JP3590607B2 - Absorption type cold / hot water equipment - Google Patents

Absorption type cold / hot water equipment Download PDF

Info

Publication number
JP3590607B2
JP3590607B2 JP2001355331A JP2001355331A JP3590607B2 JP 3590607 B2 JP3590607 B2 JP 3590607B2 JP 2001355331 A JP2001355331 A JP 2001355331A JP 2001355331 A JP2001355331 A JP 2001355331A JP 3590607 B2 JP3590607 B2 JP 3590607B2
Authority
JP
Japan
Prior art keywords
temperature
concentrated solution
refrigerant
solution
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001355331A
Other languages
Japanese (ja)
Other versions
JP2003161542A (en
Inventor
太一 松本
Original Assignee
株式会社ドーラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ドーラ filed Critical 株式会社ドーラ
Priority to JP2001355331A priority Critical patent/JP3590607B2/en
Publication of JP2003161542A publication Critical patent/JP2003161542A/en
Application granted granted Critical
Publication of JP3590607B2 publication Critical patent/JP3590607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、吸収式冷温水装置に関するものである。
【従来の技術】
【0002】
吸収式冷温水装置において、容器、配管を含む器機本体は、その構成部品の総てを溶接で組立てることにより器内を高真空に維持させた上で、冷媒として腐食性の強い臭化リチウム(LiBr)等の水溶液を充填しているが、器内が腐食し赤錆が生じると、その際の化学的反応に基づく水素ガスの発生によって、器内の真空が低下する。
【0003】
器内の真空が低下した場合、冷房能力の低下をはじめとして、高温再生器過熱(GPL作動)、晶析、等種々のトラブル現象を引き起こすものであるが、これ迄、器内に赤錆による水素ガスの発生を完全に抑え切ることができず、水素ガス発生による真空低下によって起きるトラブルを未然に防止することがきわめて困難であった。
【0004】
【発明が解決しようとする課題】
本発明は、如上の従来のこの種吸収式冷温水装置における問題点に鑑みて、これを解決すべく案出したものであって、器内において赤錆を発生させず、水素ガス発生による真空低下を抑制することのできる新規構造の吸収式冷温水装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上記目的を達成するための本発明の構成を実施の形態を用いて説明すると、本発明の吸収式冷温水装置は、器内を高真空に維持させた上で、冷媒として臭化リチウム等の水溶液を充填してなる吸収式冷温水装置において、配管中の任意部位に、磁化水処理器具の介設、或いは、配管の任意部位の周囲に磁石、電磁用コイル等を周設、巻装する等して磁界Aを形成配設し、水溶液を磁化水処理するように構成したことを特徴とするものである。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づき図面を参照して説明する。
【0007】
【実施例】
図1は、本発明の一実施例を示す装置構成の説明図である。
【0008】
図1において、先ずその吸収式冷温水装置における冷房サイクルを説明すると、高温再生器1をバーナ2で加熱すると、高温再生器1内の希溶液が加熱沸騰され、高温の冷媒蒸気と高温濃溶液が発生し、熱気泡ポンプの原理で揚液管3を上昇して、第一分離器4で冷媒蒸気と高温濃溶液に分離される。
【0009】
分離された高温の冷媒蒸気は、低温再生器5のコイルの中を通って、その凝縮熱で中間濃溶液を加熱沸騰して、冷媒蒸気と低温濃溶液を発生させて、凝縮して冷媒水となり、凝縮器6に入る。
【0010】
低温再生器5で発生した冷媒蒸気と低温濃溶液は、第二分離器で分離される。分離された冷媒蒸気は凝縮器6に入り、凝縮器コイル内を循環している冷却水により冷却され、凝縮して冷媒水となる。該冷媒水の一部は冷媒貯蔵室8に貯蔵され、冷媒比例弁9を経由して蒸発器10に入る。又、残りの冷媒水は、冷媒管11を通り、蒸発器10に入る。
【0011】
蒸発器10に入った冷媒水は、蒸発器10のコイル表面に均一に滴下されて、高真空状態の下で低温蒸発し、蒸発器10のコイル内の循環水により蒸発潜熱を奪って冷水を作り出す。
【0012】
一方、第一分離器4で分離された高温濃溶液は、高温濃溶液降り管12で高温熱交換器13に入り、稀溶液と熱交換して温度が低下する。更に、その出口部で高温濃溶液と稀溶液が混合し、中間濃溶液となり、中間濃溶液昇り管14を昇って低温再生器5に入る。
【0013】
低温再生器5において、前記の如く中間濃溶液は、低温再生器5のコイル内を通る高温の冷媒蒸気により加熱沸騰されて、第二分離器7で冷媒蒸気と低温濃溶液に分離される。
【0014】
分離された低温濃溶液は、低温濃溶液降り管15で低温熱交換器16に入り、一方の稀溶液と熱交換して温度が低下した後、低温濃溶液昇り管17で吸収器18に入る。
【0015】
低温濃溶液は、吸収器18のコイル上に均一に滴下され、蒸発器10で蒸発した冷媒蒸気を直ちに吸収して高真空状態を維持し、冷媒蒸気を吸収して稀溶液となる。吸収器18において、濃溶液が冷媒蒸気を吸収する時に吸収熱が発生し、吸収器18のコイル内にも冷却水を循環させて冷却する。
【0016】
稀溶液は、溶液循環ポンプ19で稀溶液降り管20を通り、低温熱交換器16で低温濃溶液と熱交換をする。該低温熱交換器16の出口部で稀溶液は、二手に分かれ、一方は稀溶液バイパス管21を通り、高温濃溶液と合流して中間濃溶液となり、中間濃溶液昇り管14を上昇する。他方の稀溶液は、高温熱交換器13で高温濃溶液と熱交換して昇温され、高温再生器戻り管22で高温再生器1に入る。
【0017】
高温再生器1に戻った稀溶液は、バーナ2で加熱され、二重効用サイクルを繰り返す。
【0018】
次に、吸収式冷温水装置における暖房サイクルを説明すると、高温再生器1をバーナ2で加熱すると、高温再生器1内の希溶液が加熱沸騰され、高温の冷媒蒸気と高温濃溶液が発生し、熱気泡ポンプの原理で揚液管3を上昇する。
【0019】
高温の冷媒蒸気は、第一分離器4より冷暖切替弁23を通って、直接蒸気器10に至り、蒸気器10のコイル内を流れる循環水を高温の冷媒蒸気で直接加熱して、温水を作り出す。
【0020】
冷媒蒸気は、凝縮して水となり、濃溶液と混合して稀溶液となる。該稀溶液は、溶液循環ポンプ19により低温熱交換器16、高温熱交換器13を通り、高温再生器1に戻る。高温再生器に戻った稀溶液は、バーナ2で加熱され、上記した暖房サイクルを繰り返す。
【0021】
上記の如き冷房サイクルと暖房サイクルを備える吸収式冷温水装置における稀釈液降り管20をはじめとする稀釈液が循環して流れる配管、器機の任意部位に磁界Aを形成配設して、稀釈液を磁化水処理するように構成する。磁界Aを形成配設する手段としては、配管中に磁化水処理器具を介設するとか、配管の任意部位の周囲に磁石、電磁用コイル等を周設、巻装する等いずれであってもよく、その具体的構成を限定するものではない。
【0022】
このように稀釈液を磁化水処理するように構成すると、配管内部に発生する赤錆をマグネタイト(Fe3O4磁鉄鉱)に変えて赤水の発生を抑止すると共に配管内壁にマグネタイト保護皮膜を形成して腐食を防止して、その防錆及び除錆作用によって、器内における赤錆の発生とこれに基づく水素ガス発生による真空低下を抑制することができる。
【0023】
【発明の効果】
本発明は、以上説明した如くなり、器内において赤錆を発生させず、水素ガス発生による真空低下を抑制することができるので、この種吸収式冷温水装置のトラブルを未然に防止して、長期に亘って所期性能を保持させることができる優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施例を示す装置構成の説明図である。
【符号の説明】
1 高温再生器
2 バーナ
3 揚液管
4 第一分離管
5 低温再生器
6 凝縮器
7 第二分離器
8 冷媒貯蔵器
9 冷媒比例弁
10 蒸発器
11 冷媒管
12 高温濃溶液降り管
13 高温熱交換器
14 中間濃溶液昇り管
15 低温濃溶液降り管
16 低温熱交換器
17 低温濃溶液昇り管
18 吸収管
19 溶液循環ポンプ
20 稀溶液降り管
21 稀溶液バイパス管
22 高温再生器戻り管
A 磁界
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absorption-type hot / cold water apparatus.
[Prior art]
[0002]
In the absorption chiller / heater, the equipment main body including the vessel and piping is assembled by welding all the components to maintain the inside of the equipment at a high vacuum, and then as a refrigerant, highly corrosive lithium bromide ( Although it is filled with an aqueous solution such as LiBr), if the inside of the vessel is corroded and red rust is generated, the vacuum inside the vessel is reduced due to the generation of hydrogen gas based on a chemical reaction at that time.
[0003]
When the vacuum in the vessel is reduced, various troubles such as a decrease in cooling capacity, overheating of the high-temperature regenerator (GPL operation), crystallization, etc. are caused. It was impossible to completely suppress the generation of gas, and it was extremely difficult to prevent a trouble caused by a reduction in vacuum due to the generation of hydrogen gas.
[0004]
[Problems to be solved by the invention]
The present invention has been devised to solve this problem in view of the above-described conventional absorption-type cooling and heating water apparatus, and does not generate red rust in the vessel and reduces vacuum due to generation of hydrogen gas. It is an object of the present invention to provide an absorption-type cooling / heating water device having a novel structure capable of suppressing the occurrence of water.
[0005]
[Means for Solving the Problems]
The configuration of the present invention for achieving the above object will be described with reference to an embodiment.The absorption-type cooling and heating water device of the present invention maintains the inside of the vessel at a high vacuum, and then uses lithium bromide or the like as a refrigerant. In an absorption-type cold / hot water device filled with an aqueous solution, a magnetized water treatment device is interposed at an arbitrary portion in a pipe, or a magnet, an electromagnetic coil, or the like is provided and wound around an arbitrary portion of the pipe. The magnetic field A is formed and arranged by the same method, and the aqueous solution is treated with magnetized water.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples with reference to the drawings.
[0007]
【Example】
FIG. 1 is an explanatory diagram of an apparatus configuration showing one embodiment of the present invention.
[0008]
Referring to FIG. 1, the cooling cycle in the absorption type cooling and heating water apparatus will be described. When the high-temperature regenerator 1 is heated by the burner 2, the dilute solution in the high-temperature regenerator 1 is heated and boiled, and the high-temperature refrigerant vapor and the high-temperature concentrated solution are heated. Is generated, rises the liquid pumping pipe 3 based on the principle of the thermal bubble pump, and is separated into the refrigerant vapor and the high-temperature concentrated solution by the first separator 4.
[0009]
The separated high-temperature refrigerant vapor passes through the coil of the low-temperature regenerator 5 and heats and boiles the intermediate concentrated solution with the heat of condensation, thereby generating the refrigerant vapor and the low-temperature concentrated solution, and condensing the refrigerant water. And enters the condenser 6.
[0010]
The refrigerant vapor and the low-temperature concentrated solution generated in the low-temperature regenerator 5 are separated by the second separator. The separated refrigerant vapor enters the condenser 6, is cooled by the cooling water circulating in the condenser coil, and is condensed into refrigerant water. Part of the refrigerant water is stored in the refrigerant storage chamber 8 and enters the evaporator 10 via the refrigerant proportional valve 9. Further, the remaining refrigerant water enters the evaporator 10 through the refrigerant pipe 11.
[0011]
The refrigerant water that has entered the evaporator 10 is uniformly dropped on the coil surface of the evaporator 10, evaporates at a low temperature under a high vacuum, and removes latent heat of evaporation by circulating water in the coil of the evaporator 10 to remove cold water. produce.
[0012]
On the other hand, the high-temperature concentrated solution separated by the first separator 4 enters the high-temperature heat exchanger 13 through the high-temperature concentrated solution descending pipe 12, and exchanges heat with the dilute solution to lower the temperature. Further, the high-temperature concentrated solution and the dilute solution are mixed at the outlet to become an intermediate-concentrated solution, and ascend the intermediate-concentrated solution riser pipe 14 to enter the low-temperature regenerator 5.
[0013]
In the low-temperature regenerator 5, the intermediate concentrated solution is heated and boiled by the high-temperature refrigerant vapor passing through the coil of the low-temperature regenerator 5, and separated into the refrigerant vapor and the low-temperature concentrated solution in the second separator 7.
[0014]
The separated low-temperature concentrated solution enters the low-temperature heat exchanger 16 through the low-temperature concentrated solution downcomer 15, exchanges heat with one of the dilute solutions to lower the temperature, and then enters the absorber 18 through the low-temperature concentrated solution ascending tube 17. .
[0015]
The low-temperature concentrated solution is uniformly dropped on the coil of the absorber 18, immediately absorbs the refrigerant vapor evaporated by the evaporator 10, maintains a high vacuum state, and absorbs the refrigerant vapor to become a dilute solution. In the absorber 18, heat of absorption is generated when the concentrated solution absorbs the refrigerant vapor, and cooling water is circulated in the coil of the absorber 18 to cool.
[0016]
The dilute solution passes through the dilute solution down pipe 20 by the solution circulation pump 19 and exchanges heat with the low-temperature concentrated solution by the low-temperature heat exchanger 16. At the outlet of the low-temperature heat exchanger 16, the dilute solution is divided into two parts, one of which passes through the dilute solution bypass pipe 21 and joins with the high-temperature concentrated solution to become an intermediate concentrated solution, and rises up the intermediate concentrated solution rising pipe 14. The other dilute solution exchanges heat with the high-temperature concentrated solution in the high-temperature heat exchanger 13 to increase the temperature, and enters the high-temperature regenerator 1 through the high-temperature regenerator return pipe 22.
[0017]
The diluted solution returned to the high-temperature regenerator 1 is heated by the burner 2 and repeats a double effect cycle.
[0018]
Next, a heating cycle in the absorption chiller / heater will be described. When the high temperature regenerator 1 is heated by the burner 2, the dilute solution in the high temperature regenerator 1 is heated and boiled to generate a high temperature refrigerant vapor and a high temperature concentrated solution. The lifting pipe 3 is raised by the principle of a thermal bubble pump.
[0019]
The high-temperature refrigerant vapor passes through the cooling / heating switching valve 23 from the first separator 4 and directly reaches the vaporizer 10, where the circulating water flowing in the coil of the vaporizer 10 is directly heated by the high-temperature refrigerant vapor to convert the hot water. produce.
[0020]
The refrigerant vapor condenses to water and mixes with the concentrated solution to form a dilute solution. The diluted solution passes through the low-temperature heat exchanger 16 and the high-temperature heat exchanger 13 by the solution circulation pump 19 and returns to the high-temperature regenerator 1. The diluted solution returned to the high-temperature regenerator is heated by the burner 2, and the above-described heating cycle is repeated.
[0021]
A magnetic field A is formed and arranged in an arbitrary portion of the piping and a pipe through which the diluent flows, such as the diluent downcomer 20, in the absorption type hot / cold water system having the cooling cycle and the heating cycle as described above. Is configured to perform a magnetized water treatment. Means for forming and arranging the magnetic field A may be a magnetized water treatment device provided in a pipe, a magnet, an electromagnetic coil or the like provided around an arbitrary portion of the pipe, or wound around the pipe. Often, the specific configuration is not limited.
[0022]
When the diluted liquid is configured to be treated with magnetized water, red rust generated inside the pipe is changed to magnetite (Fe3O4 magnetite) to suppress the generation of red water and to form a magnetite protective film on the inner wall of the pipe to prevent corrosion. Then, by the rust prevention and rust removing action, it is possible to suppress the generation of red rust in the vessel and the reduction in vacuum due to the generation of hydrogen gas based on the rust.
[0023]
【The invention's effect】
As described above, the present invention does not generate red rust in the vessel and can suppress the vacuum drop due to the generation of hydrogen gas. An excellent effect that can maintain the expected performance over a wide range is obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an apparatus configuration showing one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Burner 3 Pumping line 4 First separation tube 5 Low temperature regenerator 6 Condenser 7 Second separator 8 Refrigerant storage 9 Refrigerant proportional valve 10 Evaporator 11 Refrigerant tube 12 High temperature concentrated solution downcomer 13 High temperature heat Exchanger 14 Intermediate concentrated solution riser 15 Low temperature concentrated solution downcomer 16 Low temperature heat exchanger 17 Low temperature concentrated solution riser 18 Absorption tube 19 Solution circulation pump 20 Dilute solution downcomer 21 Dilute solution bypass tube 22 High temperature regenerator return tube A Magnetic field

Claims (1)

器内を高真空に維持させた上で、冷媒として臭化リチウム等の水溶液を充填してなる吸収式冷温水装置において、水溶液に冷媒を吸収させる吸収器の下流の配管に溶液循環ポンプを設け、溶液循環ポンプと吸収器との間の配管に、磁化水処理器具の介設、或いは、周囲に磁石、電磁用コイル等を周設、巻装する等して磁界Aを形成配設し、水溶液を磁化水処理するように構成したことを特徴とする吸収式冷温水装置。In an absorption-type cold / hot water device that is filled with an aqueous solution of lithium bromide or the like as a refrigerant after maintaining the inside of the vessel at a high vacuum , a solution circulation pump is provided in a pipe downstream of the absorber that absorbs the refrigerant into the aqueous solution. In the pipe between the solution circulation pump and the absorber, a magnetized water treatment device is interposed, or a magnetic field A is formed and disposed around the magnet, an electromagnetic coil, etc. An absorption-type cold / hot water apparatus characterized in that an aqueous solution is treated with magnetized water.
JP2001355331A 2001-11-20 2001-11-20 Absorption type cold / hot water equipment Expired - Fee Related JP3590607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355331A JP3590607B2 (en) 2001-11-20 2001-11-20 Absorption type cold / hot water equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355331A JP3590607B2 (en) 2001-11-20 2001-11-20 Absorption type cold / hot water equipment

Publications (2)

Publication Number Publication Date
JP2003161542A JP2003161542A (en) 2003-06-06
JP3590607B2 true JP3590607B2 (en) 2004-11-17

Family

ID=19167054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355331A Expired - Fee Related JP3590607B2 (en) 2001-11-20 2001-11-20 Absorption type cold / hot water equipment

Country Status (1)

Country Link
JP (1) JP3590607B2 (en)

Also Published As

Publication number Publication date
JP2003161542A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2002147885A (en) Absorption refrigerating machine
KR0177719B1 (en) Gax absorptive type cycle apparatus
KR0177726B1 (en) Ammonia gax absorptive cycle apparatus
JP3590607B2 (en) Absorption type cold / hot water equipment
WO2009051582A1 (en) Membrane concentrator for absorption chillers
JP3381094B2 (en) Absorption type heating and cooling water heater
JP3889655B2 (en) Absorption refrigerator
US2229697A (en) Refrigeration
JP3729876B2 (en) Air conditioner low temperature regenerator
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
KR100262718B1 (en) Solution Heat Regenerator Structure of Ammonia Absorption System
JPH0752039B2 (en) Air-cooled absorption chiller / heater
JP4282225B2 (en) Absorption refrigerator
KR0184216B1 (en) Ammonia absorptive refrigerator
JP5233716B2 (en) Absorption refrigeration system
JP2000018761A (en) Method for operating absorption heat pump
JP4557468B2 (en) Absorption refrigerator
JP3398832B2 (en) Control method of absorption chiller / heater
JPH1114192A (en) Evaporator for absorption refrigerating device
JPH05272831A (en) Absorption refrigerator
JP2000055498A (en) Absorption type heat pump
JPH07225066A (en) Absorption refrigerator
JPH04353365A (en) Absorption type freezing cycle device
JPH05280820A (en) Absorption refrigeration system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees