JP3586197B2 - Plasma film forming equipment for thin film formation - Google Patents

Plasma film forming equipment for thin film formation Download PDF

Info

Publication number
JP3586197B2
JP3586197B2 JP2001009963A JP2001009963A JP3586197B2 JP 3586197 B2 JP3586197 B2 JP 3586197B2 JP 2001009963 A JP2001009963 A JP 2001009963A JP 2001009963 A JP2001009963 A JP 2001009963A JP 3586197 B2 JP3586197 B2 JP 3586197B2
Authority
JP
Japan
Prior art keywords
plasma
electrode
forming
film
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001009963A
Other languages
Japanese (ja)
Other versions
JP2001338885A (en
Inventor
道 酒井
諭 岡本
敏男 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001009963A priority Critical patent/JP3586197B2/en
Priority to KR10-2001-0007057A priority patent/KR100436072B1/en
Priority to TW090104994A priority patent/TW562868B/en
Priority to US09/815,160 priority patent/US6779482B2/en
Publication of JP2001338885A publication Critical patent/JP2001338885A/en
Application granted granted Critical
Publication of JP3586197B2 publication Critical patent/JP3586197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5093Coaxial electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜形成用プラズマ成膜装置であり、特に半導体等機能薄膜形成用のプラズマ成膜装置に関し、より詳しくは、電子産業におけるアモルファスシリコン(以下、a−Siという)等の半導体膜や絶縁膜の製造に用いられるプラズマ励起化学気相成長法を用いた装置として好適な薄膜形成用プラズマ成膜装置に関する。
【0002】
【従来の技術】
プラズマを使って半導体膜等を成膜し、集積回路・液晶ディスプレイ・アモルファス太陽電池などの電子デバイスを製造する方法、いわゆるプラズマ励起化学気相成長(Chemical Vapor Deposition:CVD)法は、その簡便性・操作性に優れるため、さまざまな電子デバイスを製造するのに使用されている。
【0003】
CVD法としては、以下のような方法が一般的であり、このCVD方法を用いる薄膜形成用プラズマ成膜装置(プラズマCVD装置)の構造を図8および図9を用いて説明する。図8はプラズマCVD装置の構造を概念的に説明する断面図であり、図9は該装置の主要部の構造を説明する斜視図である。
【0004】
従来のプラズマCVD装置は、電極基板11の第1の面上に形成された第1の電極13−1と、電極基板11の裏面に形成したガス供給空間15と、前記第1の電極13−1に所定の距離dを置いて対向配置した成膜基板30と、該成膜基板30の背面に設けた第2の電極13−2と、真空容器50と、導入端子51と、成膜基板ホルダ52と、電源60と、ガス供給部70とから構成される。電極基板11およびこの上に配置された第1の電極13−1にはプラズマ生成空間10へ材料ガスGを供給する複数のガス導入孔12が設けられている。第1の電極13‐1および第2の電極13‐2には、電気的エネルギーを供給する電源60の高周波の出力が供給される。ガス供給空間15にはガス供給管16を介してガス供給部70が接続され、成膜時に膜形成用材料ガスが供給される。
【0005】
このプラズマCVD装置は、お互いに電気的に絶縁され対向する位置に平行に設置された2枚の導体板からなる第1の電極13‐1と第2の電極13‐2の間で放電DCを起こしてプラズマを発生させ、そこに材料ガスGを流してガスを解離してラジカルRを生成し、第2の電極13−2に取り付けられたシリコンやガラスといった成膜基板30の上に半導体膜などを成膜する。
【0006】
成膜するための材料ガスを分解するためのプラズマを発生させる手段としては、通常周波数が13.56MHzの高周波の電力が使用される。つまり、一方の導体板電極13−2は接地電位とし、もう一方の対向する電極13−1との間に高周波電圧を印加して両導体板間に高周波の電界を発生させ、その絶縁破壊現象によりグロー放電現象としてプラズマを生成する。高周波電圧がかかる側の電極13−1をカソード電極と呼び、その近傍に大きな電界が形成される為、そこで加速されるプラズマ中の電子が材料ガスの解離を促しラジカルRを生成する。
【0007】
上記のようなプラズマCVD法には、近年のプラズマ工学・半導体工学の進歩に伴い、様々な新しい提案がある。一例を挙げると、用いる高周波の周波数を13.56MHzからVHF帯へ高めることにより、成膜される半導体膜の成膜速度を改善する、というもの(J.Vac.Sci.Technol.A10(1992)1080 A.A.Howling)などがある。
【0008】
液晶ディスプレイ・アモルファス太陽電池などの電子デバイスについて、特筆すべきは、大面積の電子デバイスであり、成膜基板30の大きさは数十cm四方の大きさから1m四方の大きさというものが望ましいとする大型化の要求が強い、ということである。
【0009】
しかし、従来の小面積成膜基板30への成膜により確立された方法には限界があり、液晶ディスプレイ・アモルファス太陽電池などの大面積電子デバイスを作製する場合には、しばしば大面積成膜基板30へ、均一な膜厚でかつ高品質の成膜を行うことは困難であった。
【0010】
膜厚の均一性が確保されない理由は、一つには高周波を用いる為に、電極13−1,13−2の部材のもつインダクタンスや電極13−1,13−2の部品の電気的接触の部分的な違いなどにより、プラズマを発生させる高周波等の電力が成膜基板30の全面に均一に投入されず、結果としてプラズマ粒子やラジカル粒子の不均一な密度分布が生じてしまうことが挙げられる。この結果として、成膜基板30の上に成膜される膜の厚みが場所によって変化してしまうという問題がある。
【0011】
a−Si膜を用いたTFT(Thin Film Transistor)液晶ディスプレイの場合、スイッチング層であるa−Si膜の厚みが1つの成膜基板30の上で変化すると、スイッチング特性が部分的に異なることとなり、結果として表示の不均一性が発生してしまう。プラズマ密度の不均一な分布を少なくし、成膜基板30の上へ成長する膜厚を均一化する方法が望まれる。
【0012】
また、高品質の成膜が困難な理由は、成膜基板30を接地電極上において成膜することによる。すなわち、プラズマが発生すると接地電極上にある成膜基板30の表面にはシース電圧と呼ばれる電位差が発生し、この電位差の発生はプラズマが存在する限り基本的に回避できない。シース電圧は成膜基板30に対してプラズマ中のイオンを加速するようになっており、結果として薄膜の成膜表面にイオンが衝撃を与え、膜質を劣化させてしまう。
【0013】
成膜基板30への膜厚分布を改善し高品質膜を成膜する方法としては、例えば特開平11−144892号公報に提案される方法がある。この製膜方法は、波状凹凸面を持つ電極を複数設け、成膜基板30を電極から離れた位置に設置することで横電界を形成し、大面積に均一かつ高品質の成膜が可能になる、としている。しかし、この製膜方法では、数mmの幅で放電電極を形成した場合、電極断面が三角形や台形、半円形、T字形となり、数mmの高低差が電極に生じる。このため、電極表面の全面を成膜基板に対して一定距離の位置とすることができない。このような条件下で、均一な成膜を行なう為には、電極形成面からかなり離れた位置に成膜基板30を設置して、電極間距離に対するばらつきの値の比率を小さくして、成膜しなければならない。また、この方法は、放電電極形成時に、数10cm四方の大きさから1m四方以上という大面積の電極形成面に波状凹凸を形成するという、高度の機械精度の必要な加工工程が要求される。また、放電経路の長さ(放電経路長)が構造上固定される形状であることから、プラズマ生成のパッシェン特性(プラズマ放電開始電圧の圧力×電極間距離依存性)により、動作圧力範囲が限られてしまう。また、複数の電極対に対して同時に電圧を印加するため、高出力の電源60が必要となるという問題を有している。
【0014】
【発明が解決しようとする課題】
上記問題に鑑み、本発明は、大面積成膜基板への均一かつ高品質の成膜を可能とする薄膜形成用プラズマ成膜装置を提供することを目的とし、さらに、一枚の成膜基板から取り出せる液晶パネルなどの製品の枚数を増やし、生産性の向上に寄与することを目的とする。
【0015】
本発明は、成膜膜質の高品質化を実現し、TFT液晶に使われているa−Si層のみならず二酸化珪素層や窒化珪素層さらには結晶性シリコン層などの成膜に対しても高品質膜を提供できる薄膜形成用プラズマ成膜装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の薄膜形成用プラズマ成膜装置は、材料ガスを内部に導入する機能と、電気的エネルギー供給により該材料ガスをプラズマ状態にする機能と、該材料ガスを活性種に分解する機能と、該活性種を成膜基板に堆積させ成膜する機能とを有する薄膜形成用プラズマ成膜装置であって、成膜基板とは離れた位置にあり、かつ成膜基板の面と平行な露出面を持つ、複数の電極の間に電圧を印加することにより該電気的エネルギー供給を行なう薄膜形成用プラズマ成膜装置である。
【0017】
好ましくは、前記複数の電極がストライプ状である薄膜形成用プラズマ成膜装置である。
【0018】
また、好ましくは、前記複数の電極の表面が誘電体層で被覆されている薄膜形成用プラズマ成膜装置である。
【0019】
また、好ましくは、前記複数の電極の間の複数の導入孔から材料ガスが内部に導入される薄膜形成用プラズマ成膜装置である。
【0020】
さらに、前記電気的エネルギー供給を行なう電圧が低周波あるいは高周波として印加される薄膜形成用プラズマ成膜装置である。
【0021】
または、前記電気的エネルギー供給を行なう電圧が直流パルス状に印加される薄膜形成用プラズマ成膜装置である。
【0022】
好ましくは、前記電気的エネルギー供給を行なう電圧印加が場所に応じて時間的に分割して行なわれる薄膜形成用プラズマ成膜装置である。
【0023】
【発明の実施の形態】
以下に、本発明にかかる薄膜形成用プラズマ成膜装置の構造を、図1から図7を用いて説明する。
【0024】
図1は、本発明の第1の実施の形態にかかる薄膜形成用プラズマ成膜装置の概念的な構造を模式的に示す断面図であり、図2は、上記プラズマ成膜装置の主要部の構造を模式的に示す斜視図である。
【0025】
図1および図2に示すように、本発明にかかる薄膜形成用プラズマ成膜装置1は、電極基板11の第1の面上にストライプ状に形成された互いに隣接する複数の電極13と電極基板11の裏面に形成したガス供給空間15とを有し、前記電極13に所定の距離dを置いて対向配置した成膜基板30と、真空容器50と、導入端子51と、成膜基板ホルダ52と、電源60と、ガス供給部70とから構成される。電極基板11上に隣接して配置された電極13の間にはガス導入孔12が整列配置されている。各電極13には、電気的エネルギーを供給する電源60の高周波の出力が供給される。ガス供給空間15にはガス供給管16を介してガス供給部70が接続され、成膜時に膜形成用材料ガスが供給される。
【0026】
電極13の面はすべて成膜基板30の方向に向いており、言い換えると露出している電極13の面と成膜基板30の面は平行となっており、電極13の表面が成膜基板30に対して一定の距離dだけ離れて位置している。このような電極13は、例えばガラス基板11上にパターン印刷法により極めて簡単に形成することができる。この電極13には、電源60から高周波の電力が印加される。
