JPS61226920A - Formation of semiconductor film - Google Patents

Formation of semiconductor film

Info

Publication number
JPS61226920A
JPS61226920A JP6745985A JP6745985A JPS61226920A JP S61226920 A JPS61226920 A JP S61226920A JP 6745985 A JP6745985 A JP 6745985A JP 6745985 A JP6745985 A JP 6745985A JP S61226920 A JPS61226920 A JP S61226920A
Authority
JP
Japan
Prior art keywords
substrate
reactive gas
plasma
electrodes
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6745985A
Other languages
Japanese (ja)
Other versions
JPH0516651B2 (en
Inventor
Hidenori Nishiwaki
西脇 秀則
Soichi Sakai
総一 酒井
Kenji Uchihashi
健二 内橋
Yukinori Kuwano
桑野 幸徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6745985A priority Critical patent/JPS61226920A/en
Publication of JPS61226920A publication Critical patent/JPS61226920A/en
Publication of JPH0516651B2 publication Critical patent/JPH0516651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To curb the flow of a reactive gas toward a substrate, by forming plasma-generating regions by means of mesh-form partitions between a plurality of electrodes disposed at a right angle to the substrate so as to decompose the reactive gas efficiently, and by forming the flow of the reactive gas in the direction parallel to the substrate. CONSTITUTION:U-shaped mesh-form metal partitions 4 opened on the substrate 1 side are fitted to electrodes 2 connected to one output terminal of a power source 3, so as to form plasma-generating regions 5 between the electrodes 2 respectively. Electrodes 2 connected to the other output terminal of the power source 3 are hollow and provided with a plurality of through holes on the opposite sides. A reactive gas containing prescribed semiconductor elements which is introduced into the hollow electrodes 2 through introduction pipes is blown through each through hole into each plasma-generating region 5 as indicated by an arrow, so as to form the flow of the reactive gas in the direction parallel to the substrate 1 in each plasma-generating region 5. According to this constitution, the reactive gas is decomposed efficiently by plasma in the plasma- generating regions 5, while the reactive gas not decomposed is suppressed from flowing in a large quantity toward the substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電極間のプラズマにより反応ガスを分解し
て基板上に半導体膜を形成する半導体膜の形成方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a semiconductor film in which a reaction gas is decomposed by plasma between electrodes to form a semiconductor film on a substrate.

〔従来の技術〕[Conventional technology]

一般に、1対の電極間のプラズマにより反応ガスを分解
して基板上に半導体膜を形成する場合、たとえば特公昭
5g−46056号公報に記載のように、反応室内に中
空の上側高周波電極および下側高周波電極を上下に対向
させて配置し、外部から導入パイプを介して上側高周波
電極内に反応ガスを導入し、上側高周波電極に透設した
複数個の細孔から前記反応ガスを両電極間に吹き出し、
両電極間に高周波電圧を印加して前記両電極間にプラズ
マを発生させ、プラズマの存在下において反応ガスに化
学反応を生ぜしめて高周波電極」二に載置した基板上に
半導体膜を形成することが行なわれている。
Generally, when forming a semiconductor film on a substrate by decomposing a reactive gas using plasma between a pair of electrodes, for example, as described in Japanese Patent Publication No. 5g-46056, a hollow upper high-frequency electrode and a lower The side high-frequency electrodes are arranged vertically facing each other, and a reactive gas is introduced from the outside into the upper high-frequency electrode through an introduction pipe, and the reactive gas is passed between the two electrodes through a plurality of pores cut through the upper high-frequency electrode. speech bubble,
Applying a high frequency voltage between the two electrodes to generate plasma between the two electrodes, causing a chemical reaction in the reactive gas in the presence of the plasma, and forming a semiconductor film on the substrate placed on the high frequency electrode. is being carried out.

ところがこの場合、両電極間に生じる高周波電界の向き
と反応ガスの流れの向きとが同じで、ともに基板に対し
て垂直であるため、プラズマ中の高速荷電粒子が基板に
向って加速されて基板表面を衝撃し、基板上の半導体膜
が損傷して半導体膜の品質低下を招くという不都合が生
じる。
However, in this case, the direction of the high-frequency electric field generated between the two electrodes and the direction of the flow of the reactant gas are the same, and both are perpendicular to the substrate, so the high-speed charged particles in the plasma are accelerated toward the substrate and This causes an inconvenience in that the surface is impacted and the semiconductor film on the substrate is damaged, leading to a deterioration in the quality of the semiconductor film.

