JP3593970B2 - Method for producing electrode foil for electrolytic capacitor - Google Patents

Method for producing electrode foil for electrolytic capacitor Download PDF

Info

Publication number
JP3593970B2
JP3593970B2 JP2000331462A JP2000331462A JP3593970B2 JP 3593970 B2 JP3593970 B2 JP 3593970B2 JP 2000331462 A JP2000331462 A JP 2000331462A JP 2000331462 A JP2000331462 A JP 2000331462A JP 3593970 B2 JP3593970 B2 JP 3593970B2
Authority
JP
Japan
Prior art keywords
etching
aluminum foil
electrode foil
electrolytic capacitor
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000331462A
Other languages
Japanese (ja)
Other versions
JP2002110475A (en
Inventor
秀樹 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Capacitor Industrial Co Ltd
Original Assignee
Japan Capacitor Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Capacitor Industrial Co Ltd filed Critical Japan Capacitor Industrial Co Ltd
Priority to JP2000331462A priority Critical patent/JP3593970B2/en
Publication of JP2002110475A publication Critical patent/JP2002110475A/en
Application granted granted Critical
Publication of JP3593970B2 publication Critical patent/JP3593970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム電解コンデンサ用電極箔の作製方法に関する。
【0002】
【従来の技術】
電解コンデンサ用電極箔は、容量増大を目的に電気化学エッチングによる電極表面積の拡大処理が施される。効率的な表面積拡大処理を実現するためには、エッチング孔位置を最適な間隔で配置することが必須であるが、従来、この目的のためには、アルミニウム地金に含まれる不純物の分布を調節することで、エッチング孔開始位置を制御する方法がとられている。しかしながら、この方法では不純物の分布が規則的ではないことから、エッチング開始孔位置の制御精度には限界があった。
【0003】
これに対して、特開平11−74162号公報において、直流エッチング法による拡面処理技術に関連して、エッチング処理前に、あらかじめアルミニウム表面にエッチング開始点となる窪みの規則配列を形成し、これをエッチング開始点とすることで、理想的なエッチング孔配列を得る方法が示されている。
【0004】
【発明が解決しようとする課題】
ところで、上記したエッチング開始前にあらかじめアルミニウム表面に窪み配列を形成し、これをエッチング開始点としてエッチングを施す方法においては、エッチング開始後、トンネル状のエッチング孔の形成が制御された位置でのみ進行し、これ以外の部分では、エッチングが進行しないことが必要である。
【0005】
何故なら開始点以外の位置でエッチングが進行した場合には、エッチング孔配列の乱れ、更には、エッチング孔同志の合体が起こり、最終的に得られる拡面効率の低下を招く。加えて、エッチング孔の合体は、電極箔における機械強度の低下を招き、エッチング工程あるいは、それ以降の工程における処理速度の低下を引き起こす原因を招くからである。
しかしながら、表面にエッチング開始点となる窪み配列を形成したアルミニウム箔に対し、開始点位置でのみ選択的にエッチングが進行する条件は、これまで見出すことができなかった。
【0006】
【課題を解決するための手段】
そこで、上記問題を解決するため、本発明は、アルミニウム箔表面上に、所望のエッチングピット位置に対応して、物理的に窪みを形成した後、該アルミニウム箔を塩化物溶液中60℃以下の温度で直流エンチングすることにより、電極箔に、所望のパターンでエッチングピットを配列させることを特徴とするものである。
すなわち、この発明によれば、表面に窪み配列を形成したアルミニウム箔に対し、通常のエッチング温度に比較して低温度のエッチング条件を用いて直流エッチングを行うことで、窪み形成位置でのみ選択的にエッチングを進行せしめ、エッチング孔位置の高精度な制御を達成することで、高拡面効率の電極箔の製造を実現しようとしたものである。
【0007】
通常、直流法による電極箔の拡面処理においては、トンネル状エッチング孔を多数発生させるため、電解液温度を70℃以上の高温で、エッチング処理が行われているが、このような温度条件下では、表面に形成された窪み位置から発生したトンネル状エッチング孔の横方向の拡大および窪みを形成していない部位での孔発生のため、選択的なエッチングの進行が困難となる。
【0008】
一方、これに対し、低温度でのエッチングでは、孔の拡大および窪み形成位置以外の部位でのエッチングが抑制され、選択的なトンネル状エッチング孔の形成が可能なことが判明した。すなわち、本発明は、表面に窪み配列を形成したアルミニウム箔に対して新たに見出されたこのような特異的なエッチング挙動にもとづくものである。
【0009】
上記において、エッチング開始点として作用する窪みの規則配列形成法としては、規則的な突起配列を形成した各種モールドを、一定の圧力のもとでアルミニウム箔に押し付ける方法が使用できる。エッチングを行う電解液としては、常法と同様、塩酸,塩化ナトリウムに代表される塩化物イオン(CL)を含む電解液が用いられる。電気化学エッチングは、上記塩化物イオンを含む電解液中において、定電流電解を施すことにより行われる。
【0010】
また、本発明における電解液温度は、通常の直流法において使用される温度に比較して、より低温の60℃以下であり、特に、25℃〜35℃において、窪み位置のみから選択的にエッチングを進行させることができるという結果が得られた。
【0011】
【発明の実施の形態】
本発明の実施の形態について図面と共に説明する。図1は、本発明において、エッチングに先立ち、アルミニウム箔1の表面に、エッチング開始点となる窪み2の配列を物理的に形成したアルミニウム箔の一部を示したものである。このアルミニウム箔1へのこのような規則的な窪み2の配列の形成には、特開平11−74162号公報において示されるような規則的な突起配列を有するモールドをアルミニウム箔に押しつけて、窪み2を形成する方法が用いられる。窪み2の配列は、通常、六方配列あるいは四方配列が高い拡面効率実現のため有効である。
【0012】
図2は、窪み配列形成後、塩化物イオンを含む電解液中において、直流電解エッチング処理を行う様子を示すもので、図中3は直流電源、4は電解槽、5は塩化物溶液、6はカソード、7はエッチング孔をそれぞれ示している。
このエッチング処理において、エッチング孔の形成の状態は、電解液温度に著しく依存する。すなわち、通常の電解エッチングが行われる電解液温度である70℃以上の温度においては、窪み位置からの孔発生が優先して起こるものの、孔の拡大および他の部位からの孔発生も同時に生じ、孔形成位置の制御性は低くなる。一方、電解液温度を60℃以下とした場合には、窪み形成位置においては、エッチング孔の形成,進行がみられるものの、孔の拡大,他の部位でのエッチングは観察されず、この結果、良好な選択性をもって窪み形成位置からのエッチングが実施可能となる。
【0013】
以上の結果から、本発明は、アルミニウム箔上への窪み配列の形成と、60℃以下の直流エッチングとの組み合わせから、極めて良好なエッチング孔配置精度が達成できて、高い拡面効率の実現を可能にすることが明らかである。
【0014】
図3は、本発明の方法により作製されたアルミニウム電極箔を模式的に示す図である。更に、実際にこの方法で作製され、エッチング孔が理想配列したアルミニウム箔の表面およびレプリカ法により得られたトンネル孔の様態を図4,5で示しており、、この図から明らかなように、あらかじめアルミニウム箔表面に形成された六方配列窪みに応じてエッチング孔が規則的に形成されている様子が確認できる。
【0015】
1.実施例1
純度99.99%、(100)面配向率93%のアルミニウム箔に、表面に規則的な突起配列を有するニッケル製モールドを用い、1トン/cmの圧力で押し付けることにより、アルミニウム箔の表面に規則的な窪み配列を形成した。窪み配列の間隔は、10μmであった。この後、5モル塩酸中で、電流密度50mA/cm、30℃の電解液中で90秒電解エッチングを行ない、窪みと同一の配置でエッチング孔が形成された電極箔を得た。
【0016】
2.実施例2
孔間隔2μmで規則的な窪み配列を形成したアルミニウム箔に対して、実施例1と同様の方法でエッチングを施した。その結果、同様にあらかじめ形成したエッチング位置と一致したエッチング孔の配置を得た。
【0017】
【発明の効果】
以上のように、本発明によれば、従来の方法に比較し高精度にエッチング孔位置の制御が可能となり、この結果、高い拡面効率および機械強度の優れた電極箔の作製が可能となると共に、高容量電解コンデンサを提供することができるという利点を有する。
【図面の簡単な説明】
【図1】エッチング開始点となる窪み規則配列を表面に形成したアルミニウム箔を示す図
【図2】窪み配列を有するアルミニウム箔に直流エッチング処理を施す様子を示す図
【図3】エッチング後のアルミニウム箔の孔形成を示す図
【図4】本発明により作製されたアルミニウム箔を表面走査型電子顕微鏡写真により示した図
【図5】本発明により作製されたアルミニウム箔に対してレプリカ法を用いて得られたトンネル孔の状態を表面走査型電子顕微鏡写真により示した図
【符号の説明】
1 アルミニウム箔
2 窪み
3 直流電源
4 電解槽
5 塩化物溶液
6 カソード
7 エッチング孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an electrode foil for an aluminum electrolytic capacitor.
[0002]
[Prior art]
The electrode foil for an electrolytic capacitor is subjected to an electrode surface enlargement process by electrochemical etching for the purpose of increasing the capacity. In order to realize efficient surface area expansion processing, it is essential to arrange etching hole positions at optimal intervals. Conventionally, however, for this purpose, the distribution of impurities contained in aluminum ingot was adjusted. Then, a method of controlling the etching hole start position is adopted. However, in this method, since the distribution of impurities is not regular, there is a limit in the control accuracy of the etching start hole position.
[0003]
On the other hand, in Japanese Patent Application Laid-Open No. H11-74162, a regular arrangement of pits serving as etching start points is previously formed on an aluminum surface prior to an etching process in connection with a surface enlargement processing technique by a DC etching method. Is a method of obtaining an ideal arrangement of etching holes by setting the etching start point as an etching start point.
[0004]
[Problems to be solved by the invention]
By the way, in the above-described method of forming an array of depressions on the aluminum surface before the start of etching and performing etching using this as an etching start point, after the start of etching, formation of a tunnel-shaped etching hole proceeds only at a controlled position. However, in other portions, it is necessary that the etching does not progress.
[0005]
If the etching proceeds at a position other than the start point, the arrangement of the etching holes is disturbed, and the etching holes are united with each other, resulting in a reduction in the finally obtained surface widening efficiency. In addition, the merging of the etching holes causes a decrease in the mechanical strength of the electrode foil and causes a reduction in the processing speed in the etching step or the subsequent steps.
However, it has not been possible to find a condition under which etching proceeds selectively only at the start point position with respect to the aluminum foil having a depression array serving as an etching start point on the surface.
[0006]
[Means for Solving the Problems]
Then, in order to solve the above-mentioned problem, the present invention is to form a depression on the surface of an aluminum foil corresponding to a desired etching pit position, and then to place the aluminum foil in a chloride solution at a temperature of 60 ° C. or less. The present invention is characterized in that etching pits are arranged in a desired pattern on an electrode foil by performing DC enching at a temperature.
That is, according to the present invention, the aluminum foil having the concave array formed on the surface is subjected to direct current etching using an etching condition of a lower temperature than the normal etching temperature, so that the aluminum foil is selectively formed only at the concave forming position. In this way, the production of an electrode foil having a high surface expansion efficiency is realized by causing the etching to proceed to achieve highly accurate control of the position of the etching hole.
[0007]
Normally, in the process of enlarging the electrode foil by the direct current method, etching is performed at a high temperature of 70 ° C. or higher in order to generate a large number of tunnel-shaped etching holes. In this case, the selective etching is difficult to progress because of the lateral expansion of the tunnel-shaped etching holes generated from the positions of the depressions formed on the surface and the generation of holes at portions where no depressions are formed.
[0008]
On the other hand, it has been found that etching at a low temperature suppresses etching at a portion other than the position where the hole is enlarged and the depression is formed, and it is possible to selectively form a tunnel-shaped etching hole. That is, the present invention is based on such a specific etching behavior newly found for an aluminum foil having a concave arrangement on the surface.
[0009]
In the above description, as a method of forming a regular array of depressions acting as an etching start point, a method of pressing various molds having a regular projection arrangement on an aluminum foil under a constant pressure can be used. As an electrolytic solution for etching, an electrolytic solution containing chloride ions (CL ) typified by hydrochloric acid and sodium chloride is used as in the usual method. The electrochemical etching is performed by performing a constant current electrolysis in the electrolytic solution containing chloride ions.
[0010]
In addition, the electrolyte temperature in the present invention is lower than 60 ° C., which is lower than the temperature used in a normal DC method, and in particular, at 25 ° C. to 35 ° C., selective etching is performed only from the depression position. Can be advanced.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a part of an aluminum foil in which an array of depressions 2 serving as etching start points is physically formed on the surface of an aluminum foil 1 prior to etching in the present invention. In order to form such a regular arrangement of the depressions 2 on the aluminum foil 1, a mold having a regular projection arrangement as shown in JP-A-11-74162 is pressed against the aluminum foil to form the depressions 2. Is used. The arrangement of the depressions 2 is usually a hexagonal arrangement or a tetragonal arrangement, which is effective for realizing a high surface expansion efficiency.
[0012]
FIG. 2 shows a state in which a DC electrolytic etching process is performed in an electrolytic solution containing chloride ions after the formation of the recess arrangement, in which 3 is a DC power supply, 4 is an electrolytic cell, 5 is a chloride solution, and 6 is a chloride solution. Denotes a cathode and 7 denotes an etching hole.
In this etching process, the state of the formation of the etching hole remarkably depends on the temperature of the electrolytic solution. That is, at a temperature of 70 ° C. or higher, which is the temperature of the electrolytic solution at which normal electrolytic etching is performed, although the generation of holes from the depression position occurs preferentially, the expansion of holes and the generation of holes from other parts also occur at the same time, The controllability of the hole formation position is reduced. On the other hand, when the temperature of the electrolytic solution is set to 60 ° C. or lower, although the formation and progress of the etching hole are observed at the pit formation position, the enlargement of the hole and the etching at other portions are not observed. Etching from the depression forming position can be performed with good selectivity.
[0013]
From the above results, according to the present invention, extremely good etching hole arrangement precision can be achieved from the combination of the formation of the concave array on the aluminum foil and the DC etching at 60 ° C. or less, and the realization of high surface expansion efficiency can be achieved. It is clear that it is possible.
[0014]
FIG. 3 is a diagram schematically showing an aluminum electrode foil produced by the method of the present invention. FIGS. 4 and 5 show the surface of the aluminum foil actually manufactured by this method and the etching holes are ideally arranged, and the tunnel holes obtained by the replica method, as shown in FIGS. It can be confirmed that the etching holes are regularly formed in accordance with the hexagonally arranged depressions formed in advance on the aluminum foil surface.
[0015]
1. Example 1
The aluminum foil having a purity of 99.99% and a (100) plane orientation rate of 93% was pressed with a pressure of 1 ton / cm 2 using a nickel mold having a regular projection arrangement on the surface, thereby pressing the surface of the aluminum foil. A regular array of depressions was formed. The interval between the depression arrays was 10 μm. Thereafter, electrolytic etching was performed for 90 seconds in an electrolytic solution having a current density of 50 mA / cm 2 and 30 ° C. in 5 molar hydrochloric acid to obtain an electrode foil having an etching hole formed in the same arrangement as the depression.
[0016]
2. Example 2
An aluminum foil having a regular recess arrangement with a hole interval of 2 μm was etched in the same manner as in Example 1. As a result, the arrangement of the etching holes which coincided with the previously formed etching positions was obtained.
[0017]
【The invention's effect】
As described above, according to the present invention, it is possible to control the position of the etching hole with higher precision than in the conventional method, and as a result, it is possible to produce an electrode foil having high surface expansion efficiency and excellent mechanical strength. In addition, there is an advantage that a high capacity electrolytic capacitor can be provided.
[Brief description of the drawings]
FIG. 1 is a view showing an aluminum foil having a regular array of depressions serving as an etching starting point formed on the surface; FIG. 2 is a view showing a state in which an aluminum foil having a concave arrangement is subjected to a DC etching treatment; FIG. FIG. 4 is a diagram showing a hole formation in a foil. FIG. 4 is a diagram showing a surface scanning electron micrograph of an aluminum foil produced according to the present invention. FIG. 5 is a diagram showing a replica method for an aluminum foil produced according to the present invention. Diagram showing the state of the obtained tunnel hole by a surface scanning electron micrograph.
DESCRIPTION OF SYMBOLS 1 Aluminum foil 2 Depression 3 DC power supply 4 Electrolyzer 5 Chloride solution 6 Cathode 7 Etching hole

Claims (2)

アルミニウム箔表面上に、所望のエッチングピット位置に対応して、物理的に窪みを形成した後、該アルミニウム箔を塩化物溶液中60℃以下の温度で直流エンチングすることにより、電極箔に、所望のパターンでエッチングピットを配列させることを特徴とする電解コンデンサ用電極箔の作製方法。After physically forming a depression corresponding to a desired etching pit position on the surface of the aluminum foil, the aluminum foil is subjected to direct current etching at a temperature of 60 ° C. or less in a chloride solution, so that the electrode foil has a desired shape. A method for producing an electrode foil for an electrolytic capacitor, wherein etching pits are arranged in a pattern as described above. 請求項1に記載の電解コンデンサ用電極箔の作製方法において、直流エッチングの温度を、25℃〜35℃としたことを特徴とする電解コンデンサ用電極箔の作製方法。The method for producing an electrode foil for an electrolytic capacitor according to claim 1, wherein the temperature of the DC etching is 25 ° C. to 35 ° C. 6.
JP2000331462A 2000-09-26 2000-09-26 Method for producing electrode foil for electrolytic capacitor Expired - Lifetime JP3593970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331462A JP3593970B2 (en) 2000-09-26 2000-09-26 Method for producing electrode foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331462A JP3593970B2 (en) 2000-09-26 2000-09-26 Method for producing electrode foil for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2002110475A JP2002110475A (en) 2002-04-12
JP3593970B2 true JP3593970B2 (en) 2004-11-24

Family

ID=18807802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331462A Expired - Lifetime JP3593970B2 (en) 2000-09-26 2000-09-26 Method for producing electrode foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3593970B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739107B2 (en) * 2010-02-15 2015-06-24 公益財団法人神奈川科学技術アカデミー Method for producing porous structural material
JP6112608B2 (en) * 2013-10-18 2017-04-12 ニチコン株式会社 Method for producing electrode foil for electrolytic capacitor
WO2024024884A1 (en) * 2022-07-29 2024-02-01 パナソニックIpマネジメント株式会社 Metal foil for electrode foil production, method of manufacturing electrode foil for electrolytic capacitor, electrode foil for electrolytic capacitor, and electrolytic capacitor

Also Published As

Publication number Publication date
JP2002110475A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
CN105803487A (en) Pre-baked aluminum electrolysis production method capable of preventing anode scrap from being generated
JP3593970B2 (en) Method for producing electrode foil for electrolytic capacitor
CN114250486B (en) Preparation method of surface nano porous NiMoCu catalyst
JP2001019594A (en) Method for continuously casting silicon
JPH06326077A (en) Formation method for hole structure in silicon substrate
JP4749079B2 (en) Method for producing electrode foil for electrolytic capacitor
JP3995769B2 (en) Method for producing electrode foil for electrolytic capacitor
Sun et al. Preparation of alumina nanowires, nanorods, and nanowalls by chemical etching
JP4428074B2 (en) Method and apparatus for manufacturing electrode foil for aluminum electrolytic capacitor
CN109811313B (en) Preparation method of porous alumina template on high-resistivity substrate
JP4428037B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
CN209338697U (en) A kind of electrolytic etching electrode based on 3D printing
JPH1110311A (en) Manufacture of lead storage battery
JP2005226087A (en) Anodically oxidized porous alumina and producing method therefor
JP3379141B2 (en) Lead storage battery grid continuous casting machine
KR20140022189A (en) Solid oxide fuel cell anode metal support and method for manufacturing the same
JP4089333B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2004527657A (en) Anode arrangement for use in electrolysis cells
JPH08318348A (en) Mold for continuously casting battery grid body
JP4547918B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3524080B2 (en) Electroplated drum
JPH0693485A (en) Reduction method for carbon dioxide
AU4115900A (en) Method of producing a filter
US20240186141A1 (en) Method for preparing a germanium substrate and germanium substrate structure for epitaxial growth of a germanium layer
JPH0566006B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3593970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250