【0027】
ガス供給部70からガス供給管16を介してガス供給空間15に供給された材料ガスGは、電極基板11の面上に形成された電極13の間に整列したガス導入孔12からプラズマ生成空間10へ供給される。
【0028】
この薄膜形成用プラズマ成膜装置1の動作の態様を図3を用いて説明する。この態様では、並列して設けられた3本の電極13を一組の電極群とし、一組の電極群の1組の電極の内、中側の1本の電極に電源60の出力(同軸出力の場合の内導体部、2端子出力の場合の負電圧出力部)を、外側の2本の電極に電源60の接地電位部(同軸出力の場合の外導体部、2端子出力の場合の正電圧出力部)を接続するとともに、隣り合う2組の電極群の間に位置する1本の電極には群電極の外側の電極と同じ電位となるように接続した。例えば、図3(a)の場合、電極13が中側の1本の電極に相当し、ここに負の電位を印加する。そして、電極13・13が外側の2本の電極に相当し、ここには接地電位を印加する。また、電極13が中側の1本の電極に相当し、ここに負の電位を印加する。そして、電極13・13が外側の2本の電極に相当し、ここには接地電位を印加する。電極13には、外側の電極すなわち電極13と電極13と同じ接地電位を印加することになる。
【0029】
このような構成とすることによって、図3(a)に示すように、1組の電極群(13・13・13)の電極13のうち電極13―電極13の間、電極13―電極13の間に電位差を生じ、電極電極13の表面からのラジカルRの発生量が最も多い。そして、電極13から電極13にかけて、あるいは、電極13から電極13にかけて発生量が順次少なくなるようにラジカルRが生成される。また、隣接する2組の電極群の間に位置する電極13には、両側の電極群の外側の電極13と電極13と同じ電位の電圧を印加し、電極13と電極13の間、電極13と電極13の間には、電位差を生じないようにしている。
【0030】
1組の電極群の電極のうち隣接する電極間に電位差を生じさせ、隣り合う組の電極群間に電位差を生じさせない電極を設け、切替スイッチ19を順次切り替えて各電極への電圧の印加態様を変化させて電極群を順次移動させることによって、図3(b)、図3(c)に示すように、ラジカルRの発生を成膜基板30の左端部分から右側に向けて順次送ることができる。このようにして、成膜基板上に均質な薄膜を成膜することが可能となる。
【0031】
このような構成の薄膜形成用プラズマ成膜装置におけるガス圧力とプラズマ放電開始電圧の関係を測定した結果得たプラズマ放電開始電圧のガス圧力依存特性を図4に示す。
【0032】
図4の実線で示すように、本発明にかかる構成の薄膜形成用プラズマ成膜装置では、プラズマ放電開始電圧の低い領域、すなわち放電DCが容易に発生する領域は、点(a)、(b)、(c)にわたる広いガス圧力範囲に存在する。この場合、プラズマ放電開始電圧が低いフラットな領域は、30Paから120Paであったが、その圧力値は用いる材料ガスに応じて変化する。
【0033】
プラズマ放電開始電圧が低いフラットな領域の中で、圧力点として(a)、(b)、(c)について対応する放電DCの発光を目視で観察した放電DCの経路を図5の断面図に示す。すなわち、ガス圧力が低い点(a)の場合、放電DCは高く盛り上り、実質的な放電DCの経路は長くなる(図5に示す経路(a))。一方、圧力が高い点(c)の場合、放電DCの発光は低く電極基板11に貼り付いた状態で、実質的な放電DCの経路は短い(図5に示す経路(c))。
【0034】
測定結果として、成膜基板30の上に成長したa−Si膜の膜厚分布を図6に示す。
【0035】
一方、図8に示した第1の電極13−1と成膜基板30の背面に取付けた第2の電極13‐2間に高周波電圧を印加する薄膜形成用プラズマ成膜装置におけるガス圧とプラズマ放電開始電圧の関係を、比較データとして図4内に参照(A)、(C)として破線で示す。破線(A)、(C)に示すように、各曲線で特定の圧力でプラズマ放電開始電圧が最低となりこの点を外れた領域ではプラズマ放電開始電圧が高くなっている。
【0036】
すなわち、図8に示す構造での放電は、放電DCの経路が予め決定されているような構造での放電DCであり、従来から存在する平行平板型電極、あるいは波状凹凸面を持つ電極を複数設けるという特開平11−144892号公報記載の例とほぼ等価であり、放電経路の長さ(放電経路長)が決定されている構造である。参照特性(A)の場合は電極基板11と成膜基板30の間の距離が電極ピッチ間距離より長い場合であり、参照特性(C)の場合は電極基板11と成膜基板30の間の距離が電極ピッチ間距離程度の場合である。両方の場合とも、圧力依存性として極小値をもつような依存性であり、放電開始電圧が低いフラットな領域というのは存在しない。すなわち、少しの圧力変化が放電開始電圧を大きく変化させてしまう。また、パッシェン特性の動作点、すなわち(圧力×放電経路長依存性)として極小値のどちら側の条件かにより、膜厚分布が凹になったり凸になったりする。
【0037】
一方、図1に示す本発明にかかる薄膜形成用プラズマ成膜装置のような構造をとることにより、隣接する電極13の間にはアーチ型の電界経路ができ、そしてその経路は圧力に応じて上方に膨らんだり下方にはりついたり自由な形態をとるので、実質的な電極間距離は電界経路長(放電経路長)の変化に応じて固定されずに変化する。すなわち、特開平11−144892号公報に記載のように横電界を利用するのではなく、本発明では自由度の大きいアーチ型電界を利用している。そして、アーチ型の電界に沿って放電DCが発生することによって、図4に示すようにプラズマ放電開始電圧が低いフラットな領域が広いガス圧力範囲にわたって実現でき、その存在により放電DCを安定にでき、そして結果としてより均一な成膜分布の生成が実現できる。また、1つの成膜過程内でガス圧力を変化させられるという利点も生じる。さらに、図3に示したように、ラジカル流れRは負電位側の電極表面で多く発生する。特開平11−144892号公報に記載の場合は、電極表面と成膜基板間の距離が電極の波状構造に従って変化するため、電極表面で発生したラジカル流れRは発生場所により成膜基板へ飛散する距離が異なる。ラジカルは飛散する間に少しずつ消滅するので、飛散する距離が異なると成膜基板30への到達量が場所によって変化し、結果として膜厚の内面不均一性が発生する。一方、本発明の場合は、電極表面と成膜基板表面が平行であり、電極表面で発生したラジカル流れRはどれもほぼ同じ距離飛散して成膜基板30に到達できるため、膜厚の均一性が確保しやすい。すなわち、本発明のように、電極表面と成膜基板表面が平行となる構造を取ることで、プラズマ放電開始電圧の低いフラットな領域が広いガス圧力範囲にわたって実現できること、ラジカル流れRはどれもほぼ同じ距離飛散すること、以上2点により成膜膜厚の均一性が確保しやすくなる。
【0038】
図6のグラフを用いて、本発明における成膜基板30の異なる個所での成膜速度と電極13と成膜基板30との間の距離dとの関係を説明する。図6(A)は図2のC‐D間での成膜特性を、図6(B)は図2のA‐B間での成膜特性を示している。図6に示すように、基板間距離dを電極ピッチ距離程度にした場合には、成膜速度の分布として電極13の配置形状が現れてしまうが、基板間距離dを電極ピッチ距離よりも長くすることで電極13の形状の影響はなくなり、平均値に対して±5%以内の膜厚均一性を確保できた。
【0039】
電極13の形状としては、基板形状に合わせて面状のプラズマ生成空間20を形成できれば良いので、電極基板面上に任意の形状で設置可能である。しかし、例えばドット状の多くの電極への正負の電位を印加するためには、導入端子51と電極との間で立体配線する必要がある。一方、ストライプ形状の電極にすると、立体配線する必要は無く、電極基板11の端部に引き出した部分で導入端子51との接続が可能となり、より簡易な装置構成が実現できる。
【0040】
以上のような成膜方法における電気的エネルギー供給用の電源60の種類としては、周波数が60Hz〜13.56MHzの低周波から高周波領域の交流電源が広く使用できる。交流電源を用いて隣接する電極13の間に正負の電圧が印加されることにより、カソード電極13が時間的に隣接電極間で交互に入れ替わる。すなわち、すべての電極13がカソード電極として作用し、カソード近傍でラジカルがより多く生成されるため、結果として電極基板11の内でより均一なラジカル形成が行なわれ成膜分布の均一化がなされる。
【0041】
本発明では成膜基板30の設置位置がアノード電極と分離されているので、周波数が低い場合に顕著になるアノード電極へのイオン衝撃が、成膜基板30の成膜表面に悪影響を及ぼすことも無い。すなわち、高周波よりも扱いが容易な低周波電源を使用可能である。
【0042】
電気的エネルギー供給用の電源60の種類として直流パルス電源を用いることも可能である。その場合、図3に示すように、複数の電極13に順番に負電圧を印加していく。そうすることで、すべての電極13がカソード電極として作用し、カソード近傍でラジカルがより多く生成されるため、結果として電極基板11の内でより均一なラジカル形成が行なわれ成膜分布の均一化がなされる。従って、直流パルス電源を用いることで、交流電源と同様の効果を出しながら、扱いが単純で簡易な電気的エネルギー供給が可能となる。
【0043】
電気的エネルギー供給の形態として、個々の電極13への供給を時間的にずらすことも可能である。すなわち、図3に示すように、時間平均として個々の電極13へ供給される電気的エネルギーが同じであれば、そのタイミングが電極13の間でずれていてもかまわない。これを利用すると、図3に示すように、各電極13への配線上のスイッチを切り替えることで、一つの電源60ですべての電極13への電気的エネルギー供給がまかなえる。すなわち、電源60そのものが直流電源であっても、その出力を切り替えることで個々の電極13への供給を時間的にずらすことで、電源60は1つで直流パルスとしての機能を出すことができる。
【0044】
本発明者は、図1に示した構成の装置を用いてプラズマの生成およびa−Si膜の成膜を行った。このとき、用いた材料ガスはSiHで、前述の図4および図5の場合を除いて圧力を100Paとした。材料ガスとしては、SiHばかりでなく、成膜する膜の種類に応じて例えばH、Ar、O、NHあるいはこれらの混合ガスなどをSiHに混合して使用することもできる。
【0045】
以上は、a−Si膜を中心とした半導体膜の成膜方法としての説明が中心であったが、本発明は、使用する材料ガスを変えるだけで、窒化シリコン膜や酸化シリコン膜といった絶縁膜の成膜に対しても、同様の効果を発揮できる。
【0046】
(実施例)
以下、本発明にかかる薄膜形成用プラズマ成膜装置の実施例について具体的に説明する。
【0047】
(実施例1)
本発明にかかる薄膜形成用プラズマ成膜装置(プラズマCVD装置)1を用いてa−Si膜を成膜した成膜結果を以下に説明する。
【0048】
このとき、この薄膜形成用プラズマ成膜装置は、図1には省略したが、成膜基板30を加熱する(成膜基板温度で200℃)ために、成膜基板30を保持している成膜基板ホルダー52の後ろにヒーターを取り付けている。また、ガスを排出するためのメカニカル・ブースター・ポンプ、ロータリー・ポンプも装置に取り付けて使用した。材料ガスはSiH(流量1000sccm)で圧力を100Paとし、材料ガスの供給は、図1に示すように電極基板11のストライプ状電極13の間に整列したガス導入孔12から行った。
【0049】
電気的エネルギー供給を行うエネルギーとして100kHzの高周波(電圧500V)を使用した。高周波を印加する電極13は、1m×1mの誘電体(ガラス)板上にストライプ状に多数形成されたものを用いた。電極13の長さは95cm、幅は5mm、厚みは100μmの形状で、電極13の間は5mmで設置し、電極13の面はすべて成膜基板30の方向に向いており、言い換えると露出している電極13の面と成膜基板30の面は平行である。電極13には、隣合う電極13の間で電圧が誘起されるように、一つの電極13に電源60の出力が印加されるときには隣り合う電極13には出力が印加されないように、交互に電源60の正負極性を接続した。ガス導入孔12は、直径0.5mmで電極13の間に10mm間隔で、電極基板11に設置した。a−Si膜を成長させる成膜基板30としては、電極基板11と対向する位置に厚み3mmのガラス基板を、電極基板11から20mm間隔で設置した。
【0050】
基板間距離dを変えた場合の成膜結果を、表1として示す。比較の為に、図8に示す従来型のプラズマCVD装置での成膜結果を含めて示す。その場合は、電極構成を変える他は同条件で成膜した。なお、表中の膜厚不均一性は、膜厚平均値に対する最大値・最小値の振れ分の割合を示したものである。
【0051】
【表1】

Figure 0003586197
まず、成膜速度と膜厚不均一性について考察する。本発明にかかる構造のプラズマCVD装置の場合、基板間距離dを15mmにした場合は成膜速度は速いが、膜厚不均一性は±9%とそれほど良くはない。そこで、基板間距離dを20mmとすることで、成膜速度は少し落ちるものの、膜厚均一性は±3%と非常に良くなった。
【0052】
一方、図8に示した構造のプラズマCVD装置を用いた場合、成膜速度は図1に示した型のプラズマCVD装置の場合と大差はないが、膜厚不均一性はそれほどよくならない。この原因としては、図8の構造のプラズマCVD装置の場合、電極13−1と電極13−2の間の距離が構造から規定されるので、パッシェン特性が鋭い極小値をとることとなり、パッシェン特性上の動作点の微調整が困難で、結果として膜厚不均一性を小さくできない。
【0053】
本発明にかかる構成のプラズマCVD装置では、実質的な電極13の間の距離(放電経路長)が圧力に応じて自発的に変化するので、図8に示す構造で問題となるようなパッシェン特性の動作点から起因する膜厚不均一性は生じず、ストライプ電極構成から生じる電極基板11の上のラジカル生成位置の不均一性さえ抑えられれば、極めて均一性の高い成膜が実現できる。
【0054】
また、本発明にかかる薄膜形成用プラズマ成膜装置を用いた成膜での膜内水素結合の測定結果は以下のようになった。
【0055】
すなわち、Si−H結合量は全体の結合の10.5%、Si−H結合量は全体の0.5%となった。一般に、全結合水素量は少ないほうがSi−Si結合の割合が多いので好ましく、またSi−H結合量に対するSi−H結合量の比が小さい方がSi−Si結合のネットワークが確保されて好ましい。すなわち、測定結果として、膜質の指標となる全結合水素量が少なく、またもう一つの膜質の指標となるSi−H結合量に対するSi−H結合量の比が0.048と極めて小さくなって、総合的に良好な膜質が確保されていることがわかった。
【0056】
ちなみに、図4の参照特性(A)の場合は、Si−H結合量は全体の結合の17.5%、Si−H結合量は全体の5.5%となった。すなわち、膜質は本発明に比べて悪化している。この理由としては、成膜基板30をアノード電極13−2上に設置したからである。つまり、本発明のように電極13から離れた位置に、言い換えるとプラズマ生成空間10から離れた位置に成膜基板30を設置することで、高品質の成膜が可能となることがわかる。
【0057】
材料ガスの放電DCの部分への導入については、ただ単に容器壁の単孔から導入してガスを充満させる方法も取れるが、本発明のように隣接する電極間に整列配置した導入孔12から材料ガスを導入するとより効果的である。すなわち、放電DCの経路は複数の電極13の間で形成され、それぞれの放電DCは電極基板11の面内で独立に存在する。そこで、それぞれの放電DCに等量の材料ガスを導入するように、複数の電極13の間の位置から複数の導入孔により供給すると、電極基板11の面内での位置により材料ガスの枯渇が生じること無く均一に材料ガスが供給できる。
【0058】
(実施例2)
本発明に基づいて実際に作製したプラズマCVD装置と、その装置を用いて作製したa−Si膜についてその結果を以下に説明する。この実施例は、図7に電極13側を拡大して示した形のプラズマCVD装置を使用し、以下に述べる内容を除いて実施例1と同じ構成・条件である。
【0059】
高周波を印加する電極13は、1m×1mの誘電体(ガラス)板上にストライプ状に多数形成されたものを用いた。ストライプ状電極13の長さは95cm、幅は8mm、厚みは100μmの形状で、電極13の間は2mmで設置し、電極13の面はすべて成膜基板の方向に向いており、言い換えると電極13の面と成膜基板の面は平行である。ストライプ状電極13の上面には、厚み1mmのガラス質誘電体(比誘電率10)をペーストの塗布・焼成により形成した。電気的エネルギー供給を行うエネルギーとして100kHzの高周波(電圧1000V)を使用した。実施例1より印加電圧が増大しているのは、電極13の上に被覆誘電体18の層があることから電流値が過渡的にしか流れないので、同じ電気的エネルギー供給量を確保するためには電圧を増大させる必要があるためである。
【0060】
成膜結果を以下に表2として示す。比較の為に、図8に示す従来型のプラズマCVD装置での成膜結果を含めて示す。従来型の装置では、電極構成を変える他は同条件で成膜した。なお、表中の膜厚不均一性は、膜厚平均値に対する最大値・最小値の振れ分の割合を示したものである。
【0061】
【表2】
Figure 0003586197
まず、成膜速度と膜厚不均一性について考察する。図7に示す本発明にかかるプラズマCVD装置の場合、基板間距離dを15mmにした場合ですでに成膜速度は速く、かつ膜厚不均一性は±3%と非常に良い結果となった。一方、図8に示す従来型のプラズマCVD装置を用いた場合、成膜速度は本発明にかかるプラズマCVD装置の場合と大差はないが、膜厚不均一性はそれほどよくならない。この原因としては、本発明にかかるプラズマCVD装置の場合は、図7で説明したように、電気的エネルギーが電極基板11の面内で均一に消費されるため、極めて均一性の高い成膜が実現できた。
【0062】
さらに、電極13の上に被覆誘電体18を取付けることの効果を調べた。この場合、電極の構造は、図7に示した通りで、図1に示した構造との違いは電極13の上に500μmの被覆誘電体18を設置したことである。この場合に成膜基板30の上に成長したa−Si膜の成膜速度の均一性はより近い基板間距離で確保することが可能となる。
【0063】
この理由としては、以下のように考えられる。放電DCの進展の様子を図7に示した。すなわち、電極13の上の或る個所で放電DCが開始すると、放電電流により被覆誘電体18部に荷電粒子が蓄積する。すると、蓄積した荷電粒子により、電極13の間の空間に発生する電位差が減少して放電DCが止まる。すると、放電DCを持続させる為同じ電極13の上の隣接する個所が放電DCを始める。
【0064】
このようにして、電極13の上の被覆誘電体18全域に荷電粒子が蓄積するように放電DCが発生するので、より放電DCが均一に発生する。すると、より短い基板間距離で均一な成膜が実現するため、成膜速度を上昇させることが可能となる。
【0065】
(実施例3)
本発明に基づいて実際に作製したプラズマCVD装置と、その装置を用いて作製したa−Si膜について、その成膜結果を以下に示す。この実施例3に用いるプラズマCVD装置は、図1に示したプラズマCVD装置を使用し、以下に述べる内容を除いて実施例1と同じ構成・条件である。電気的エネルギー供給を行うエネルギーとして、幅10μs・繰り返し周波数100kHzの直流パルス電圧(500V)印加を使用した。電極13には、隣合う電極13の間で電圧が誘起されるように、一つの電極13に電源60の出力が印加されるときには隣り合う電極13には出力が印加されないように、図3に示すように、順番に電源60の正負極性を接続した。
【0066】
成膜結果を以下に表3として示す。比較の為に、同じプラズマCVD装置で電気的エネルギー供給が100kHzの高周波で行われた結果(すなわち実施例1)を含めて示す。なお、表中の膜厚不均一性は、膜厚平均値に対する最大値・最小値の振れ分の割合を示したものである。
【0067】
【表3】
Figure 0003586197
表3から明らかなように、成膜速度・膜厚不均一性・膜質のどれをとっても、電気的エネルギー供給が100kHzの高周波で行われた結果と大差が無い。すなわち、電気的エネルギー供給の方法は、高周波だけでなく、直流パルスによっても同様の良好な結果が得られることがわかった。
【0068】
【発明の効果】
以上の構成を有する本発明は、大面積成膜基板30への均一かつ高品質の成膜を可能とする薄膜形成用プラズマ成膜装置を実現できた。すなわち、ますます大型化する液晶ディスプレイを作製するためには大面積成膜基板30への均一な成膜技術が欠かせないが、この発明を用いることによりそのような成膜技術が実現できる。また、液晶ディスプレイの生産性を向上させるためには成膜基板30から多面取りする必要があるが、成膜基板30を大きくできることで一枚の成膜基板30から取り出せる枚数が増え、生産性の向上にも寄与する。
【0069】
また、電極基板11の上にカソード・アノード両電極があることで成膜膜質の高品質化が実現できており、TFT液晶に使われているa−Si層のみならず二酸化珪素層や窒化珪素層さらには結晶性シリコン層などの成膜に対しても高品質膜を提供できる。
【0070】
さらに、本発明は、液晶ディスプレイ以外の分野では、同じくプラズマCVD法により成膜を行っているアモルファスシリコン太陽電池の光変換層であるa−Siの成膜装置としても最適である。すなわち、住宅用太陽電池を念頭に置いた場合、大面積均一成膜が欠かせないし、また高品質な膜ほどa−Siの光劣化が少ないことを考えると信頼性の高いアモルファスシリコン太陽電池を提供できる。
【図面の簡単な説明】
【図1】本発明にかかる薄膜形成用プラズマ成膜装置の構造の概要を示す断面図。
【図2】本発明にかかる薄膜形成用プラズマ成膜装置の主要部の構造を示す斜視図。
【図3】図1に示す薄膜形成用プラズマ成膜装置を用いて、電気的エネルギー供給を行なう場合の態様を説明する模式図。
【図4】本発明にかかる薄膜形成用プラズマ成膜装置を用いた場合のプラズマ放電開始電圧のガス圧力依存性を説明するグラフ。
【図5】本発明にかかる薄膜形成用プラズマ成膜装置を用いた場合の、ガス圧力を変えた時の、放電経路の変化を説明する図。
【図6】本発明にかかる薄膜形成用プラズマ成膜装置を用い、成膜基板と電極基板の距離を変えた時の、成膜基板の上に成膜されたa−Si膜の膜厚不均一性を説明するグラフ。
【図7】本発明の他の実施形態にかかる薄膜形成用プラズマ成膜装置の概略構造を示す断面図。
【図8】従来の薄膜形成用プラズマ成膜装置の典型的構造を示す概略図。
【図9】図8の従来の薄膜形成用プラズマ成膜装置の主要部の構造の概要を示す斜視図。
【符号の説明】
1 プラズマ成膜装置
10 プラズマ生成空間
11 電極基板
12 ガス導入孔
13 電極
15 ガス供給空間
16 ガス供給管
18 被覆誘電体
19 切替スイッチ
30 成膜基板
50 真空容器
51 導入端子
52 成膜基板ホルダー
60 電源
70 ガス供給部
d 基板間距離
DC 放電
G ガス流れ
R ラジカル流れ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma film forming apparatus for forming a thin film, and more particularly to a plasma film forming apparatus for forming a functional thin film such as a semiconductor, and more particularly, to a semiconductor film such as amorphous silicon (hereinafter referred to as a-Si) in the electronics industry. The present invention relates to a plasma deposition apparatus for forming a thin film which is suitable as an apparatus using a plasma-enhanced chemical vapor deposition method used for manufacturing an insulating film.
[0002]
[Prior art]
The method of producing electronic devices such as integrated circuits, liquid crystal displays, and amorphous solar cells by forming semiconductor films and the like using plasma, so-called plasma-enhanced chemical vapor deposition (CVD), is a simple method. -Because of its excellent operability, it is used to manufacture various electronic devices.
[0003]
The following method is generally used as the CVD method, and the structure of a plasma film forming apparatus (plasma CVD apparatus) for forming a thin film using the CVD method will be described with reference to FIGS. FIG. 8 is a sectional view conceptually illustrating the structure of a plasma CVD apparatus, and FIG. 9 is a perspective view illustrating the structure of a main part of the apparatus.
[0004]
The conventional plasma CVD apparatus includes a first electrode 13-1 formed on a first surface of an electrode substrate 11, a gas supply space 15 formed on a back surface of the electrode substrate 11, and a first electrode 13-1. 1, a second electrode 13-2 provided on the back surface of the film-forming substrate 30, a vacuum vessel 50, an introduction terminal 51, and a film-forming substrate. It comprises a holder 52, a power supply 60 and a gas supply unit 70. The electrode substrate 11 and the first electrode 13-1 arranged thereon are provided with a plurality of gas introduction holes 12 for supplying the material gas G to the plasma generation space 10. A high-frequency output of a power supply 60 that supplies electric energy is supplied to the first electrode 13-1 and the second electrode 13-2. A gas supply unit 70 is connected to the gas supply space 15 via a gas supply pipe 16, and a film forming material gas is supplied at the time of film formation.
[0005]
In this plasma CVD apparatus, a discharge DC is applied between a first electrode 13-1 and a second electrode 13-2, which are electrically insulated from each other, and are formed of two conductor plates placed in parallel at opposing positions. To generate a plasma, flow a material gas G therein to dissociate the gas to generate radicals R, and form a semiconductor film on a film formation substrate 30 such as silicon or glass attached to the second electrode 13-2. And the like.
[0006]
As means for generating plasma for decomposing a material gas for forming a film, high-frequency power having a frequency of 13.56 MHz is usually used. That is, one conductor plate electrode 13-2 is set to the ground potential, and a high-frequency voltage is applied between the other conductor electrode 13-1 to generate a high-frequency electric field between the two conductor plates. As a result, plasma is generated as a glow discharge phenomenon. The electrode 13-1 on the side to which the high-frequency voltage is applied is called a cathode electrode, and a large electric field is formed in the vicinity thereof, so that electrons in the plasma accelerated there promote the dissociation of the material gas to generate radicals R.
[0007]
As for the plasma CVD method as described above, various new proposals have been made along with recent advances in plasma engineering and semiconductor engineering. As an example, increasing the frequency of a high frequency used from 13.56 MHz to the VHF band improves the film formation rate of a semiconductor film to be formed (J. Vac. Sci. Technol. A10 (1992)). 1080 AA Howling).
[0008]
It should be noted that an electronic device such as a liquid crystal display or an amorphous solar cell is a large-area electronic device, and the size of the film-forming substrate 30 is preferably several tens of cm square to 1 m square. There is a strong demand for larger sizes.
[0009]
However, the method established by the conventional film formation on the small-area film-forming substrate 30 has a limit. On the other hand, it was difficult to form a film having a uniform film thickness and high quality.
[0010]
The reason why the uniformity of the film thickness is not ensured is that, in part, because of the use of a high frequency, the inductance of the members of the electrodes 13-1 and 13-2 and the electrical contact of the parts of the electrodes 13-1 and 13-2 are lost. Due to a partial difference or the like, electric power such as a high frequency for generating plasma is not uniformly applied to the entire surface of the film formation substrate 30, and as a result, an uneven density distribution of plasma particles and radical particles is generated. . As a result, there is a problem that the thickness of the film formed on the film formation substrate 30 varies depending on the location.
[0011]
In the case of a TFT (Thin Film Transistor) liquid crystal display using an a-Si film, when the thickness of the a-Si film serving as a switching layer changes on one deposition substrate 30, the switching characteristics are partially different. As a result, display non-uniformity occurs. A method for reducing the non-uniform distribution of the plasma density and making the film thickness grown on the film formation substrate 30 uniform is desired.
[0012]
The reason why high quality film formation is difficult is that the film formation substrate 30 is formed on the ground electrode. That is, when plasma is generated, a potential difference called a sheath voltage is generated on the surface of the film forming substrate 30 on the ground electrode, and this generation of the potential difference cannot be basically avoided as long as plasma is present. The sheath voltage accelerates the ions in the plasma with respect to the film forming substrate 30. As a result, the ions impact the film forming surface of the thin film, thereby deteriorating the film quality.
[0013]
As a method of improving the film thickness distribution on the film forming substrate 30 and forming a high quality film, there is a method proposed in, for example, Japanese Patent Application Laid-Open No. 11-144892. In this film forming method, a plurality of electrodes having a wavy uneven surface are provided, and a horizontal electric field is formed by disposing the film forming substrate 30 at a position away from the electrodes, thereby enabling uniform and high quality film formation over a large area. It will be. However, in this film forming method, when a discharge electrode is formed with a width of several mm, the electrode cross section becomes triangular, trapezoidal, semicircular, or T-shaped, and a height difference of several mm occurs in the electrode. For this reason, the entire surface of the electrode cannot be positioned at a fixed distance from the film formation substrate. In order to perform uniform film formation under such conditions, the film formation substrate 30 is disposed at a position far away from the electrode formation surface, and the ratio of the variation value to the distance between the electrodes is reduced. Must film. In addition, this method requires a processing step that requires a high degree of mechanical precision, such as forming corrugated irregularities on an electrode formation surface having a large area ranging from several tens of cm square to 1 m square or more when forming discharge electrodes. Also, Discharge path length (discharge path length) Has a structurally fixed shape, so that the operating pressure range is limited by the Paschen characteristic of plasma generation (pressure of plasma discharge start voltage × dependency between electrodes). In addition, since a voltage is simultaneously applied to a plurality of electrode pairs, a high output power source 60 is required.
[0014]
[Problems to be solved by the invention]
In view of the above problems, an object of the present invention is to provide a plasma film forming apparatus for forming a thin film capable of forming a uniform and high quality film on a large area film forming substrate. The purpose is to increase the number of products such as liquid crystal panels that can be taken out of the product, thereby contributing to an improvement in productivity.
[0015]
The present invention realizes a high quality of the formed film, and is applicable not only to the film formation of the a-Si layer used for the TFT liquid crystal but also to the silicon dioxide layer, the silicon nitride layer, and the crystalline silicon layer. An object of the present invention is to provide a plasma film forming apparatus for forming a thin film capable of providing a high quality film.
[0016]
[Means for Solving the Problems]
The plasma film forming apparatus for forming a thin film of the present invention has a function of introducing a material gas into the inside, a function of turning the material gas into a plasma state by supplying electric energy, a function of decomposing the material gas into active species, A plasma film forming apparatus for forming a thin film having a function of depositing the active species on a film forming substrate and forming a film, wherein the exposed surface is located at a distance from the film forming substrate and is parallel to a surface of the film forming substrate. A plasma film forming apparatus for forming a thin film, which supplies electric energy by applying a voltage between a plurality of electrodes.
[0017]
Preferably, there is provided a plasma film forming apparatus for forming a thin film, wherein the plurality of electrodes have a stripe shape.
[0018]
Further, preferably, there is provided a plasma film forming apparatus for forming a thin film, wherein the surfaces of the plurality of electrodes are covered with a dielectric layer.
[0019]
Preferably, the apparatus is a plasma film forming apparatus for forming a thin film, wherein a material gas is introduced into the inside through a plurality of introduction holes between the plurality of electrodes.
[0020]
Furthermore, there is provided a plasma film forming apparatus for forming a thin film, wherein the voltage for supplying the electric energy is applied as a low frequency or a high frequency.
[0021]
Alternatively, there is provided a thin film forming plasma film forming apparatus to which a voltage for supplying the electric energy is applied in a DC pulse shape.
[0022]
Preferably, there is provided a plasma film forming apparatus for forming a thin film, wherein the voltage application for supplying the electric energy is performed in a time-division manner according to a place.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a structure of a plasma film forming apparatus for forming a thin film according to the present invention will be described with reference to FIGS.
[0024]
FIG. 1 is a cross-sectional view schematically showing a conceptual structure of a plasma film forming apparatus for forming a thin film according to a first embodiment of the present invention, and FIG. It is a perspective view which shows a structure typically.
[0025]
As shown in FIGS. 1 and 2, a plasma film forming apparatus 1 for forming a thin film according to the present invention includes a plurality of adjacent electrodes 13 formed in stripes on a first surface of an electrode substrate 11. 11, a film-forming substrate 30 having a gas supply space 15 formed on the back surface thereof and disposed opposite to the electrode 13 at a predetermined distance d, a vacuum vessel 50, an introduction terminal 51, and a film-forming substrate holder 52. , A power supply 60, and a gas supply unit 70. The gas introduction holes 12 are arranged between the electrodes 13 arranged adjacent to each other on the electrode substrate 11. Each electrode 13 is supplied with a high-frequency output of a power supply 60 that supplies electric energy. A gas supply unit 70 is connected to the gas supply space 15 via a gas supply pipe 16, and a film forming material gas is supplied at the time of film formation.
[0026]
The surfaces of the electrodes 13 all face the direction of the film formation substrate 30, in other words, the exposed surfaces of the electrodes 13 and the surface of the film formation substrate 30 are parallel, and the surfaces of the electrodes 13 are Are located at a fixed distance d with respect to. Such an electrode 13 can be formed very easily on the glass substrate 11 by a pattern printing method, for example. High-frequency power is applied to the electrode 13 from a power supply 60.
[0027]
The material gas G supplied from the gas supply unit 70 to the gas supply space 15 via the gas supply pipe 16 is supplied from the gas introduction holes 12 aligned between the electrodes 13 formed on the surface of the electrode substrate 11 to the plasma generation space. 10.
[0028]
The operation of the plasma film forming apparatus 1 for forming a thin film will be described with reference to FIG. In this embodiment, the three electrodes 13 provided in parallel constitute one set of electrode groups, and the output (coaxial) of the power source 60 is applied to one of the middle electrodes of the one set of electrode groups. The inner conductor part in the case of output and the negative voltage output part in the case of two-terminal output are connected to the ground potential part of the power supply 60 (the outer conductor part in the case of coaxial output and the two-terminal output). (Positive voltage output section), and one electrode located between two adjacent electrode groups was connected so as to have the same potential as the electrode outside the group electrode. For example, in the case of FIG. 2 Corresponds to one electrode on the middle side, to which a negative potential is applied. And the electrode 13 1 ・ 13 3 Correspond to the two outer electrodes, to which a ground potential is applied. The electrode 13 6 Corresponds to one electrode on the middle side, to which a negative potential is applied. And the electrode 13 5 ・ 13 7 Correspond to the two outer electrodes, to which a ground potential is applied. Electrode 13 4 Has an outer electrode, ie electrode 13 3 And electrode 13 5 Will be applied.
[0029]
With such a configuration, as shown in FIG. 3A, one electrode group (13 1 ・ 13 2 ・ 13 3 ) Of the electrodes 13 1 -Electrode 13 2 During the electrode 13 2 -Electrode 13 3 Between the electrodes 13 2 Is the largest amount of radicals R generated from the surface. And the electrode 13 2 From electrode 13 1 Over or electrode 13 2 From electrode 13 3 , The radicals R are generated such that the amount of generation gradually decreases. Further, the electrode 13 located between two adjacent electrode groups 4 Are the outer electrodes 13 of the electrode groups on both sides. 3 And electrode 13 5 Voltage of the same potential as that of the electrode 13 4 And electrode 13 3 During the electrode 13 4 And electrode 13 5 Between them, no potential difference is caused.
[0030]
A mode in which a potential difference is generated between adjacent electrodes in one set of electrode groups, an electrode that does not cause a potential difference between adjacent sets of electrode groups is provided, and a switch 19 is sequentially switched to apply a voltage to each electrode. 3B and 3C, the generation of radicals R can be sequentially sent from the left end portion of the film forming substrate 30 to the right side as shown in FIGS. 3B and 3C. it can. Thus, a uniform thin film can be formed on the film formation substrate.
[0031]
In a plasma film forming apparatus for thin film formation having such a configuration, Put FIG. 4 shows the gas pressure dependence of the plasma discharge start voltage obtained as a result of measuring the relationship between the gas pressure and the plasma discharge start voltage.
[0032]
As shown by the solid line in FIG. 4, in the plasma film forming apparatus for forming a thin film according to the present invention, the region where the plasma discharge starting voltage is low, that is, the region where discharge DC is easily generated, is represented by points (a) and (b). ) And (c). In this case, the flat region where the plasma discharge starting voltage is low is from 30 Pa to 120 Pa, but the pressure value changes according to the material gas used.
[0033]
In the flat region where the plasma discharge starting voltage is low, the path of the discharge DC obtained by visually observing the emission of the corresponding discharge DC for pressure points (a), (b) and (c) is shown in the sectional view of FIG. Show. That is, at the point (a) where the gas pressure is low, the discharge DC rises high, and the actual path of the discharge DC becomes long (path (a) shown in FIG. 5). On the other hand, at the point (c) where the pressure is high, the light emission of the discharge DC is low, and the substantial path of the discharge DC is short (the path (c) shown in FIG. 5) in a state where the light is adhered to the electrode substrate 11.
[0034]
FIG. 6 shows the thickness distribution of the a-Si film grown on the film formation substrate 30 as a measurement result.
[0035]
On the other hand, the gas pressure and plasma in a thin film forming plasma film forming apparatus for applying a high frequency voltage between the first electrode 13-1 and the second electrode 13-2 attached to the back of the film forming substrate 30 shown in FIG. The relationship between the firing voltages is shown in FIG. 4 as comparative data by reference lines (A) and (C) by broken lines. As shown by the dashed lines (A) and (C), in each curve, the plasma discharge start voltage is the lowest at a specific pressure, and the plasma discharge start voltage is higher in a region outside this point.
[0036]
That is, the discharge in the structure shown in FIG. 8 is a discharge DC in a structure in which the path of the discharge DC is determined in advance, and a plurality of conventionally existing parallel plate type electrodes or electrodes having a wavy uneven surface are used. This is almost equivalent to the example described in JP-A-11-144892, in which a discharge path is provided. Length (discharge path length) Is the determined structure. In the case of the reference characteristic (A), the distance between the electrode substrate 11 and the film forming substrate 30 is longer than the distance between the electrode pitches. In the case of the reference characteristic (C), the distance between the electrode substrate 11 and the film forming substrate 30 is large. This is the case where the distance is about the distance between the electrode pitches. In both cases, the pressure dependence has a minimum value, and there is no flat region where the firing voltage is low. That is, a small change in pressure greatly changes the discharge starting voltage. In addition, the operating point of the Paschen characteristic, that is, (pressure × Discharge path length As a dependency, the film thickness distribution becomes concave or convex depending on which side of the local minimum value.
[0037]
On the other hand, by adopting a structure such as the plasma film forming apparatus for forming a thin film according to the present invention shown in FIG. 1, an arc-shaped electric field path is formed between the adjacent electrodes 13, and the path is formed according to the pressure. Because it swells upward and sticks downward, it takes a free form, so the actual distance between electrodes is the electric field path length. (Discharge path length) It changes without being fixed in accordance with the change of. That is, instead of using a horizontal electric field as described in JP-A-11-144892, an arch-shaped electric field having a large degree of freedom is used in the present invention. Then, by the generation of the discharge DC along the arc-shaped electric field, a flat region where the plasma discharge start voltage is low can be realized over a wide gas pressure range as shown in FIG. And, as a result, more uniform film formation distribution can be realized. Further, there is an advantage that the gas pressure can be changed in one film forming process. Further, as shown in FIG. 3, a large amount of radical flow R is generated on the electrode surface on the negative potential side. In the case of JP-A-11-144892, the distance between the electrode surface and the film-forming substrate changes according to the wave-like structure of the electrode, so that the radical flow R generated on the electrode surface is scattered to the film-forming substrate depending on where it is generated. The distance is different. Since the radicals gradually disappear while being scattered, if the scattered distances are different, the amount of the radicals reaching the deposition substrate 30 varies depending on the location, and as a result, unevenness of the inner surface of the film thickness occurs. On the other hand, in the case of the present invention, the surface of the electrode and the surface of the deposition substrate are parallel, and any radical flow R generated on the surface of the electrode can scatter about the same distance to reach the deposition substrate 30; Easy to secure. That is, by adopting a structure in which the electrode surface and the film forming substrate surface are parallel as in the present invention, a flat region where the plasma discharge starting voltage is low can be realized over a wide gas pressure range. The scattering at the same distance and the above two points facilitate the uniformity of the film thickness.
[0038]
With reference to the graph of FIG. 6, the relationship between the film forming speed at different locations on the film forming substrate 30 and the distance d between the electrode 13 and the film forming substrate 30 in the present invention will be described. FIG. 6A shows the film forming characteristics between CD in FIG. 2 and FIG. 6B shows the film forming characteristics between AB in FIG. As shown in FIG. 6, when the inter-substrate distance d is set to about the electrode pitch distance, the arrangement of the electrodes 13 appears as a distribution of the film forming speed, but the inter-substrate distance d is longer than the electrode pitch distance. By doing so, the effect of the shape of the electrode 13 was eliminated, and uniformity of the film thickness within ± 5% of the average value could be secured.
[0039]
The shape of the electrode 13 may be any shape as long as the planar plasma generation space 20 can be formed according to the shape of the substrate. However, in order to apply positive and negative potentials to many dot-shaped electrodes, for example, it is necessary to perform three-dimensional wiring between the introduction terminal 51 and the electrodes. On the other hand, if the electrodes are in the form of stripes, there is no need to perform three-dimensional wiring, and connection to the introduction terminal 51 is possible at a portion drawn to the end of the electrode substrate 11, thereby realizing a simpler device configuration.
[0040]
As a type of the power source 60 for supplying electric energy in the above-described film forming method, an AC power source in a low frequency to a high frequency region having a frequency of 60 Hz to 13.56 MHz can be widely used. By applying a positive / negative voltage between the adjacent electrodes 13 using an AC power supply, the cathode electrodes 13 are alternately temporally alternated between the adjacent electrodes. That is, all the electrodes 13 function as cathode electrodes, and more radicals are generated near the cathode. As a result, radicals are formed more uniformly in the electrode substrate 11 and the film formation distribution is made uniform. .
[0041]
In the present invention, since the installation position of the deposition substrate 30 is separated from the anode electrode, the ion bombardment to the anode electrode which becomes conspicuous when the frequency is low may adversely affect the deposition surface of the deposition substrate 30. There is no. That is, a low-frequency power supply that is easier to handle than a high-frequency power supply can be used.
[0042]
It is also possible to use a DC pulse power supply as a type of the power supply 60 for supplying electric energy. In that case, as shown in FIG. 3, a negative voltage is applied to the plurality of electrodes 13 in order. By doing so, all the electrodes 13 act as cathode electrodes, and more radicals are generated in the vicinity of the cathode. As a result, radicals are more uniformly formed in the electrode substrate 11 and the film formation distribution is made uniform. Is made. Therefore, by using the DC pulse power supply, it is possible to supply electric energy that is simple and easy to handle, while exhibiting the same effect as the AC power supply.
[0043]
As a form of the electric energy supply, the supply to the individual electrodes 13 can be shifted in time. That is, as shown in FIG. 3, the timing may be shifted between the electrodes 13 as long as the electric energy supplied to the individual electrodes 13 is the same as the time average. When this is used, as shown in FIG. 3, a single power supply 60 can supply electric energy to all the electrodes 13 by switching a switch on the wiring to each electrode 13. In other words, even if the power supply 60 itself is a DC power supply, by switching its output, the supply to the individual electrodes 13 is shifted in time, so that one power supply 60 can function as a DC pulse. .
[0044]
The inventor generated plasma and formed an a-Si film using the apparatus having the configuration shown in FIG. At this time, the material gas used was SiH 4 Therefore, the pressure was set to 100 Pa except for the cases of FIGS. 4 and 5 described above. As a material gas, SiH 4 Not only that, for example, H 2 , Ar, O 2 , NH 3 Alternatively, a mixed gas of these is used as SiH 4 Can also be used as a mixture.
[0045]
Although the above description has mainly focused on the description of a method for forming a semiconductor film centering on an a-Si film, the present invention provides an insulating film such as a silicon nitride film or a silicon oxide film simply by changing a material gas used. The same effect can also be exerted on the film formation.
[0046]
(Example)
Hereinafter, embodiments of the plasma film forming apparatus for forming a thin film according to the present invention will be specifically described.
[0047]
(Example 1)
The result of forming an a-Si film using the plasma film forming apparatus (plasma CVD apparatus) 1 for forming a thin film according to the present invention will be described below.
[0048]
At this time, although this plasma film forming apparatus for forming a thin film is omitted in FIG. 1, the film forming substrate 30 is held to heat the film forming substrate 30 (at a film forming substrate temperature of 200 ° C.). A heater is attached behind the film substrate holder 52. In addition, a mechanical booster pump and a rotary pump for discharging gas were attached to the apparatus and used. Material gas is SiH 4 The pressure was set to 100 Pa at a flow rate of 1000 sccm, and the material gas was supplied from the gas introduction holes 12 aligned between the striped electrodes 13 of the electrode substrate 11 as shown in FIG.
[0049]
A high frequency of 100 kHz (voltage 500 V) was used as energy for supplying electric energy. As the electrode 13 to which a high frequency was applied, a large number of stripes were formed on a dielectric (glass) plate of 1 m × 1 m. The length of the electrode 13 is 95 cm, the width is 5 mm, and the thickness is 100 μm. The space between the electrodes 13 is 5 mm, and the entire surface of the electrode 13 faces the direction of the film forming substrate 30, in other words, is exposed. The surface of the electrode 13 and the surface of the film forming substrate 30 are parallel to each other. The electrodes 13 are alternately supplied with power so that a voltage is induced between the adjacent electrodes 13, and when an output of the power supply 60 is applied to one electrode 13, no output is applied to the adjacent electrodes 13. 60 positive and negative polarities were connected. The gas introduction holes 12 were provided on the electrode substrate 11 at a diameter of 0.5 mm and at intervals of 10 mm between the electrodes 13. As the film formation substrate 30 on which the a-Si film was grown, a glass substrate having a thickness of 3 mm was provided at a position facing the electrode substrate 11 at intervals of 20 mm from the electrode substrate 11.
[0050]
substrate Table 1 shows the film formation results when the distance d was changed. For comparison, the results are shown together with the results of film formation using the conventional plasma CVD apparatus shown in FIG. In that case, the film was formed under the same conditions except that the electrode configuration was changed. Note that the film thickness non-uniformity in the table indicates the ratio of the maximum value / minimum value fluctuation to the film thickness average value.
[0051]
[Table 1]
Figure 0003586197
First, the film forming speed and the film thickness non-uniformity will be considered. In the case of the plasma CVD apparatus having the structure according to the present invention, when the distance d between the substrates is 15 mm, the film forming speed is high, but the film thickness non-uniformity is not so good as ± 9%. Thus, by setting the distance d between the substrates to 20 mm, the film thickness uniformity was very good, ± 3%, although the film formation rate was slightly reduced.
[0052]
On the other hand, when the plasma CVD apparatus having the structure shown in FIG. 8 is used, the film formation rate is not much different from that in the case of the plasma CVD apparatus of the type shown in FIG. 1, but the film thickness nonuniformity is not so good. The reason for this is that in the case of the plasma CVD apparatus having the structure shown in FIG. 8, the distance between the electrode 13-1 and the electrode 13-2 is determined from the structure, so that the Paschen characteristic takes a sharp minimum value and the Paschen characteristic Fine adjustment of the above operating point is difficult, and as a result, the film thickness non-uniformity cannot be reduced.
[0053]
In the plasma CVD apparatus of the configuration according to the present invention, the substantial distance between the electrodes 13 (Discharge path length) Changes spontaneously according to the pressure, so that there is no nonuniformity in film thickness due to the operating point of the Paschen characteristic, which is a problem in the structure shown in FIG. As long as the non-uniformity of the radical generation position is suppressed, film formation with extremely high uniformity can be realized.
[0054]
In addition, the measurement results of hydrogen bonding in the film during film formation using the plasma film forming apparatus for forming a thin film according to the present invention are as follows.
[0055]
That is, the amount of Si—H bonds is 10.5% of the total bonds, 2 The binding amount was 0.5% of the whole. In general, it is preferable that the total amount of hydrogen bonded is small because the ratio of Si—Si bonds is large. 2 It is preferable that the ratio of the bond amount is small because the network of the Si—Si bond is secured. That is, as a result of the measurement, the total amount of bonded hydrogen as an index of the film quality is small, and the amount of Si—H to the amount of Si—H bond as another index of the film quality is small. 2 It was found that the ratio of the bonding amount was as extremely small as 0.048, and that good film quality was secured overall.
[0056]
By the way, in the case of the reference characteristic (A) in FIG. 4, the amount of Si—H bonds is 17.5% of the total bonds, 2 The binding amount was 5.5% of the whole. That is, the film quality is deteriorated as compared with the present invention. This is because the film formation substrate 30 is set on the anode electrode 13-2. That is, it can be seen that high-quality film formation can be achieved by installing the film formation substrate 30 at a position distant from the electrode 13 as in the present invention, in other words, at a position distant from the plasma generation space 10.
[0057]
Regarding the introduction of the material gas into the discharge DC portion, a method of merely introducing the gas from a single hole in the container wall to fill the gas may be used, but the introduction hole 12 arranged between the adjacent electrodes as in the present invention is used. It is more effective to introduce a material gas. That is, the path of the discharge DC is formed between the plurality of electrodes 13, and each discharge DC exists independently in the plane of the electrode substrate 11. Therefore, when the material gas is supplied from a position between the electrodes 13 by a plurality of introduction holes so as to introduce an equal amount of the material gas into each discharge DC, the material gas is depleted due to the position in the plane of the electrode substrate 11. Material gas can be supplied uniformly without generation.
[0058]
(Example 2)
The results of a plasma CVD apparatus actually manufactured based on the present invention and an a-Si film manufactured using the apparatus will be described below. This embodiment uses a plasma CVD apparatus in which the electrode 13 side is enlarged in FIG. 7 and has the same configuration and conditions as those of the first embodiment except for the contents described below.
[0059]
As the electrode 13 to which a high frequency was applied, a large number of stripes were formed on a dielectric (glass) plate of 1 m × 1 m. The length of the striped electrode 13 is 95 cm, the width is 8 mm, and the thickness is 100 μm. The distance between the electrodes 13 is 2 mm, and the entire surface of the electrode 13 faces the film forming substrate. The plane 13 is parallel to the plane of the deposition substrate. On the upper surface of the stripe-shaped electrode 13, a 1-mm-thick vitreous dielectric (dielectric constant: 10) was formed by applying and firing a paste. A high frequency of 100 kHz (voltage 1000 V) was used as energy for supplying electric energy. The reason why the applied voltage is higher than that of the first embodiment is that the current value flows only transiently due to the presence of the layer of the covering dielectric 18 on the electrode 13, so that the same electric energy supply amount is secured. Is necessary to increase the voltage.
[0060]
The results of the film formation are shown in Table 2 below. For comparison, the results are shown together with the results of film formation using the conventional plasma CVD apparatus shown in FIG. In a conventional apparatus, a film was formed under the same conditions except that the electrode configuration was changed. Note that the film thickness non-uniformity in the table indicates the ratio of the maximum value / minimum value fluctuation to the film thickness average value.
[0061]
[Table 2]
Figure 0003586197
First, the film forming speed and the film thickness non-uniformity will be considered. In the case of the plasma CVD apparatus according to the present invention shown in FIG. 7, when the distance d between the substrates was set to 15 mm, the film forming speed was already high, and the film thickness nonuniformity was very good at ± 3%. . On the other hand, when the conventional plasma CVD apparatus shown in FIG. 8 is used, the film formation rate is not much different from that of the plasma CVD apparatus according to the present invention, but the film thickness nonuniformity is not so good. This is because, in the case of the plasma CVD apparatus according to the present invention, as described with reference to FIG. 7, electric energy is uniformly consumed in the plane of the electrode substrate 11, so that a highly uniform film is formed. It was realized.
[0062]
Further, the effect of attaching the covering dielectric 18 on the electrode 13 was examined. In this case, the structure of the electrode is as shown in FIG. 7 and is different from the structure shown in FIG. 1 in that a 500 μm covering dielectric 18 is provided on the electrode 13. In this case, the uniformity of the film forming rate of the a-Si film grown on the film forming substrate 30 can be secured at a closer distance between the substrates.
[0063]
The reason is considered as follows. FIG. 7 shows the progress of the discharge DC. That is, when the discharge DC starts at a certain location on the electrode 13, the discharge current causes the charged particles to accumulate in the coated dielectric 18 portion. Then, the accumulated charged particles reduce the potential difference generated in the space between the electrodes 13 and stop the discharge DC. Then, in order to maintain the discharge DC, an adjacent part on the same electrode 13 starts the discharge DC.
[0064]
In this manner, since the discharge DC is generated so that the charged particles are accumulated in the entire area of the coating dielectric 18 on the electrode 13, the discharge DC is generated more uniformly. Then, since uniform film formation is realized with a shorter distance between substrates, the film formation speed can be increased.
[0065]
(Example 3)
The plasma CVD apparatus actually manufactured based on the present invention and the a-Si film manufactured using the apparatus will be described below. The plasma CVD apparatus used in the third embodiment uses the plasma CVD apparatus shown in FIG. 1 and has the same configuration and conditions as the first embodiment except for the following. A DC pulse voltage (500 V) with a width of 10 μs and a repetition frequency of 100 kHz was used as energy for supplying electric energy. The electrode 13 is shown in FIG. 3 so that a voltage is induced between the adjacent electrodes 13 so that when an output of the power supply 60 is applied to one electrode 13, no output is applied to the adjacent electrode 13. As shown, the positive and negative polarities of the power supply 60 were connected in order.
[0066]
The results of the film formation are shown in Table 3 below. For comparison, a result including electric energy supply at a high frequency of 100 kHz in the same plasma CVD apparatus (that is, Example 1) is shown. Note that the film thickness non-uniformity in the table indicates the ratio of the maximum value / minimum value fluctuation to the film thickness average value.
[0067]
[Table 3]
Figure 0003586197
As is evident from Table 3, there is no great difference in the results of the electric energy supply at a high frequency of 100 kHz in any of the film forming speed, the film thickness non-uniformity, and the film quality. In other words, it has been found that the same good result can be obtained not only by high frequency but also by direct current pulse in the method of supplying electric energy.
[0068]
【The invention's effect】
According to the present invention having the above-described configuration, a plasma film forming apparatus for forming a thin film capable of forming a uniform and high quality film on the large-area film forming substrate 30 can be realized. That is, in order to manufacture a liquid crystal display having an increasingly larger size, a uniform film forming technique on the large-area film forming substrate 30 is indispensable, but by using the present invention, such a film forming technique can be realized. Further, in order to improve the productivity of the liquid crystal display, it is necessary to form a plurality of substrates from the film forming substrate 30. However, since the film forming substrate 30 can be made large, the number of sheets that can be taken out from one film forming substrate 30 increases, and the productivity increases. It also contributes to improvement.
[0069]
Further, since both the cathode and the anode are provided on the electrode substrate 11, the quality of the deposited film can be improved, and not only the a-Si layer used for the TFT liquid crystal but also a silicon dioxide layer or a silicon nitride layer can be obtained. A high-quality film can be provided for the formation of a layer, or a crystalline silicon layer or the like.
[0070]
Further, the present invention is most suitable as an a-Si film forming apparatus which is a light conversion layer of an amorphous silicon solar cell in which a film is formed by a plasma CVD method in fields other than the liquid crystal display. In other words, when a residential solar cell is considered, a large-area uniform film formation is indispensable, and a highly reliable amorphous silicon solar cell is considered in consideration of the fact that the higher the quality of the film, the less the photo-deterioration of a-Si occurs. Can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the outline of the structure of a plasma film forming apparatus for forming a thin film according to the present invention.
FIG. 2 is a perspective view showing a structure of a main part of a plasma film forming apparatus for forming a thin film according to the present invention.
FIG. 3 is a schematic diagram illustrating an embodiment in which electric energy is supplied using the plasma film forming apparatus for forming a thin film illustrated in FIG.
FIG. 4 is a graph illustrating the gas pressure dependence of the plasma discharge starting voltage when the plasma film forming apparatus for forming a thin film according to the present invention is used.
FIG. 5 is a view for explaining a change in a discharge path when a gas pressure is changed when the plasma film forming apparatus for forming a thin film according to the present invention is used.
FIG. 6 shows that the film thickness of the a-Si film formed on the film formation substrate when the distance between the film formation substrate and the electrode substrate is changed using the plasma film formation apparatus for forming a thin film according to the present invention. Graph illustrating uniformity.
FIG. 7 is a sectional view showing a schematic structure of a plasma film forming apparatus for forming a thin film according to another embodiment of the present invention.
FIG. 8 is a schematic diagram showing a typical structure of a conventional plasma film forming apparatus for forming a thin film.
9 is a perspective view showing an outline of a structure of a main part of the conventional thin film forming plasma film forming apparatus of FIG.
[Explanation of symbols]
1 Plasma film forming equipment
10 Plasma production space
11 electrode substrate
12 Gas inlet
13 electrodes
15 Gas supply space
16 Gas supply pipe
18 Coated dielectric
19 Changeover switch
30 Deposition substrate
50 vacuum container
51 Introduction terminal
52 Deposition substrate holder
60 power supply
70 Gas supply unit
d Distance between boards
DC discharge
G gas flow
R radical flow