そこで、第2図に示すように、基板(1)に近接し該基
板(1)に対して直角に複数個の電極(2)を配列し、
高周波電源あるいは直流電源等の電源(3)の副出力端
子に各電極(2)を交互に接続し、各電極(2)間にお
いて図中の矢印で示す基板(1)に垂直な方向に所定の
半導体元素を含む反応ガスを通流し、各市477< F
21間に電源(3)による高周波電圧あるいは直流電圧
を印加し、各電極(2)間に発生するプラズマにより前
記反応ガスを分解し、所定の化学反応を生ぜしめて基板
(1)の表面に前記半導体元素からなる半導体膜を形成
することが考えられている。
Therefore, as shown in FIG. 2, a plurality of electrodes (2) are arranged close to the substrate (1) and perpendicular to the substrate (1),
Each electrode (2) is alternately connected to the sub-output terminal of a power source (3) such as a high-frequency power source or a DC power source, and the electrodes (2) are connected in a predetermined direction perpendicular to the substrate (1) as indicated by the arrow in the figure between each electrode (2). A reactive gas containing a semiconductor element of 477 < F is passed through each city.
A high frequency voltage or a DC voltage from a power source (3) is applied between 21 and 21, and the plasma generated between each electrode (2) decomposes the reaction gas, causing a predetermined chemical reaction, and causing the above to be applied to the surface of the substrate (1). It has been considered to form a semiconductor film made of semiconductor elements.

〔発り1が解決しようとする問題点〕 しかし第2図の場合、各電極(2)間の電界の向きと反
応ガスの流り、の向きとが垂直であるため、反応ガスが
効率よく分解されず、基板(1)に形成される半導体膜
の成膜速度が遅く、半導体膜の高速形成が不可能であり
、しかも未反応の反応ガスが基板(1)に直接光だって
半導体膜が損傷し、半導体膜の特性に悪影響を及ぼすと
いう問題がある。
[Problem that Origin 1 attempts to solve] However, in the case of Figure 2, the direction of the electric field between each electrode (2) and the direction of the flow of the reaction gas are perpendicular, so the reaction gas is efficiently The deposition rate of the semiconductor film that is not decomposed and formed on the substrate (1) is slow, and high-speed formation of the semiconductor film is impossible. There is a problem that the semiconductor film is damaged and has an adverse effect on the characteristics of the semiconductor film.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の点に留意してなされ、半導体膜を損
傷することなく高速形成できるようにしたものであり、
基板に近接し該基板に対して直角に複数個の電極を配列
し、前記基板側の面が開口したコ字形のメツシュ状仕切
壁により前記各電極間にプラズマ発生領域をそれぞれ形
成し、前記各発生領域において前記基板に平行な方向へ
の半導体元素を含む反応ガスのガス流を形成し、高周波
電源または直流電源により前記各電極間に発生するプラ
ズマにより、前記反応ガスを分解して前記基板上に前記
半導体元素からなる半導体膜を形成することを特徴とす
る半導体膜の形成方法である。
This invention has been made with the above points in mind, and enables high-speed formation of semiconductor films without damaging them.
A plurality of electrodes are arranged close to the substrate and perpendicular to the substrate, and a plasma generation region is formed between each of the electrodes by a U-shaped mesh-like partition wall with an open surface on the substrate side. A gas flow of a reactive gas containing a semiconductor element is formed in a direction parallel to the substrate in the generation region, and the plasma generated between the electrodes by a high frequency power source or a DC power source decomposes the reactive gas and causes the reactive gas to flow onto the substrate. A method for forming a semiconductor film, comprising forming a semiconductor film made of the semiconductor element described above.

〔作 用〕[For production]

したがって、この発明では、基板に対して直角に配列さ
れた複数個の電極間に、基板側が開口したメツシュ状仕
切壁によりプラズマ発生領域が形成され、各仕切壁によ
り各プラズマ発生領域に反応ガスのガス溜りが形成され
て各領域のプラズマにより反応ガスが効率よく分解され
、基板上への半導体膜の成膜速度が向上し、各プラズマ
発生領域において基板に平行な方向への反応ガスのガス
流が形成されて基板への反応ガスの流れが抑制される。
Therefore, in this invention, a plasma generation area is formed between a plurality of electrodes arranged perpendicularly to the substrate by a mesh-like partition wall that is open on the substrate side, and each partition wall allows reactive gas to be supplied to each plasma generation area. A gas pool is formed and the reactive gas is efficiently decomposed by the plasma in each region, increasing the rate of semiconductor film formation on the substrate, and the gas flow of the reactive gas in the direction parallel to the substrate in each plasma generation region. is formed to suppress the flow of reactive gas toward the substrate.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した第1図とと
もに詳細に説明する。
Next, this invention will be explained in detail with reference to FIG. 1 showing one embodiment thereof.

同図において、第2図と同一記号は同一のものもしくは
相当するものを示し、第2図と異なる点は、基板(1)
側が開口したコ字状の金属製のメツシュ状仕切壁(4)
を電源(3)の一方の出力端子に接続された電極(2)
に取り付けて各電極(2)間にプラズマ発生領域(5)
をそれぞれ形成し、電源(3)の他方の出力端子に接続
された電極(2〕を中空にして両面に複数個の透孔を透
設し、導入パイプにより前記中空の電極(2〕内に導入
された所定の半導体元素を含む反応ガスを前記各透孔か
ら図中の矢印のように各プラズマ発生領域(5)内に吹
き出し、各プラズマ発生領域(5)において基板(1)
に平行な方向への反応ガスのガス流を形成した点である
In the figure, the same symbols as in Figure 2 indicate the same or equivalent items, and the difference from Figure 2 is that the board (1)
U-shaped metal mesh partition wall with open sides (4)
electrode (2) connected to one output terminal of the power supply (3)
Plasma generation area (5) between each electrode (2)
The electrode (2) connected to the other output terminal of the power source (3) is made hollow and a plurality of through holes are provided on both sides, and an introduction pipe is used to insert the electrode (2) into the hollow electrode (2). A reactive gas containing the introduced predetermined semiconductor element is blown out from each through hole into each plasma generation region (5) as shown by the arrow in the figure, and the substrate (1) is blown out in each plasma generation region (5).
This is the point at which a gas flow of the reactant gas is formed in a direction parallel to .

このとき、メツシュ状の各仕切壁(4)により各プラズ
マ発生領域(5)に反応ガスの適度なガス溜りが形成さ
れ、発生領域(5)においてプラズマにより反応ガスが
効率よく分解されるとともに、仕切壁(4)を介してプ
ラズマ発生領域(5)の外方へ反応ガスが分散するため
に、分解されない反応ガスが大量に基板(1)に向って
流れることが抑制される。
At this time, a suitable gas pool of the reactive gas is formed in each plasma generation area (5) by each mesh-shaped partition wall (4), and the reactive gas is efficiently decomposed by the plasma in the generation area (5). Since the reactive gas is dispersed to the outside of the plasma generation region (5) via the partition wall (4), a large amount of undecomposed reactive gas is prevented from flowing toward the substrate (1).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の半導体膜の形成方法によると
、メツシュ状の仕切壁(4)により各プラズマ発生領域
に反応ガスの適度なガス溜りを形成することができ、各
プラズマ発生領域(5)においてプラズマにより反応ガ
スを効率よく分解することが可能となり、基板(1)へ
の半導体膜の成膜速度を向上することができ、半導体膜
の高速形成を容易に行なうことが可能となり、その効果
は顕著である。
As described above, according to the method for forming a semiconductor film of the present invention, it is possible to form an appropriate gas pool of reactive gas in each plasma generation region by means of the mesh-like partition wall (4). ), it becomes possible to efficiently decompose the reactive gas by plasma, and the speed of forming the semiconductor film on the substrate (1) can be improved, making it possible to easily form the semiconductor film at high speed, and The effect is remarkable.

さらに、反応ガスの流れの向きを基板(1)に平行にし
、しかも仕切壁(4)をメツシュ状にしただめ、仕切壁
(4)を介してプラズマ発生領域(5)の外方へ反゛応
ガスが適当に分散し、分解されない反応ガスが大量に基
板(1)に向って流れることを防止でき、半導体膜が損
傷を受けることを抑止して品質の優れた半導体膜を形成
することができる。
Furthermore, by making the flow direction of the reaction gas parallel to the substrate (1) and making the partition wall (4) mesh-like, the reaction gas flows outward from the plasma generation region (5) through the partition wall (4). The reaction gas is appropriately dispersed, and a large amount of undecomposed reaction gas can be prevented from flowing toward the substrate (1), thereby preventing damage to the semiconductor film and forming a semiconductor film of excellent quality. can.

また、各電極(2)が基板(1)K対して直角に配列さ
れているため、各電極(2)間の電界の向きが基板(1
)に平行になり、高速荷電粒子が基板(1)に衝突する
ことを防止で′きる。
In addition, since each electrode (2) is arranged at right angles to the substrate (1) K, the direction of the electric field between each electrode (2) is
), and can prevent high-speed charged particles from colliding with the substrate (1).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の半導体膜の形成方法の1実施例の斜
視図、第2図は従来の半導体膜の形成方法による半導体
膜形成時の斜視図である。 (1)・・・基板、(2〕・・・電極、(3)・・・電
源、(4)・・・仕切壁、(5)・・・プラズマ発生領
域。
FIG. 1 is a perspective view of an embodiment of the semiconductor film forming method of the present invention, and FIG. 2 is a perspective view of a semiconductor film formed by a conventional semiconductor film forming method. (1)... Substrate, (2)... Electrode, (3)... Power source, (4)... Partition wall, (5)... Plasma generation area.

Claims (1)

【特許請求の範囲】[Claims] (1)基板に近接し該基板に対して直角に複数個の電極
を配列し、前記基板側の面が開口したコ字形のメッシュ
状仕切壁により前記各電極間にプラズマ発生領域をそれ
ぞれ形成し、前記各発生領域において前記基板に平行な
方向への半導体元素を含む反応ガスのガス流を形成し、
高周波電源または直流電源により前記各電極間に発生す
るプラズマにより、前記反応ガスを分解して前記基板上
に前記半導体元素からなる半導体膜を形成することを特
徴とする半導体膜の形成方法。
(1) A plurality of electrodes are arranged close to the substrate and perpendicular to the substrate, and a plasma generation region is formed between each of the electrodes by a U-shaped mesh partition wall with an open surface on the substrate side. , forming a gas flow of a reactive gas containing a semiconductor element in a direction parallel to the substrate in each of the generation regions;
A method for forming a semiconductor film, characterized in that the reaction gas is decomposed by plasma generated between the electrodes by a high frequency power supply or a DC power supply to form a semiconductor film made of the semiconductor element on the substrate.
JP6745985A 1985-03-30 1985-03-30 Formation of semiconductor film Granted JPS61226920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6745985A JPS61226920A (en) 1985-03-30 1985-03-30 Formation of semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6745985A JPS61226920A (en) 1985-03-30 1985-03-30 Formation of semiconductor film

Publications (2)

Publication Number Publication Date
JPS61226920A true JPS61226920A (en) 1986-10-08
JPH0516651B2 JPH0516651B2 (en) 1993-03-05

Family

ID=13345548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6745985A Granted JPS61226920A (en) 1985-03-30 1985-03-30 Formation of semiconductor film

Country Status (1)

Country Link
JP (1) JPS61226920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6779482B2 (en) * 2000-03-23 2004-08-24 Sharp Kabushiki Kaisha Plasma deposition device for forming thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6779482B2 (en) * 2000-03-23 2004-08-24 Sharp Kabushiki Kaisha Plasma deposition device for forming thin film

Also Published As

Publication number Publication date
JPH0516651B2 (en) 1993-03-05

Similar Documents

Publication Publication Date Title
JP5377587B2 (en) Antenna, plasma processing apparatus, and plasma processing method
US9236265B2 (en) Silicon germanium processing
KR930017103A (en) Dry etching method and apparatus
JP2989279B2 (en) Plasma CVD equipment
JP6129447B2 (en) Water treatment apparatus and water treatment method
JP2005108482A (en) Plasma surface treatment device
JP2785442B2 (en) Plasma CVD equipment
JPS61226920A (en) Formation of semiconductor film
JP2022539007A (en) spatially controlled plasma
JPS61189642A (en) Plasma reactor
JP5568608B2 (en) Plasma processing equipment
JPS60123032A (en) Plasma treatment and device thereof
JP2765371B2 (en) Film processing equipment
JPS619577A (en) Plasma chemical vapor phase growing method
Winkler et al. Modelling of low Pressure reactive rf plasmas
JPH05320915A (en) Cvd method and device therefor
US6179919B1 (en) Apparatus for performing chemical vapor deposition
JPS5812830Y2 (en) Etching processing equipment
JPS60189220A (en) Plasma cvd apparatus
JPH034025Y2 (en)
JPS63148637A (en) Dry etching
JPS59159985A (en) Device for reactive ion etching of si material
JPS60130125A (en) Manufacturing equipment of semiconductor
KR930020606A (en) Micro Machining Method Using Plasma Etching
JPS6077413A (en) Laser excitation process apparatus

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees