-05-18 | 2012-12-10 | Yaskawa Electric Corp | Armature for rotary electric machine and rotary electric machine |
JP2013111734A (en) * | 2011-11-30 | 2013-06-10 | Hitachi Koki Co Ltd | Electric tool |
JP5808300B2 (en) * | 2012-09-18 | 2015-11-10 | 日立建機株式会社 | Construction machinery |
CN104167836B (en) * | 2013-12-30 | 2019-03-08 | 上海众辰电子科技有限公司 | Concentratred winding magneto |
CN104167892B (en) * | 2013-12-30 | 2019-03-08 | 上海众辰电子科技有限公司 | The double concentratred winding magneto of three-phase |
JP6415623B2 (en) * | 2016-03-31 | 2018-10-31 | 株式会社牧野フライス製作所 | Control method and control device for tapping |
CN107026527A (en) * | 2017-05-17 | 2017-08-08 | 北京佳宇康华科技有限公司 | Multi-tap winding wide speed-regulation permanent-magnet synchronous motor |
CN108418497B (en) * | 2018-05-14 | 2024-05-31 | 西安清泰科新能源技术有限责任公司 | Segmented winding motor controller and control method |
-
1996
- 1996-10-21 JP JP27846796A patent/JP3596711B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100982252B1 (en) * | 2008-02-12 | 2010-09-15 | 주식회사 효성 | Polyphase motor and method for control thereof |
CN102468732A (en) * | 2010-11-15 | 2012-05-23 | Hrs风电技术有限公司 | Low-loss low-speed permanent magnet synchronous motor |
CN102468732B (en) * | 2010-11-15 | 2014-06-11 | 京能新能源科技(上海)有限公司 | Low-loss low-speed permanent magnet synchronous motor |
WO2012102400A1 (en) | 2011-01-27 | 2012-08-02 | 学校法人 芝浦工業大学 | Stator teeth, stator, rotating armature, and method for controlling rotating armature |
US9287745B2 (en) | 2011-01-27 | 2016-03-15 | Shibaura Institute Of Technology | Stator teeth, stator, rotating electric machine, and method for controlling rotating electric machine |
EP3331150A4 (en) * | 2015-07-31 | 2019-05-15 | Koki Holdings Co., Ltd. | Electric tool |
US10411620B2 (en) | 2015-07-31 | 2019-09-10 | Koki Holdings Co., Ltd. | Power tool |
Also Published As
Publication number | Publication date |
---|---|
JPH10126993A (en) | 1998-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0467517B1 (en) | Dual-stator induction synchronous motor | |
CN107306104B (en) | Apparatus and method for controlling an electric drive with reconfigurable windings | |
Osama et al. | A new inverter control scheme for induction motor drives requiring wide speed range | |
US8618760B2 (en) | Electrical machine | |
CN107306103B (en) | Method for switching between full winding mode and half winding mode in a three-phase electric machine | |
JP3596711B2 (en) | Machine tool motor winding switching device | |
JP2788038B2 (en) | Low / high-speed output switching type AC spindle motor and its low / high-speed output switching method | |
WO1999000890A1 (en) | Induction motor | |
WO2017081900A1 (en) | Winding count switchable electric machine | |
JP2001327132A (en) | Pole change induction motor | |
JP2005537777A (en) | PSC motor with 4/6 pole common winding and additional 4 pole winding | |
Wang et al. | Optimal designs of wound field switched flux machines with different DC windings configurations | |
WO2001050588A1 (en) | Hybrid-secondary uncluttered induction machine | |
JP7341136B2 (en) | Compressor and cooling equipment | |
JP2004096940A (en) | Permanent magnet type synchronous motor | |
CN1063878C (en) | Wide speed regulating range permanent magnetic motor with two salient poles and multi-tapping windings | |
KR0182646B1 (en) | Single phase induction motor for pole-change | |
JPH1098859A (en) | Fan motor with two-pole to four-pole switch function and method for switching speed of the motor | |
JP2019187058A (en) | Pole change motor device | |
JPH01164293A (en) | Motor | |
EP4142115A1 (en) | Tapped winding method for extended constant horsepower speed range | |
JP3968673B2 (en) | Winding switching method for permanent magnet synchronous motor | |
JPH1198790A (en) | Brushless dc motor | |
WO2021193714A1 (en) | Superconducting rotating machine | |
Umredkar et al. | Dynamic Configuration of slot per pole per phase of an Induction Motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040528 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040902 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070917 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090917 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100917 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110917 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110917 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120917 Year of fee payment: 8 |