JP3596074B2 - Magnetoresistive element and method of manufacturing the same - Google Patents

Magnetoresistive element and method of manufacturing the same Download PDF

Info

Publication number
JP3596074B2
JP3596074B2 JP6616995A JP6616995A JP3596074B2 JP 3596074 B2 JP3596074 B2 JP 3596074B2 JP 6616995 A JP6616995 A JP 6616995A JP 6616995 A JP6616995 A JP 6616995A JP 3596074 B2 JP3596074 B2 JP 3596074B2
Authority
JP
Japan
Prior art keywords
insulating substrate
glass
layer
magnetoresistive element
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6616995A
Other languages
Japanese (ja)
Other versions
JPH08264859A (en
Inventor
浩一 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP6616995A priority Critical patent/JP3596074B2/en
Publication of JPH08264859A publication Critical patent/JPH08264859A/en
Application granted granted Critical
Publication of JP3596074B2 publication Critical patent/JP3596074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、磁界を作用させた時に電気抵抗値が変化するという性質を利用して磁気の検出、磁性体の存在や移動の検出を行なう磁気抵抗効果素子及びその製造方法に関するものである。
【0002】
【従来の技術】
磁気抵抗効果素子の開発の流れは、用途に依存して、リード取り出しの組立部品タイプに始まり、回路基板への直接表面実装の要望ができるチップタイプへの展開が見られる。
【0003】
従来の磁気抵抗効果素子を図17〜図19により説明する。
チップ部の構造は、リード取り出しの組立部品タイプ、チップタイプの別なく概ね同じである。その構造とは、平面的に見て概ね四角形である基板11の角に、基板表裏面を結ぶように電極12が形成された切り欠き15が有り、基板11の表面に、同一面上の電極12と電気的に接続された所定の形状の磁気抵抗効果薄膜14が形成されたものである。尚、13はガラスグレーズである。
【0004】
上記従来例の製造方法は、上記チップが複数個取れる大きな元基板に、所定ピッチのスルーホールを形成し、その周辺に電極を印刷してスルーホール内壁面とランドに電極を形成して、次に磁気抵抗効果薄膜パターンを形成後、スルーホールを4分割して所定のチップを得るものである。
【0005】
しかしながら上記のような構成では、磁気抵抗効果薄膜形成面(以下、感磁面、あるいは表と示す)とその反対面(以下、裏と示す)を結ぶ導通電極を、切り欠き部側面、あるいは基板側面に、完全に露出して形成しているため、耐湿性、導通信頼性等について劣る。そこで、より以上の品質の向上を目的として、該導通電極をビアホール電極16とするものが図20、図21、図22に開示された他の従来例の磁気抵抗効果素子である。
【0006】
その製造方法は、図17〜図19の従来技術をベースに異なる点のみ説明すると、元基板のスルーホール数を4倍とし、電極の印刷をスルーホール内壁面ではなく充填として、さらにそれを分割せず導通電極4つを内包するように元基板を分割して1チップを得るものである。
【0007】
【発明が解決しようとする課題】
しかしながら上記のような第2の従来の構成では、チップタイプとして回路基板への直接表面実装をはんだ付けにより行った場合、実装確認が電気的な方法に限られ、接着状態が目視によって判断できなかったため、実装不良の誤判定を招いていた。
【0008】
本発明は上記課題に鑑み、品質の向上を有した状態で、さらに実装後はんだ付け部が目視できる磁気抵抗効果素子及びその製造方法を提供するものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明の磁気抵抗効果素子は、ガラスとセラミックの組成物からなる、表裏面を貫通しない切り欠きを有する絶縁基板と、この絶縁基板の表裏面間を結ぶように、表裏面と内部と切り欠き部に形成された導体メタライズ層と、前記絶縁基板表面の導体メタライズ層と絶縁基板の上に形成された、ガラスとセラミックの混合物からなる所定の形状の絶縁層と、前記絶縁基板と絶縁層の上に形成された所定の形状のガラスグレーズ層と、このガラスグレーズ層と前記絶縁基板の表面の導体メタライズ層の上に形成された所定の形状の磁気抵抗効果薄膜とで構成したものである。
【0010】
さらにもう一つの本発明の磁気抵抗効果素子は、ガラスとセラミックの組成物からなる、表裏面を貫通する切り欠きを有する絶縁基板と、この絶縁基板の切り欠きの一部と、さらに表裏面間を結ぶように、表裏面と内部に形成された導体メタライズ層と、前記絶縁基板表面の導体メタライズ層と絶縁基板の上に形成された、ガラスとセラミックの混合物からなる所定の形状の絶縁層と、前記絶縁基板と絶縁層の上に形成された所定の形状のガラスグレーズ層と、このガラスグレーズ層と前記絶縁基板の表面の導体メタライズ層の上に形成された所定の形状の磁気抵抗効果薄膜とで構成したものである。
【0011】
また、本発明の製造方法は、ガラスとセラミックの原料粉とバインダと可塑剤からなる生シートを作製する工程と、前記生シートにスルーホールを開口する工程と、前記生シートに導電ペーストを印刷及び充填し乾燥する工程と、前記生シートの複数枚を張り合わせる工程と、前記工程により得られた生シートと前記導電ペーストの一部表面にガラスとセラミックを主成分とする絶縁体ペーストを印刷し乾燥する工程と、前記生シートと絶縁体ペーストの一部表面にガラスペーストを印刷し乾燥する工程と、前記工程によって得られた生シート構成物を高温で焼成する工程と、前記工程によって得られた基板のガラスグレーズ面に磁気抵抗効果薄膜を所定形状の感磁部として形成する工程と、前記工程によって得られた基板を所定の形状に分割する工程とを有することを特徴とするものである。
【0012】
【作用】
以上のような本発明によれば、1)感磁面の構成材料を露出させない構造で、かつはんだを感磁面と接触させない構造としたことにより、品質の向上を実現し、2)チップ側面に露出電極部を存在させて、回路基板へのはんだ付け表面実装した場合に、はんだがこの露出電極部を這い上がる構造としたことにより、その目視によって、確実に接合状態が判断できるものである。
【0013】
【実施例】
(実施例1)
以下、本発明の一実施例である第1の実施例の磁気抵抗効果素子、及びその製造方法について図1(a)〜図3により説明する。
【0014】
同図において、1はガラスとセラミックの組成物からなる絶縁基板、2はガラスとセラミックの組成物からなる絶縁層、3は導体メタライズ層、4はガラスグレーズ層、5は磁気抵抗効果を有する強磁性体薄膜、6は切り欠きである。
【0015】
実施例における磁気抵抗効果素子は、ガラスとセラミック、例えば、ほう珪酸ガラスとアルミナを主成分とする絶縁基板1の表裏面と内部と切り欠き部6に、表裏面間を結ぶように、例えば、銀:パラジウムの比が80:20の導体メタライズ層3が形成され、絶縁基板1とその表面側の導体メタライズ層3の一部に、絶縁基板1と同材料の絶縁層2が形成され、ほう珪酸鉛系のガラスグレーズ層4が絶縁層2と絶縁基板1の所定の領域に形成され、基板表面の導体メタライズ層3とガラスグレーズ層4の上に、ニッケル、鉄、コバルトのうち一種以上を主成分とする、例えば、パーマロイからなるストライプを繰り返し折り返したような所定の形状の磁気抵抗効果を有する強磁性体薄膜5が形成されている。
【0016】
生シートの厚みと切り欠きサイズは、どこまではんだを這い上がらせたいかに依存し、上記に限定されない。
【0017】
絶縁基板1の切り欠き部6の位置と形状は、目的を満たす範囲においては、本実施例に限定されない。
【0018】
導体メタライズ層3は上記銀:パラジウムの比が80:20のもの以外にも、その組成比が異なるものや銀、金等でもかまわない。
【0019】
好ましくは、全構成材料は、800〜1000℃で焼成できるものがよい。
次に、本実施例の具体例について説明する。
【0020】
まず、ほう珪酸ガラス粉末とアルミナ粉末を重量比で60対40となるように配合して無機成分とし、有機バインダとしてポリビニルブチラール、ポリビニルアルコール等、可塑剤としてジブチルフタレート(DBP)、溶剤としてトルエンとエタノールの混合液(60対40比)を無機成分100部、有機バインダ5部、ジブチルフタレート(DBP)10部、トルエンとエタノール30部の割合で混合し、湿式微粉砕を行ってスラリーとした後、真空脱気処理によりスラリーから気泡を除去し、粘度調整を行った。
【0021】
スラリーをドクターブレードを用いてポリエステル支持体上に塗布し、炉を通して乾燥し、0.3ミリの厚さの生シートを作製した。生シートを支持体より取り外し、パンチングにより開口してスルーホールを形成して、スルーホールの数と位置が異なる二種類の生シートを得た。得られた生シートの内一種は、例えば銀:パラジウムの比が80:20である導体ペーストをスルーホール内充填とランド印刷し、もう一種は、同様のペーストをスルーホール印刷とスルーホール内充填とランド印刷を行い、それぞれ乾燥した。両シートを張り合わせ、70℃,100kg/cmで圧着し、一枚の生シートとした。
【0022】
次に、上述したスラリーを再び用いて印刷ペースト状とし、生シートと導体の上の所定面積・形状に印刷し乾燥した。さらに、酸化物換算で酸化鉛62wt%と酸化珪素30wt%と酸化ほう素3wt%と酸化アルミニウム3wt%を主な無機成分とする粘度調整後のガラスペーストを所定パターンに印刷し乾燥した。次に、850〜900℃でインアウト1時間保持して焼成した後、室温にて取り出し基板を得た。得られた基板を真空蒸着機に設置し、所定の真空度に排気した後、表面にパーマロイを0.1μmの厚さで蒸着し、レジスト塗布、露光、現像、エッチング、レジスト剥離を経て、幅が10μmのパーマロイでストライプを繰り返し折り返したような形状の感磁パターンを得た。これを、所定のチップサイズに分割した。
【0023】
上記焼成温度は800〜1000℃の範囲内であれば良い。800℃未満はガラスグレーズの表面が粗く磁気抵抗効果素子には適さない。また、1000℃より高くなると、基板が反ったり、割れたり、品質が落ちるので適さない。
【0024】
以上のように構成された磁気抵抗効果素子について、目視検査の可・不可を判断すると共に、誤判定率を求めた。
【0025】
はんだ付け状態について、本実施例を図4、従来例を図5に示し、比較する。
十分外観でき、誤判定はなくなった。
【0026】
以上より明らかなように、本実施例の磁気抵抗効果素子は、品質の向上と、回路基板にはんだ付け表面実装した場合にはんだ付け部を目視検査できることの効果を有するものである。
【0027】
(実施例2)
以下、本発明の第2の実施例の磁気抵抗効果素子、及びその製造方法について図6(a)〜図8により説明する。
【0028】
同図の磁気抵抗効果素子において、実施例1と異なる点は、切り欠きの位置を変えたこと、ガラスグレーズ層を酸化物換算で酸化鉛55wt%と酸化珪素30wt%と酸化ほう素10wt%と酸化アルミニウム4wt%を主な無機成分とする粘度調整したものをガラスペーストとして印刷し、乾燥後800〜900℃で焼成して得たこと、導体メタライズ層として銀を用いたことである。
【0029】
その他は、実施例1と同様にして行った。
本実施例においても、実施例1と同様の効果が得られた。
【0030】
(実施例3)
本実施例の磁気抵抗効果素子において上記各実施例と異なる点は、絶縁基板及び絶縁層の材料組成を、ガラス成分が45〜65%の間としたこと、ガラスグレーズ層の材料組成を、酸化物表示でPbOが10〜75%としたこと、導体メタライズ層を、組成比の異なる銀パラあるいは銀あるいは金としたこと、焼成温度が800〜1000℃の間としたことである。
【0031】
本実施例においても、実施例1と同様の効果が得られた。
(実施例4)
以下、本発明の第4の実施例の磁気抵抗効果素子、及びその製造方法について図9(a)〜図11により説明する。
【0032】
同図の磁気抵抗効果素子は、ガラスとセラミック、例えば、ほう珪酸ガラスとアルミナを主成分とする絶縁基板1の表裏面と内部に、表裏面間を結ぶように、例えば、銀:パラジウムの比が80:20の導体メタライズ層3が形成され、さらに、裏面ランドと切り欠き6が接続され、切り欠き6の一部に、同導体メタライズ層3が形成され、絶縁基板1とその表面の導体メタライズ層3の一部に絶縁基板1と同材料の絶縁層2が形成され、ほう珪酸鉛系のガラスグレーズ層4が絶縁層2と絶縁基板1の所定の領域に形成され、基板表面の導体メタライズ層3とガラスグレーズ層4の上に、ニッケル、鉄、コバルトのうち一種以上を主成分とする、例えば、ニッケルコバルトからなるストライプを繰り返し折り返したような所定形状の強磁性体薄膜5が形成されている。
【0033】
生シートの厚みと切り欠きの露出電極の位置は、どこまではんだを這い上がらせたいかに依存し、上記に限定されない。
【0034】
絶縁基板1の切り欠き部6の位置と形状は、目的を満たす範囲においては、本実施例に限定されない。
【0035】
導体メタライズ層3は上記銀:パラジウムの比が80:20のもの以外にも、その組成比が異なるものや銀、金等でもかまわない。
【0036】
好ましくは、全構成材料は、800〜1000℃で焼成できるものがよい。
次に本実施例の具体例について説明する。
【0037】
まず、ほう珪酸ガラス粉末とアルミナ粉末を重量比で55対45となるように配合して無機成分とし、有機バインダとしてポリビニルブチラール、ポリビニルアルコール等、可塑剤としてジブチルフタレート(DBP)、溶剤としてトルエンとエタノールの混合液(60対40比)を無機成分100部、有機バインダ5部、ジブチルフタレート(DBP)10部、トルエンとエタノール30部の割合で混合し、湿式微粉砕を行ってスラリーとした後、真空脱気処理によりスラリーから気泡を除去し、粘度調整を行った。
【0038】
スラリーをドクターブレードを用いてポリエステル支持体上に塗布し、炉を通して乾燥し、0.3ミリの厚さの生シートを作製した。生シートを支持体より取り外し、パンチングにより開口してスルーホールを形成して、一種類の生シートを得た。得られた生シートの内一種は、例えば銀:パラジウムの比が80:20である導体ペーストをスルーホール内充填とスルーホール印刷とランド印刷をし、もう一種は、同様のペーストをスルーホール内充填とランド印刷を行い、それぞれ乾燥した。両シートを張り合わせ、70℃,100kg/cmで圧着し、一枚の生シートとした。
【0039】
次に、先述したスラリーを再び用いて印刷ペースト状とし、生シートと導体の上の所定面積・形状に印刷し乾燥した。さらに、酸化物換算で酸化鉛15wt%と酸化珪素60wt%と酸化ほう素5wt%と酸化アルミニウム10wt%を主な無機成分とする粘度調整後のガラスペーストを所定パターンに印刷し乾燥した。次に、950℃でインアウト1時間保持して焼成した後、室温にて取り出し基板を得た。得られた基板を真空蒸着機に設置し、所定の真空度に排気した後、基板表面にニッケルコバルトを0.05μmの厚さで蒸着し、レジスト塗布、露光、現像、エッチング、レジスト剥離を経て、幅が10μmのパーマロイでストライプを繰り返し折り返したような形状の感磁パターンを得た。これを、所定のチップサイズに分割した。
【0040】
上記焼成温度は800〜1000℃の範囲内であれば何℃でも構わない。800℃未満はガラスグレーズの表面が粗く磁気抵抗効果素子には適さない。また、1000℃より高くなると、基板が反ったり、割れたり、品質が落ちるので適さない。
【0041】
以上のように構成された磁気抵抗効果素子について、目視検査の可・不可を判断すると共に、誤判定率を求めた。
【0042】
はんだ付け状態を図12に示す。
十分外観でき、誤判定はなくなった。
【0043】
以上より明らかなように、本実施例の磁気抵抗効果素子は、品質の向上と、回路基板にはんだ付け表面実装した場合にはんだ付け部を目視検査できることの効果を有している。
【0044】
(実施例5)
以下、本発明の第5の実施例の磁気抵抗効果素子、及びその製造方法について図13(a)〜図15により説明する。
【0045】
同図の磁気抵抗効果素子において、実施例4と異なる点は、切り欠きの位置を変えたこと、導体メタライズ層として金を用いたことである。
【0046】
その他は、実施例4と同様にして行った。
本実施例においても、実施例4と同様の効果が得られた。
【0047】
(実施例6)
本実施例の磁気抵抗効果素子において上記各実施例と異なる点は、絶縁基板及び絶縁層の材料組成を、ガラス成分が45〜65%の間としたこと、ガラスグレーズ層の材料組成を酸化物表示でPbOが10〜75%としたこと、導体メタライズ層を、組成比の異なる銀パラあるいは銀あるいは金としたこと、焼成温度が800〜1000℃の間としたことである。
【0048】
本実施例においても、実施例4と同様の効果が得られた。
以上のように本実施例によれば、品質が向上したこと、側面の露出電極部にはんだを這い上がらせることを満たした構造であり、回路基板にはんだ付け表面実装した場合にはんだ付け部を目視検査できるという効果を有している。
【0049】
【発明の効果】
以上のように本実施例によれば、ガラスとセラミックの組成物からなり表裏面を貫通する、あるいは貫通しない切り欠きを有する絶縁基板と、この絶縁基板の表裏面間を結ぶように形成された導体メタライズ層と、前記表面側の導体メタライズ層と絶縁基板の一部に形成された絶縁層と、前記絶縁基板と絶縁層の上に形成された所定の形状のガラスグレーズ層と、このガラスグレーズ層と絶縁基板表面の導体メタライズ層の上に形成された所定の形状の磁気抵抗効果薄膜とを有する構造とすることにより、1)感磁面の構成材料を露出させない構造で、かつ、はんだを感磁面と接触させない構造としたことにより、品質の向上した磁気抵抗効果素子を実現した。加えて、2)チップ側面に露出電極部を存在させて、回路基板へのはんだ付け表面実装した場合に、はんだがこの露出電極部を這い上がる構造としたことにより、その目視検査によりはんだ接合状態が判断できる磁気抵抗効果素子を実現した。
【図面の簡単な説明】
【図1】(a)本発明の一実施例である第1の実施例の磁気抵抗効果素子の要部斜視図
(b)同側断面図
【図2】同上面図
【図3】同下面図
【図4】同はんだ付け状態を示す側面図
【図5】従来の磁気抵抗効果素子のはんだ付け状態を示す側面図
【図6】(a)本発明の一実施例である第2の実施例の磁気抵抗効果素子の側面図
(b)同断面図
【図7】同磁気抵抗効果素子の上面図
【図8】同磁気抵抗効果素子の下面図
【図9】(a)本発明の一実施例である第4の実施例の磁気抵抗効果素子の側面図
(b)同断面図
【図10】同磁気抵抗効果素子の上面図
【図11】同磁気抵抗効果素子の下面図
【図12】同磁気抵抗効果素子のはんだ付け状態を示す側面図
【図13】(a)本発明の一実施例である第5の実施例の磁気抵抗効果素子の要部斜視図
(b)同側断面図
【図14】同磁気抵抗効果素子の上面図
【図15】同磁気抵抗効果素子の下面図
【図16】本発明の一実施例の磁気抵抗効果素子の下面図
【図17】第1の従来例の磁気抵抗効果素子の要部斜視図
【図18】同磁気抵抗効果素子の上面図
【図19】同磁気抵抗効果素子の下面図
【図20】第2の従来例の磁気抵抗効果素子の断面図
【図21】同磁気抵抗効果素子の上面図
【図22】同磁気抵抗効果素子の下面図
【符号の説明】
1 ガラスとセラミックの組成物からなる絶縁基板
2 ガラスとセラミックの組成物からなる絶縁層
3 導体メタライズ層
4 ガラスグレーズ層
5 磁気抵抗効果を有する強磁性体薄膜
6 切り欠き
[0001]
[Industrial applications]
The present invention relates to a magnetoresistive element for detecting magnetism and detecting the presence or movement of a magnetic substance by utilizing the property that an electric resistance value changes when a magnetic field is applied, and a method of manufacturing the same.
[0002]
[Prior art]
The flow of development of magnetoresistive elements begins with the lead-out assembly type, depending on the application, and then expands to the chip type, which allows direct surface mounting on a circuit board.
[0003]
A conventional magnetoresistance effect element will be described with reference to FIGS.
The structure of the chip portion is generally the same regardless of the type of the assembly for chip extraction and the chip type. The structure is such that a notch 15 in which an electrode 12 is formed so as to connect the front and back surfaces of the substrate is provided at a corner of the substrate 11 which is substantially rectangular when viewed in plan, and an electrode on the same surface is provided on the surface of the substrate 11. A magnetoresistive effect thin film 14 having a predetermined shape electrically connected to the thin film 12 is formed. In addition, 13 is a glass glaze.
[0004]
The above conventional manufacturing method is to form through holes at a predetermined pitch on a large original substrate from which a plurality of chips can be taken, print electrodes around the holes, form electrodes on the inner wall surfaces of the through holes and lands, After forming a magnetoresistive effect thin film pattern, the through hole is divided into four parts to obtain a predetermined chip.
[0005]
However, in the above-described configuration, the conductive electrode connecting the surface on which the magnetoresistive thin film is formed (hereinafter referred to as a magneto-sensitive surface or a surface) and the opposite surface (hereinafter referred to as a back) is formed by cutting the side surface of the notch or the substrate. Since it is completely exposed on the side surface, it is inferior in moisture resistance, conduction reliability and the like. Therefore, the other conventional magnetoresistive element disclosed in FIGS. 20, 21 and 22 uses the conductive electrode as the via hole electrode 16 for the purpose of further improving the quality.
[0006]
The manufacturing method is different from the prior art shown in FIGS. 17 to 19 only in that the number of through-holes in the original substrate is quadrupled, the printing of the electrodes is not the inner wall surface of the through-hole, but is filled, and further divided. Instead, one chip is obtained by dividing the original substrate so as to include four conductive electrodes.
[0007]
[Problems to be solved by the invention]
However, in the second conventional configuration as described above, when direct surface mounting on a circuit board as a chip type is performed by soldering, mounting confirmation is limited to an electrical method, and the bonding state cannot be visually judged. Therefore, erroneous determination of mounting failure has been caused.
[0008]
The present invention has been made in view of the above problems, and provides a magnetoresistive effect element in which a soldered portion can be visually observed after mounting while improving quality, and a method of manufacturing the same.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the magnetoresistive effect element of the present invention is made of a glass and ceramic composition, an insulating substrate having a notch that does not penetrate the front and back surfaces, so as to connect between the front and back surfaces of the insulating substrate, Conductor metallized layers formed on the front and back surfaces, inside and cutouts, formed on the insulating substrate with the conductive metallized layers on the insulating substrate surface and an insulating layer of a predetermined shape made of a mixture of glass and ceramic, A glass glaze layer of a predetermined shape formed on the insulating substrate and the insulating layer; and a magnetoresistive thin film of a predetermined shape formed on the glass glaze layer and a conductor metallization layer on the surface of the insulating substrate. It consists of.
[0010]
Still another magnetoresistive effect element according to the present invention comprises an insulating substrate made of a glass and ceramic composition and having a notch penetrating the front and back surfaces, a part of the notch in the insulating substrate, and To form a conductive metallized layer formed on the front and back surfaces and inside, and a conductive metallized layer on the surface of the insulating substrate and an insulating layer formed on the insulating substrate and having a predetermined shape made of a mixture of glass and ceramic. A glass glaze layer having a predetermined shape formed on the insulating substrate and the insulating layer; and a magnetoresistive thin film having a predetermined shape formed on the glass glaze layer and the conductor metallization layer on the surface of the insulating substrate. It is composed of
[0011]
Further, the production method of the present invention includes a step of producing a raw sheet made of raw material powder of glass and ceramic, a binder and a plasticizer, a step of opening a through hole in the raw sheet, and printing a conductive paste on the raw sheet. And a step of filling and drying; a step of laminating a plurality of the raw sheets; and a step of printing an insulating paste mainly composed of glass and ceramic on a part of the surface of the raw sheet and the conductive paste obtained in the step. And drying, a step of printing and drying a glass paste on a part of the surface of the raw sheet and the insulator paste, and a step of firing the raw sheet composition obtained in the step at a high temperature; Forming a magnetoresistive thin film as a magneto-sensitive portion having a predetermined shape on the glass glaze surface of the obtained substrate, and dividing the substrate obtained by the above-described process into a predetermined shape. It is characterized in that a step of.
[0012]
[Action]
According to the present invention as described above, 1) a structure in which the constituent material of the magneto-sensitive surface is not exposed and a structure in which the solder is not in contact with the magneto-sensitive surface achieves an improvement in quality, and 2) a chip side surface. In the case where the exposed electrode portion is present and the surface is soldered to the circuit board, the structure is such that the solder crawls up the exposed electrode portion, so that the joining state can be reliably determined by visual inspection. .
[0013]
【Example】
(Example 1)
Hereinafter, a magnetoresistive element according to a first embodiment, which is one embodiment of the present invention, and a method for manufacturing the same will be described with reference to FIGS.
[0014]
In the figure, 1 is an insulating substrate made of a glass and ceramic composition, 2 is an insulating layer made of a glass and ceramic composition, 3 is a conductor metallized layer, 4 is a glass glaze layer, and 5 is a strong layer having a magnetoresistive effect. The magnetic thin film 6 is a notch.
[0015]
The magnetoresistive effect element according to the embodiment is connected to the front and back surfaces of the front and back surfaces, the inside, and the cutout portion 6 of the insulating substrate 1 containing glass and ceramic, for example, borosilicate glass and alumina as main components. A conductive metallized layer 3 having a silver: palladium ratio of 80:20 is formed, and an insulating layer 2 of the same material as the insulating substrate 1 is formed on the insulating substrate 1 and a part of the conductive metallized layer 3 on the surface thereof. A lead silicate-based glass glaze layer 4 is formed on a predetermined region of the insulating layer 2 and the insulating substrate 1, and one or more of nickel, iron, and cobalt are formed on the conductor metallized layer 3 and the glass glaze layer 4 on the substrate surface. A ferromagnetic thin film 5 having a magnetoresistive effect of a predetermined shape, which is obtained by repeatedly folding a stripe made of, for example, permalloy as a main component, is formed.
[0016]
The thickness and notch size of the green sheet depend on how far the solder should crawl and are not limited to the above.
[0017]
The position and shape of the cutout 6 of the insulating substrate 1 are not limited to the present embodiment as long as the purpose is satisfied.
[0018]
The conductor metallized layer 3 may have a different composition ratio, silver, gold, or the like, in addition to the silver: palladium ratio of 80:20.
[0019]
Preferably, all the constituent materials should be able to be fired at 800 to 1000 ° C.
Next, a specific example of this embodiment will be described.
[0020]
First, borosilicate glass powder and alumina powder are blended in a weight ratio of 60:40 to form an inorganic component, polyvinyl butyral and polyvinyl alcohol as an organic binder, dibutyl phthalate (DBP) as a plasticizer, and toluene as a solvent. A mixture of ethanol (60 to 40 ratio) was mixed at a ratio of 100 parts of an inorganic component, 5 parts of an organic binder, 10 parts of dibutyl phthalate (DBP), and 30 parts of toluene and ethanol, and wet-milled to obtain a slurry. Air bubbles were removed from the slurry by vacuum degassing, and the viscosity was adjusted.
[0021]
The slurry was applied on a polyester support using a doctor blade and dried through an oven to produce a 0.3 mm thick green sheet. The raw sheet was removed from the support, opened by punching to form through holes, and two types of raw sheets having different numbers and positions of through holes were obtained. One of the obtained raw sheets is, for example, filled with a conductor paste having a silver: palladium ratio of 80:20 in the through-hole and land-printed, and the other is a similar paste through-hole printed and filled in the through-hole. And land printing, and each was dried. Both sheets were bonded together and pressed at 70 ° C. and 100 kg / cm 2 to obtain one raw sheet.
[0022]
Next, the above-mentioned slurry was again used to form a print paste, which was printed in a predetermined area and shape on the raw sheet and the conductor, and dried. Further, a glass paste whose viscosity was adjusted to have a main component of 62 wt% of lead oxide, 30 wt% of silicon oxide, 3 wt% of boron oxide and 3 wt% of aluminum oxide in terms of oxide was printed in a predetermined pattern and dried. Next, the substrate was held at 850 to 900 ° C. for 1 hour in-out and fired, and then taken out at room temperature to obtain a substrate. The obtained substrate was set in a vacuum evaporator and evacuated to a predetermined degree of vacuum, and then permalloy was vapor-deposited on the surface in a thickness of 0.1 μm. Obtained a magnetically sensitive pattern having a shape as if the stripes were repeatedly turned back with 10 μm permalloy. This was divided into predetermined chip sizes.
[0023]
The firing temperature may be in the range of 800 to 1000 ° C. When the temperature is lower than 800 ° C., the surface of the glass glaze is rough and is not suitable for a magnetoresistance effect element. On the other hand, if the temperature is higher than 1000 ° C., the substrate is not suitable because it warps, breaks, or deteriorates in quality.
[0024]
With respect to the magnetoresistive element configured as described above, it was determined whether visual inspection was possible or not, and an erroneous determination rate was obtained.
[0025]
FIG. 4 shows this embodiment and FIG. 5 shows a conventional example, and compares the soldering state.
Appearance was sufficient and no erroneous judgment was made.
[0026]
As is clear from the above, the magnetoresistive effect element of the present embodiment has the effects of improving the quality and allowing the soldered portion to be visually inspected when the surface is soldered to the circuit board.
[0027]
(Example 2)
Hereinafter, a magnetoresistive element according to a second embodiment of the present invention and a method for manufacturing the same will be described with reference to FIGS.
[0028]
The magnetoresistive effect element shown in the figure is different from Example 1 in that the position of the notch is changed, and the glass glaze layer is made up of 55 wt% of lead oxide, 30 wt% of silicon oxide and 10 wt% of boron oxide in terms of oxide. It is obtained by printing as a glass paste a viscosity-adjusted one containing 4 wt% of aluminum oxide as a main inorganic component, drying and firing at 800 to 900 ° C., and using silver as a conductor metallization layer.
[0029]
Other than that, it carried out similarly to Example 1.
In this embodiment, the same effect as that of the first embodiment was obtained.
[0030]
(Example 3)
The magnetoresistive element of this embodiment is different from the above embodiments in that the material composition of the insulating substrate and the insulating layer is between 45% and 65% of the glass component, and the material composition of the glass glaze layer is oxidized. That is, PbO was set to 10 to 75% in terms of material, silver metal or silver or gold having a different composition ratio was used for the conductor metallization layer, and the firing temperature was set to 800 to 1000 ° C.
[0031]
In this embodiment, the same effect as that of the first embodiment was obtained.
(Example 4)
Hereinafter, a magnetoresistive effect element according to a fourth embodiment of the present invention and a method for manufacturing the same will be described with reference to FIGS.
[0032]
The magnetoresistive effect element shown in the figure has a silver: palladium ratio between the front and back surfaces of the insulating substrate 1 containing glass and ceramic, for example, borosilicate glass and alumina as main components. Is formed, a conductor metallized layer 3 of 80:20 is formed, the backside land is connected to the notch 6, and the conductor metallized layer 3 is formed in a part of the notch 6, and the insulating substrate 1 and the conductor on the surface thereof are formed. An insulating layer 2 made of the same material as the insulating substrate 1 is formed on a part of the metallized layer 3, a lead borosilicate glass glaze layer 4 is formed on a predetermined region of the insulating layer 2 and the insulating substrate 1, and a conductor on the surface of the substrate is formed. On the metallized layer 3 and the glass glaze layer 4, a ferromagnetic material having a predetermined shape such that a stripe made of, for example, nickel-cobalt containing at least one of nickel, iron, and cobalt as a main component is repeatedly folded. Film 5 is formed.
[0033]
The thickness of the raw sheet and the position of the exposed electrode in the cutout are not limited to the above, depending on how far the solder is to be crawled up.
[0034]
The position and shape of the cutout 6 of the insulating substrate 1 are not limited to the present embodiment as long as the purpose is satisfied.
[0035]
The conductor metallized layer 3 may have a different composition ratio, silver, gold, or the like, in addition to the silver: palladium ratio of 80:20.
[0036]
Preferably, all the constituent materials should be able to be fired at 800 to 1000 ° C.
Next, a specific example of this embodiment will be described.
[0037]
First, borosilicate glass powder and alumina powder are blended in a weight ratio of 55:45 to make an inorganic component, polyvinyl butyral and polyvinyl alcohol as an organic binder, dibutyl phthalate (DBP) as a plasticizer, and toluene as a solvent. A mixture of ethanol (60 to 40 ratio) was mixed at a ratio of 100 parts of an inorganic component, 5 parts of an organic binder, 10 parts of dibutyl phthalate (DBP), and 30 parts of toluene and ethanol, and wet-milled to obtain a slurry. Air bubbles were removed from the slurry by vacuum degassing, and the viscosity was adjusted.
[0038]
The slurry was applied on a polyester support using a doctor blade and dried through an oven to produce a 0.3 mm thick green sheet. The raw sheet was removed from the support, opened by punching to form a through hole, and one type of raw sheet was obtained. One of the obtained raw sheets is, for example, filled with a conductive paste having a silver: palladium ratio of 80:20 in the through-hole, printed with the through-hole, and land-printed. Filling and land printing were performed, and each was dried. Both sheets were bonded together and pressed at 70 ° C. and 100 kg / cm 2 to obtain one raw sheet.
[0039]
Next, the slurry described above was again used to form a print paste, printed on a predetermined area and shape on the raw sheet and the conductor, and dried. Further, a glass paste whose viscosity was adjusted to have a main inorganic component of 15 wt% of lead oxide, 60 wt% of silicon oxide, 5 wt% of boron oxide and 10 wt% of aluminum oxide in terms of oxide was printed in a predetermined pattern and dried. Next, after holding at 950 ° C. for 1 hour in-out and firing, the substrate was taken out at room temperature to obtain a substrate. After installing the obtained substrate in a vacuum evaporator and evacuating it to a predetermined degree of vacuum, nickel cobalt was evaporated on the substrate surface to a thickness of 0.05 μm, and then subjected to resist coating, exposure, development, etching and resist peeling. Then, a magnetically sensitive pattern having a shape as if the stripes were repeatedly folded back with permalloy having a width of 10 μm was obtained. This was divided into predetermined chip sizes.
[0040]
The firing temperature may be any temperature within the range of 800 to 1000 ° C. When the temperature is lower than 800 ° C., the surface of the glass glaze is rough and is not suitable for a magnetoresistance effect element. On the other hand, if the temperature is higher than 1000 ° C., the substrate is not suitable because it warps, breaks, or deteriorates in quality.
[0041]
With respect to the magnetoresistive element configured as described above, whether or not visual inspection was possible was determined, and an erroneous determination rate was obtained.
[0042]
FIG. 12 shows the soldering state.
Appearance was sufficient and no erroneous judgment was made.
[0043]
As is clear from the above, the magnetoresistive effect element of the present embodiment has the effects of improving the quality and allowing the soldered portion to be visually inspected when the surface is soldered to the circuit board.
[0044]
(Example 5)
Hereinafter, a magnetoresistive element according to a fifth embodiment of the present invention and a method for manufacturing the same will be described with reference to FIGS.
[0045]
The magnetoresistive element shown in the figure differs from the fourth embodiment in that the position of the notch is changed and that the conductor metallization layer is made of gold.
[0046]
Others were performed similarly to Example 4.
In this embodiment, the same effect as that of the fourth embodiment was obtained.
[0047]
(Example 6)
The magnetoresistive element of this embodiment is different from the above embodiments in that the material composition of the insulating substrate and the insulating layer is between 45 and 65% of the glass component, and the material composition of the glass glaze layer is an oxide. The PbO is 10 to 75% as indicated, the conductor metallization layer is made of silver or silver or gold having a different composition ratio, and the firing temperature is between 800 and 1000 ° C.
[0048]
In this embodiment, the same effect as that of the fourth embodiment was obtained.
As described above, according to this embodiment, the quality is improved, and the structure satisfies that the solder crawls on the exposed electrode portion on the side surface. This has the effect of allowing visual inspection.
[0049]
【The invention's effect】
As described above, according to the present embodiment, an insulating substrate made of a glass / ceramic composition and having a notch that penetrates the front and back surfaces, or has a notch that does not penetrate, is formed so as to connect the front and back surfaces of the insulating substrate. A conductive metallized layer, an insulating layer formed on a part of the conductive metallized layer on the front side and the insulating substrate, a glass glaze layer of a predetermined shape formed on the insulating substrate and the insulating layer, A structure having a layer and a magnetoresistive thin film of a predetermined shape formed on a conductor metallization layer on the surface of an insulating substrate has the following features: 1) a structure in which the constituent material of the magneto-sensitive surface is not exposed, and By adopting a structure that does not contact the magneto-sensitive surface, a magnetoresistive element with improved quality has been realized. In addition, 2) When the exposed electrode portion is present on the side surface of the chip and the surface is soldered to the circuit board, the solder is creeped up on the exposed electrode portion. Has been realized.
[Brief description of the drawings]
1 (a) is a perspective view of a main part of a magnetoresistive element according to a first embodiment which is an embodiment of the present invention; FIG. 1 (b) is a sectional side view of FIG. 2; FIG. FIG. 4 is a side view showing the soldering state. FIG. 5 is a side view showing a soldering state of a conventional magnetoresistive element. FIG. 6A is a second embodiment of the present invention. FIG. 7B is a side view of the magnetoresistive element of the example. FIG. 7 is a top view of the magnetoresistive element. FIG. 8 is a bottom view of the magnetoresistive element. FIG. FIG. 10 is a side view of a magnetoresistive element according to a fourth embodiment, which is an embodiment; FIG. 10B is a sectional view of the magnetoresistive element; FIG. 10 is a top view of the magnetoresistive element; FIG. FIG. 13 (a) is a side view showing a soldered state of the magneto-resistance effect element. FIG. 13 (a) is a main part of a magneto-resistance effect element according to a fifth embodiment which is an embodiment of the present invention. FIG. 14 is a top view of the magnetoresistive element. FIG. 15 is a bottom view of the magnetoresistive element. FIG. 16 is a bottom view of the magnetoresistive element according to one embodiment of the present invention. FIG. 17 is a perspective view of a main part of a magnetoresistive element according to a first conventional example. FIG. 18 is a top view of the magnetoresistive element. FIG. 19 is a bottom view of the magnetoresistive element. FIG. 21 is a cross-sectional view of a conventional magnetoresistive element of FIG. 21. FIG. 21 is a top view of the magnetoresistive element. FIG. 22 is a bottom view of the magnetoresistive element.
REFERENCE SIGNS LIST 1 Insulating substrate made of glass and ceramic composition 2 Insulating layer made of glass and ceramic composition 3 Conductive metallization layer 4 Glass glaze layer 5 Ferromagnetic thin film having magnetoresistance effect 6 Notch

Claims (10)

ガラスとセラミックの組成物からなる、表裏面を貫通しない切り欠きを有する絶縁基板と、この絶縁基板の表裏面間を結ぶように、表裏面と内部と切り欠き部に形成された導体メタライズ層と、前記絶縁基板表面の導体メタライズ層と絶縁基板の上に形成された、ガラスとセラミックの組成物からなる所定の形状の絶縁層と、前記絶縁基板と絶縁層の上に形成された所定の形状のガラスグレーズ層と、このガラスグレーズ層と前記絶縁基板の表面の導体メタライズ層の上に形成された所定の形状の磁気抵抗効果薄膜とを有する磁気抵抗効果素子。An insulating substrate having a notch that does not penetrate the front and back surfaces, made of a composition of glass and ceramic, and a conductive metallization layer formed on the front and back surfaces and inside and the cutout portion so as to connect between the front and back surfaces of the insulating substrate. An insulating layer having a predetermined shape formed of a glass and ceramic composition formed on the conductor metallized layer and the insulating substrate on the surface of the insulating substrate; and a predetermined shape formed on the insulating substrate and the insulating layer. A magnetoresistive element comprising: a glass glaze layer of the formula (1); and a magnetoresistive thin film having a predetermined shape formed on the glass glaze layer and the conductor metallized layer on the surface of the insulating substrate. 切り欠きが絶縁基板の裏面にあることを特徴とする請求項1記載の磁気抵抗効果素子。2. The magnetoresistive element according to claim 1, wherein the notch is on a back surface of the insulating substrate. 切り欠きが、その存在する面の角にあることを特徴とする請求項1記載の磁気抵抗効果素子。2. The magnetoresistive element according to claim 1, wherein the notch is at a corner of a plane on which the notch exists. 切り欠きがその存在する面の辺にあることを特徴とする請求項1記載の磁気抵抗効果素子。2. The magnetoresistive element according to claim 1, wherein the notch is on a side of the plane where the notch exists. ガラスとセラミックの組成物からなる、表裏面を貫通する切り欠きを有する絶縁基板と、この絶縁基板の切り欠き部の一部と、さらに表裏面間を結ぶように、表裏面と内部に形成された導体メタライズ層と、前記絶縁基板表面の導体メタライズ層と絶縁基板の上に形成された、ガラスとセラミックの組成物からなる所定の形状の絶縁層と、前記絶縁基板と絶縁層の上に形成された所定の形状のガラスグレーズ層と、このガラスグレーズ層と前記絶縁基板の表面の導体メタライズ層の上に形成された所定の形状の磁気抵抗効果薄膜とを有する磁気抵抗効果素子。Made of a glass and ceramic composition, an insulating substrate having a cutout penetrating the front and back surfaces, a part of the cutout portion of the insulating substrate, and further formed between the front and back surfaces and inside so as to connect the front and back surfaces. A conductive metallized layer, a conductive metallized layer on the surface of the insulating substrate and an insulating layer of a predetermined shape formed of a glass and ceramic composition formed on the insulating substrate, and formed on the insulating substrate and the insulating layer. A magnetoresistive element comprising: a glass glaze layer of a predetermined shape; and a magnetoresistive thin film of a predetermined shape formed on the glass glaze layer and a conductor metallization layer on the surface of the insulating substrate. 切り欠きが角にあることを特徴とする請求項5記載の磁気抵抗効果素子。6. The magnetoresistive element according to claim 5, wherein the notch is at a corner. 切り欠きが辺にあることを特徴とする請求項5記載の磁気抵抗効果素子。6. The magnetoresistive element according to claim 5, wherein the notch is on a side. ガラスとセラミックの原料粉とバインダと可塑剤からなる生シートを作製する工程と、前記生シートにスルーホールを開口する工程と、前記生シートに導電ペーストを印刷及び充填し乾燥する工程と、前記生シートの複数枚を張り合わせる工程と、前記工程により得られた生シートと前記導電ペーストの一部表面にガラスとセラミックを主成分とする絶縁体ペーストを印刷し乾燥する工程と、前記生シートと絶縁体ペーストの一部表面にガラスペーストを印刷し乾燥する工程と、前記工程によって得られた生シート構成物を高温で焼成する工程と、前記工程によって得られた基板のガラスグレーズ面に磁気抵抗効果薄膜を所定形状の感磁部として形成する工程と、前記工程によって得られた基板を所定の形状に分割する工程とを有することを特徴とする磁気抵抗効果素子の製造方法。A step of preparing a raw sheet comprising a raw material powder of glass and ceramic, a binder and a plasticizer, a step of opening a through hole in the raw sheet, a step of printing and filling a conductive paste on the raw sheet, and drying, Laminating a plurality of raw sheets, printing and drying an insulating paste containing glass and ceramic as a main component on a part of the surface of the raw sheet and the conductive paste obtained in the step, and drying the raw sheet; A step of printing and drying a glass paste on a part of the surface of the insulator paste, a step of firing the raw sheet component obtained in the step at a high temperature, and a step of magnetically applying a glass glaze surface of the substrate obtained in the step. Forming a resistive effect thin film as a magnetically sensitive portion having a predetermined shape, and dividing the substrate obtained by the process into a predetermined shape. Method for manufacturing a magneto-resistance effect element according to symptoms. 生シートにスルーホールを開口する工程において、二種類の形状を得ることを特徴とする請求項8記載の磁気抵抗効果素子の製造方法。9. The method for manufacturing a magnetoresistive element according to claim 8, wherein in the step of opening through holes in the raw sheet, two types of shapes are obtained. 構成物の焼成温度が800〜1000℃であることを特徴とする請求項8記載の磁気抵抗効果素子の製造方法。The method for manufacturing a magnetoresistive element according to claim 8, wherein the firing temperature of the component is 800 to 1000C.
JP6616995A 1995-03-24 1995-03-24 Magnetoresistive element and method of manufacturing the same Expired - Fee Related JP3596074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6616995A JP3596074B2 (en) 1995-03-24 1995-03-24 Magnetoresistive element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6616995A JP3596074B2 (en) 1995-03-24 1995-03-24 Magnetoresistive element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08264859A JPH08264859A (en) 1996-10-11
JP3596074B2 true JP3596074B2 (en) 2004-12-02

Family

ID=13308089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6616995A Expired - Fee Related JP3596074B2 (en) 1995-03-24 1995-03-24 Magnetoresistive element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3596074B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077742A (en) * 1998-09-01 2000-03-14 Matsushita Electric Ind Co Ltd Magnetoresistive element
JP4273847B2 (en) * 2003-06-11 2009-06-03 パナソニック株式会社 Manufacturing method of magnetic sensor
CN104143232A (en) * 2013-05-08 2014-11-12 北京嘉岳同乐极电子有限公司 Chip magnetic sensor
CN104157070A (en) * 2013-05-14 2014-11-19 北京嘉岳同乐极电子有限公司 Chip magnetic sensor
EP3712630B1 (en) * 2019-03-20 2021-04-28 LEM International SA Magnetic field sensor

Also Published As

Publication number Publication date
JPH08264859A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
US3549784A (en) Ceramic-metallic composite substrate
US4237606A (en) Method of manufacturing multilayer ceramic board
JPH03501060A (en) Capacitive pressure sensor and its manufacturing method
JP3596074B2 (en) Magnetoresistive element and method of manufacturing the same
JPS63300593A (en) Ceramic composite substrate
JP2756223B2 (en) Substrate through electrode
US4504340A (en) Material and process set for fabrication of molecular matrix print head
JP2788656B2 (en) Manufacturing method of package for integrated circuit
JPH0595071U (en) Thick film circuit board
JP3248294B2 (en) Chip inductor and manufacturing method thereof
JP3165517B2 (en) Circuit device
JP3728766B2 (en) Method for manufacturing magnetoresistive element
JP2569716B2 (en) Method of manufacturing multilayer thick film IC substrate
JP2809109B2 (en) Magnetoresistive element and method of manufacturing the same
JP2728583B2 (en) Manufacturing method of semiconductor device storage package
JP2001345561A (en) Laminated circuit board and method for detecting positional deviation of internal wiring conductor
JPH07212042A (en) Multilayer ceramic board and its manufacture
JP2595612B2 (en) Method of forming heat-resistant insulation structure
JPH11265810A (en) Composite component
JPH0823129A (en) Magnetoresistance element and manufacture
JPS5917294A (en) Composite laminated ceramic part and method of producing same
JPH0823127A (en) Magnetoresistance element and manufacture
JPH0252409A (en) Inductance element
JPS63204747A (en) Ceramic circuit substrate
JPH0467698A (en) Ceramic wiring board

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

LAPS Cancellation because of no payment of annual fees