Claims (11)

材料ガスを内部に導入する機能と、電気的エネルギー供給により該材料ガスをプラズマ状態にする機能と、該材料ガスを活性種に分解する機能と、該活性種を成膜基板に堆積させ成膜する機能とを有する薄膜形成用プラズマ成膜装置であって、
成膜基板とは離れた位置にあり、かつ、成膜基板面と平行な露出面を持つ、複数の電極を備え、
互いに隣接する3本の電極を1組とし、2つの組の間にある1本の電極をそれぞれの組の外側の電極同じ電位にすることによって、前記複数の電極間にアーチ型の放電経路を発生することを特徴とする薄膜形成用プラズマ成膜装置。
A function of introducing a material gas into the inside, a function of bringing the material gas into a plasma state by supplying electric energy, a function of decomposing the material gas into active species, and a function of depositing the active species on a deposition substrate to form a film. A thin film forming plasma film forming apparatus having a function of performing
A plurality of electrodes are provided at a position apart from the film-forming substrate and having an exposed surface parallel to the film-forming substrate surface,
An arc-shaped discharge path is formed between the plurality of electrodes by setting three electrodes adjacent to each other as one set and setting one electrode between the two sets to the same potential as the outer electrode of each set. A plasma film forming apparatus for forming a thin film.
前記複数の電極がストライプ状である請求項1に記載の薄膜形成用プラズマ成膜装置。The plasma deposition apparatus for forming a thin film according to claim 1, wherein the plurality of electrodes have a stripe shape. 前記複数の電極がドット状である請求項1に記載の薄膜形成用プラズマ成膜装置。The plasma deposition apparatus for forming a thin film according to claim 1, wherein the plurality of electrodes are in a dot shape . 前記複数の電極の表面が誘電体層で被覆されている請求項1または請求項2に記載の薄膜形成用プラズマ成膜装置。The plasma deposition apparatus for forming a thin film according to claim 1, wherein the surfaces of the plurality of electrodes are covered with a dielectric layer . 前記複数の電極間に形成された複数の導入孔から材料ガスが内部に導入される請求項1ないし請求項4のいずれか1項に記載の薄膜形成用プラズマ成膜装置。The plasma deposition apparatus for forming a thin film according to any one of claims 1 to 4, wherein a material gas is introduced into the inside through a plurality of introduction holes formed between the plurality of electrodes . 前記電気的エネルギー供給を行なう電圧が低周波あるいは高周波として印加される請求項1ないし請求項のいずれか1項に記載の薄膜形成用プラズマ成膜装置。Thin film forming plasma film forming apparatus according to any one of claims 1 to 5 voltage to perform the electrical energy supply is applied as a low-frequency or high frequency. 前記電気的エネルギー供給を行なう電圧が直流パルス状に印加される請求項1ないし請求項のいずれか1項に記載の薄膜形成用プラズマ成膜装置。Thin film forming plasma film forming apparatus according to any one of claims 1 to 5 voltage to perform the electrical energy supply is applied to DC pulsed. 前記電気的エネルギー供給を行なう電圧印加が場所に応じて時間的にずれる形で行なわれる請求項または請求項に記載の薄膜形成用プラズマ成膜装置。The plasma deposition apparatus for forming a thin film according to claim 6 or 7 , wherein the voltage application for supplying the electric energy is performed in a manner shifted in time depending on a place . 前記複数の電極はそれぞれ、アノード電極またはカソード電極に切り替える切替スイッチを備え、前記アノード電極の位置を時間的に変化させることを特徴とする請求項1ないし請求項8のいずれか1項に記載の薄膜形成用プラズマ成膜装置。 9. The device according to claim 1, wherein each of the plurality of electrodes includes a changeover switch that switches between an anode electrode and a cathode electrode, and changes the position of the anode electrode with time . 10. Plasma film forming equipment for thin film formation. 前記アノード電極とカソード電極を交互に切り替えることを特徴とする請求項9に記載の薄膜形成用プラズマ成膜装置。 The plasma deposition apparatus for forming a thin film according to claim 9 , wherein the anode electrode and the cathode electrode are alternately switched . 前記電気的エネルギーは、それぞれの電極に対し、時間平均が等しくなるように供給されることを特徴とする請求項9または請求項10に記載の薄膜形成用プラズマ成膜装置。 The plasma deposition apparatus for forming a thin film according to claim 9, wherein the electric energy is supplied to each of the electrodes such that a time average is equal .
JP2001009963A 2000-03-23 2001-01-18 Plasma film forming equipment for thin film formation Expired - Fee Related JP3586197B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001009963A JP3586197B2 (en) 2000-03-23 2001-01-18 Plasma film forming equipment for thin film formation
KR10-2001-0007057A KR100436072B1 (en) 2000-03-23 2001-02-13 Device for Fabricating Film for Plasma-Forming Thin Film
TW090104994A TW562868B (en) 2000-03-23 2001-03-05 Plasma deposition device for forming thin film
US09/815,160 US6779482B2 (en) 2000-03-23 2001-03-22 Plasma deposition device for forming thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-81464 2000-03-23
JP2000081464 2000-03-23
JP2001009963A JP3586197B2 (en) 2000-03-23 2001-01-18 Plasma film forming equipment for thin film formation

Publications (2)

Publication Number Publication Date
JP2001338885A JP2001338885A (en) 2001-12-07
JP3586197B2 true JP3586197B2 (en) 2004-11-10

Family

ID=26588136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009963A Expired - Fee Related JP3586197B2 (en) 2000-03-23 2001-01-18 Plasma film forming equipment for thin film formation

Country Status (4)

Country Link
US (1) US6779482B2 (en)
JP (1) JP3586197B2 (en)
KR (1) KR100436072B1 (en)
TW (1) TW562868B (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043910A (en) * 2002-07-12 2004-02-12 Canon Inc Process and apparatus for forming deposition film
KR20050103251A (en) * 2002-10-07 2005-10-27 세키스이가가쿠 고교가부시키가이샤 Plasma surface treatment device
JP4836398B2 (en) * 2003-03-27 2011-12-14 京セラ株式会社 Photoelectric conversion element
US8664525B2 (en) * 2003-05-07 2014-03-04 Imec Germanium solar cell and method for the production thereof
US7964789B2 (en) 2003-05-07 2011-06-21 Imec Germanium solar cell and method for the production thereof
US7960645B2 (en) 2003-05-07 2011-06-14 Imec Germanium solar cell and method for the production thereof
JP2004356558A (en) * 2003-05-30 2004-12-16 Toshio Goto Apparatus and method for coating
JP4413084B2 (en) * 2003-07-30 2010-02-10 シャープ株式会社 Plasma process apparatus and cleaning method thereof
EP1507281B1 (en) * 2003-08-14 2007-05-16 Fuji Film Manufacturing Europe B.V. Arrangement, method and electrode for generating a plasma
US7945141B2 (en) * 2003-10-06 2011-05-17 Samsung Electronics Co., Ltd. Information storage medium including event occurrence information, and apparatus and method for reproducing the information storage medium
US8012306B2 (en) * 2006-02-15 2011-09-06 Lam Research Corporation Plasma processing reactor with multiple capacitive and inductive power sources
KR100772612B1 (en) * 2006-07-24 2007-11-02 세메스 주식회사 Apparatus and method for treating substrate
KR100737755B1 (en) * 2006-08-10 2007-07-10 세메스 주식회사 Plasma generator, apparatus including the same and method for treating substrate
KR100849366B1 (en) * 2006-08-24 2008-07-31 세메스 주식회사 Apparatus and method for treating substrate
JP4436350B2 (en) * 2006-09-14 2010-03-24 株式会社アルバック Thin film forming method and thin film forming apparatus
JP5145325B2 (en) * 2007-03-01 2013-02-13 株式会社アルバック Thin film forming method and thin film forming apparatus
JP4875528B2 (en) * 2007-03-29 2012-02-15 三菱重工業株式会社 Thin film forming apparatus and plasma generation method
JP4875527B2 (en) * 2007-03-29 2012-02-15 三菱重工業株式会社 Plasma generator and thin film forming apparatus using the same
JP5228437B2 (en) 2007-10-19 2013-07-03 東京エレクトロン株式会社 Processing device and method of using the same
DE112009000131T5 (en) * 2008-01-18 2010-12-09 Kyocera Corporation Plasma generator and discharge device and reactor that uses a plasma generator
KR101533711B1 (en) * 2008-11-19 2015-07-06 에프원소프트 주식회사 Microwave plasma processing chamber having mutli separated electrode
DE102009017888B4 (en) * 2009-03-20 2013-01-17 Von Ardenne Anlagentechnik Gmbh Method and apparatus for controlling a plasma density distribution in a vacuum process
JP5776132B2 (en) * 2009-04-03 2015-09-09 凸版印刷株式会社 Deposition equipment
US8664561B2 (en) * 2009-07-01 2014-03-04 Varian Semiconductor Equipment Associates, Inc. System and method for selectively controlling ion composition of ion sources
US10049859B2 (en) * 2009-07-08 2018-08-14 Aixtron Se Plasma generating units for processing a substrate
CN102471875A (en) * 2009-07-17 2012-05-23 株式会社爱发科 Film-forming apparatus
KR101084232B1 (en) * 2009-12-15 2011-11-16 삼성모바일디스플레이주식회사 Fabrication Apparatus for thin film transistor
KR101612741B1 (en) * 2010-03-08 2016-04-18 주성엔지니어링(주) Gas distributing plate and Apparatus for treating substrate including the same
US20120000606A1 (en) * 2010-07-02 2012-01-05 Varian Semiconductor Equipment Associates, Inc. Plasma uniformity system and method
TWI606490B (en) * 2010-07-02 2017-11-21 半導體能源研究所股份有限公司 Manufacturing method of semiconductor film, manufacturing method of semiconductor device, and manufacturing method of photoelectric conversion device
US8765232B2 (en) 2011-01-10 2014-07-01 Plasmasi, Inc. Apparatus and method for dielectric deposition
JP5768890B2 (en) * 2011-09-26 2015-08-26 株式会社島津製作所 Plasma deposition system
KR101503512B1 (en) * 2011-12-23 2015-03-18 주성엔지니어링(주) Substrate processing apparatus and substrate processing method
US9299956B2 (en) 2012-06-13 2016-03-29 Aixtron, Inc. Method for deposition of high-performance coatings and encapsulated electronic devices
US10526708B2 (en) 2012-06-19 2020-01-07 Aixtron Se Methods for forming thin protective and optical layers on substrates
WO2014010979A1 (en) * 2012-07-13 2014-01-16 주식회사 지아이티 Plasma treatment apparatus comprising electric field compression type surface discharge electrode
JPWO2014069309A1 (en) 2012-11-02 2016-09-08 旭硝子株式会社 Plasma source for plasma CVD apparatus and method of manufacturing article using the plasma source
WO2014097621A1 (en) * 2012-12-21 2014-06-26 Asahi Glass Company Limited Pair of electrodes for dbd plasma process
JP2018028109A (en) * 2014-12-22 2018-02-22 旭硝子株式会社 Plasma CVD apparatus
JP2017168788A (en) * 2016-03-18 2017-09-21 株式会社日立国際電気 Method for manufacturing semiconductor device, substrate processing apparatus and program
US9721759B1 (en) 2016-04-04 2017-08-01 Aixtron Se System and method for distributing RF power to a plasma source
TWI794240B (en) * 2017-06-22 2023-03-01 美商應用材料股份有限公司 Processing tool for plasma process and plasma reactor
CN109023273B (en) * 2018-08-06 2023-08-11 信阳舜宇光学有限公司 Coating equipment and coating method
JP7085963B2 (en) * 2018-10-29 2022-06-17 東京エレクトロン株式会社 Plasma processing equipment and plasma processing method
EP3946767A4 (en) * 2019-04-03 2023-01-18 Kaiatech, Inc. Apparatus, probe assembly and methods for treating containers
US20220246403A1 (en) * 2021-01-29 2022-08-04 Applied Materials, Inc. Digital control of plasma processing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846057B2 (en) * 1979-03-19 1983-10-14 富士通株式会社 Plasma treatment method
JPS61226920A (en) * 1985-03-30 1986-10-08 Sanyo Electric Co Ltd Formation of semiconductor film
JPS62273731A (en) * 1986-05-21 1987-11-27 Tokyo Electron Ltd Plasma processor
JPH01230782A (en) * 1988-03-08 1989-09-14 Mitsubishi Heavy Ind Ltd Plasma cvd device
JPH0831421B2 (en) * 1992-10-14 1996-03-27 ヒラノ光音株式会社 Plasma electrode device
US5938854A (en) * 1993-05-28 1999-08-17 The University Of Tennessee Research Corporation Method and apparatus for cleaning surfaces with a glow discharge plasma at one atmosphere of pressure
US5543688A (en) * 1994-08-26 1996-08-06 Applied Materials Inc. Plasma generation apparatus with interleaved electrodes and corresponding method
US5936352A (en) * 1995-11-28 1999-08-10 Nec Corporation Plasma processing apparatus for producing plasma at low electron temperatures
JPH11144892A (en) 1997-11-12 1999-05-28 Sakae Tanaka Plasma device
JP3332857B2 (en) * 1998-04-15 2002-10-07 三菱重工業株式会社 High frequency plasma generator and power supply method

Also Published As

Publication number Publication date
KR20010096568A (en) 2001-11-07
TW562868B (en) 2003-11-21
US6779482B2 (en) 2004-08-24
JP2001338885A (en) 2001-12-07
KR100436072B1 (en) 2004-06-12
US20020007793A1 (en) 2002-01-24

Similar Documents

Publication Publication Date Title
JP3586197B2 (en) Plasma film forming equipment for thin film formation
JP4413084B2 (en) Plasma process apparatus and cleaning method thereof
US20200161096A1 (en) Plasma generating apparatus and substrate processing apparatus
KR100615015B1 (en) Electronic device, production method thereof, and plasma process apparatus
JP2601127B2 (en) Plasma CVD equipment
US7927455B2 (en) Plasma processing apparatus
US20110272099A1 (en) Plasma processing apparatus and method for the plasma processing of substrates
US20100024729A1 (en) Methods and apparatuses for uniform plasma generation and uniform thin film deposition
JP3224011B2 (en) Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
JP2010212277A (en) Film forming apparatus
JP2003109908A (en) Device and method for plasma treatment, substrate, and semiconductor device
JP3911555B2 (en) Silicon-based thin film manufacturing method
JP5038769B2 (en) Plasma processing equipment
JP2000260598A (en) Plasma generating device
JP4194466B2 (en) Plasma process apparatus and electronic device manufacturing method using the same
JP3420960B2 (en) Electronic device manufacturing apparatus and electronic device manufacturing method
JPH065522A (en) High frequency plasma cvd device
JP2002217111A (en) Plasma film forming apparatus and film forming method using the same
JPH05343338A (en) Plasma cvd apparatus
JP3581813B2 (en) Thin film manufacturing method and thin film solar cell manufacturing method
JP2003188106A (en) Plasma process apparatus
JPH05139883A (en) High frequency plasma cvd device
JP2007242563A (en) Plasma processing device
KR100276061B1 (en) Plasma Deposition Equipment and Method for Manufacturing Hydrogen-Containing Amorphous Carbon Thin Film Using the Same
JP2003073834A (en) Plasma processing unit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees