JP3585444B2 - Concrete member connection structure - Google Patents

Concrete member connection structure Download PDF

Info

Publication number
JP3585444B2
JP3585444B2 JP2001028105A JP2001028105A JP3585444B2 JP 3585444 B2 JP3585444 B2 JP 3585444B2 JP 2001028105 A JP2001028105 A JP 2001028105A JP 2001028105 A JP2001028105 A JP 2001028105A JP 3585444 B2 JP3585444 B2 JP 3585444B2
Authority
JP
Japan
Prior art keywords
loop
concrete
concrete member
bars
muscle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001028105A
Other languages
Japanese (ja)
Other versions
JP2002227130A (en
Inventor
秀昭 酒井
修 上野
洋一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon High Strength Concrete Co Ltd
Original Assignee
Nippon High Strength Concrete Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon High Strength Concrete Co Ltd filed Critical Nippon High Strength Concrete Co Ltd
Priority to JP2001028105A priority Critical patent/JP3585444B2/en
Publication of JP2002227130A publication Critical patent/JP2002227130A/en
Application granted granted Critical
Publication of JP3585444B2 publication Critical patent/JP3585444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は例えば橋桁の場合に橋軸直角方向に並列して配置されるコンクリート床版、または建物の場合の梁間に架設されるコンクリート床版等のように互いに幅方向に距離を隔て、対向して配置されるコンクリート部材を連結するコンクリート部材の連結構造に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば橋桁や建物の床版をプレキャストのコンクリート床版から構成する場合のように、完成状態で軸方向に一定長さを持ち、幅方向に並列して配置されるコンクリート部材を幅方向に連結する場合、隣接するコンクリート部材の連続性を確保する必要から、コンクリート部材は互いに幅方向に距離を隔てて配置され、隣接するコンクリート部材間の空間に配筋される継手用の鉄筋と充填されるコンクリートによって接合される。
【0003】
コンクリート床版は製作や運搬の便宜より軸方向に複数個のユニット(セグメント)に分割された形で製作され、床版の架設(構築)位置において軸方向に互いに連結されながら、幅方向に連結される場合もある。
【0004】
隣接するコンクリート部材は通常、図12,図13に示すように各コンクリート部材の側面から突出している主筋や定着筋間に継手筋13を跨設し、重ね継手で連結することにより、もしくは図14に示すように双方の主筋や定着筋を直接重ねて連結することにより、または図15に示すように各コンクリート部材の端面から円弧状に湾曲して突出した定着筋を互いに重ね合わせることによりコンクリート部材間で引張力の伝達が行われるように接合される。
【0005】
いずれの方法も鉄筋を重ねて連結することによる継手長さで引張力の伝達能力が決まるが、図14,図15のように双方の主筋や定着筋をコンクリート部材の軸方向に直接重ねる方法では双方の主筋等がコンクリート部材の軸方向に係合する状態にあることと、コンクリート部材の側面に多数の主筋等が軸方向に配列していることから、コンクリート部材製作時の主筋等の配筋に誤差があれば、双方の全主筋等を完全に重ね合わせることが難しくなる。
【0006】
またこれらの場合、後から設置されたコンクリート部材を軸方向に移動させることができないため、先行するコンクリート部材の主筋等と重ねるための、後から設置したコンクリート部材の位置調整をすることも難しい。
【0007】
更に後から設置されるコンクリート部材は先行するコンクリート部材から距離をおいた位置に落とし込まれた後、先行するコンクリート部材に接近する向きに移動させられるか、架設位置に上方から落とし込まれることにより設置せざるを得ないため、最終的に先行するコンクリート部材の脇や上方にコンクリート部材を設置するための空間が確保されない場合には最後のコンクリート部材を設置することができなくなる。
【0008】
この発明は上記背景より、重ね継手等による場合と同等程度の強度を確保しながら、コンクリート部材の製作誤差や施工誤差、あるいは設置位置回りの空間に影響を受けずにコンクリート部材を設置することが可能なコンクリート部材の連結構造を提案するものである。
【0009】
【課題を解決するための手段】
本発明では各コンクリート部材の対向する面から上端筋位置と下端筋位置を結ぶ定着筋を突出させ、双方のコンクリート部材の定着筋間に跨り、コンクリート部材の軸に直交する断面上、定着筋と交わるように、且つ定着筋と重ね合わせることなく、軸方向に配列する定着筋の間に環状のループ筋を配筋することにより、重ね継手による場合と同等程度の強度を確保しながら、コンクリート部材の製作誤差や施工誤差、あるいは設置位置周辺の空間の大きさに関係なく、最後のコンクリート部材まで設置することを可能にする。
【0010】
連結されるコンクリート部材はループ筋の配筋とコンクリート部材間へのコンクリート、モルタル等の充填材の充填によって接合される。
ループ筋は連結されるべき双方のコンクリート部材の定着筋間に跨り、コンクリート部材の軸に直交する断面上、定着筋に交わるように配筋され、コンクリート部材間に充填される充填材との付着力によって定着筋との間でコンクリート部材の幅方向の引張力を伝達する。
【0011】
付着力で引張力の伝達を行うことから、ループ筋定着筋に重なって配置される必要がないため、コンクリート部材への定着筋の配筋上の製作誤差やコンクリート部材設置時の施工誤差が許容され、製作誤差や施工誤差に関係なく、双方のコンクリート部材の定着筋をループ筋によって連結することが可能になる
【0012】
ループ筋と充填材によって双方のコンクリート部材の定着筋間で引張力の伝達が行われることで、双方の定着筋が互いに重なる必要もなく、またループ筋が定着筋に直接重なることがないため、ループ筋の配筋の前後を問わずにコンクリート部材を高さ方向と幅方向、及び軸方向のいずれの方向にも自由に移動させることができる。
【0013】
この結果、製作誤差を吸収するための位置調整や施工誤差が生じたときの位置調整の他、先行するコンクリート部材の脇や上方にコンクリート部材を設置するための空間が確保されない場合にも軸方向への移動によって最後のコンクリート部材を設置することが可能になる。
【0014】
また定着筋とループ筋に包囲された領域に、コンクリート部材の軸方向等、双方に交差する方向に補強筋を配筋した場合には、ループ筋が負担する引張力を、ループ筋と補強筋を介して定着筋とループ筋に包囲された領域の充填材に圧縮力として作用させることができるため、定着筋とループ筋に包囲された領域におけるひび割れ発生防止効果が向上する。またループ筋が負担する引張力に対してループ筋に係合する補強筋が抵抗するため、ループ筋自身の抵抗力が向上する。
【0015】
図5に、図2に示すループ筋4と定着筋3を用いてコンクリート部材1,1を連結した接合部2における接合部2中央の変位と荷重の関係を、図3に示す継手筋13を用いた重ね継手で連結した場合と対比して示す。
【0016】
ここでは図10に示すような、複数個のユニット(セグメント)10から構成されるコンクリート部材1を用いた実際の橋桁での連結床版の曲げ挙動を把握する目的から、2本のコンクリート部材1,1を幅方向に連結した形の試験体に、実寸に近い形状として2500mmの曲げスパン長、 250mmの厚さの寸法を与え、版としての挙動が卓越しないよう、幅(奥行き)をスパン長の1/3以下として 500mmに設定している。
【0017】
載荷は図4に示すように接合部に均等に荷重が加わるよう、接合部の全面を覆う載荷板の上から引張破壊が生ずるまで集中荷重を加えることにより行った。
図5には重ね継手で連結した試験体11に用いる継手筋13と、本発明の試験体12で用いるループ筋4としてそれぞれ普通鉄筋を用いた場合と、表面にエポキシ樹脂を塗装した鉄筋を用いた場合の各2種類の試験体(11N,11E、12N,12E)の結果を示している。
【0018】
11Nと11Eはそれぞれ継手筋13として普通鉄筋を用いた試験体とエポキシ樹脂を塗装した鉄筋を用いた試験体の結果を、12Nと12Eはそれぞれループ筋4として普通鉄筋を用いた試験体とエポキシ樹脂を塗装した鉄筋を用いた試験体の結果を示す。
【0019】
図5の結果から、各試験体(11N,11E、12N,12E)の初期弾性域での挙動に違いはないが、初期弾性限界点以降の挙動からは重ね継手による場合(11N,11E)よりループ筋4による場合(12N,12E)の方が高い変形能力を発揮することが窺える。これはループ筋4による場合、各コンクリート部材1に埋設される定着筋3,3が直接重ねられることなく、ループ筋4を介して連結されることで、引張力を負担する定着筋3,3の連続性が低下するためと考えられる。
【0020】
設計上のひび割れ発生限界応力度の制限値(σ=3.36N/mm)からひび割れ発生限界応力度の発生荷重Pを計算するとP=30.5kNとなるが、この値は表1に示すように図5に示す各試験体の曲線から得られた各試験体のひび割れ発生限界応力発生荷重とほとんど一致する。
【0021】
従ってループ筋4を用いてコンクリート部材1,1を連結したコンクリート床版のひび割れ発生限界応力度として、設計上のひび割れ発生限界応力度の制限値σを用いてよいことが確認される。
【0022】
【表1】

Figure 0003585444
図5の各試験体毎の曲線から求まる終局曲げ耐力を表2に示す。この表2によれば、終局曲げ耐力に関しては重ね継手による場合(11N,11E)よりループ筋4を用いた場合(12N,12E)の方が相対的に耐力が低下する傾向を示しているが、ループ筋4はコンクリート部材1に埋設された定着筋3と重ね合わせられていないことで、ループ筋4を用いて定着筋3,3を連結する場合の方が変形し易く、コンクリートの圧縮歪みが早期に卓越するためであると考えられる。但し、ループ筋4を用いた場合でも設計上の耐力は十分に超えていることが分かる。
【0023】
【表2】
Figure 0003585444
図6はコンクリート部材1,1の接合部2における鉄筋歪みの計測結果を示す。重ね継手の場合は継手筋13の歪みを、ループ筋4を用いた場合はループ筋4の歪みを示す。図6からは、ループ筋4を用いた場合にはひび割れ発生後の終局状態ではループ筋4が定着筋3と共に両者に囲まれた充填材5であるコンクリートを拘束することで、同時に引張力に対する抵抗力を発揮し、接合部2の靱性を向上させることが分かる。
【0024】
【発明の実施の形態】
図1に互いに連結されるコンクリート部材1,1の対向する面から突出する定着筋3,3とループ筋4の関係を示す。
【0025】
コンクリート部材1は図7−(a) ,(b) に示すように完成状態で軸方向に一定長さを持ち、幅方向に間隔を隔て、並列して配置される。図7は橋桁の床版の例を示すが、コンクリート部材1はこの他、建物の床版等、軸方向両端部分において橋脚や橋台、梁その他の支点に支持され、幅方向に互いに連結されることにより構成されるコンクリート床版全般に使用され、コンクリート部材1の断面形状は一切問われない。
【0026】
コンクリート部材1は主にプレキャストコンクリートで製作されるが、コンクリート部材1,1間の接合部2に打設、もしくは充填されるコンクリート等の充填材5の打設や充填前に先行してコンクリート部材1のコンクリートが打設、もしくは充填され、接合部2と分離打設されるような場合には現場打ちコンクリートで製作されることもある。またコンクリート部材1にはその架設区間長や用途等に応じ、軸方向、または軸方向と幅方向にプレストレスが導入される場合もある。
【0027】
コンクリート部材1は架設区間(支点間距離)が大きい場合等には図10−(a) に示すように軸方向に複数個のユニット(セグメント)10に分割された形で製作され、床版の架設(構築)位置において軸方向に互いに連結されながら、幅方向にも連結される場合がある。この場合、複数個のユニット10の軸方向の一体性はコンクリート部材1の軸方向に架設され、支点上に位置するユニット10に定着されるPC鋼材9等によって確保される。図10−(a) 中、△が支点を示す。
【0028】
図10−(b) に支点上に位置し、PC鋼材9等が定着されるユニット10を示すが、支点上のユニット10の上下の床版10a,10b間にはPC鋼材9等を偏向させて配置し、その端部を定着させるための横桁10cが形成される。図10−(b) は(a) のx−x線の断面を示す。図11は各ユニット10における配筋状態と、幅方向に隣接するユニット10,10間の接合部2を示す。
【0029】
定着筋3は各コンクリート部材1の対向する面から、上端筋1a位置と下端筋1b位置を結ぶように突出し、ループ筋4は双方のコンクリート部材1,1の定着筋3,3間に跨って配筋される。
【0030】
定着筋3が突出するコンクリート部材1の側面は接合部2のせん断破壊に対する安全性を確保するために、下端から上端へかけて対向するコンクリート部材1の側面との距離が拡大する傾斜が付けられる。
【0031】
定着筋3は図1,図2に示すようにコンクリート部材1内に配筋される上端筋1a及び下端筋1bとは別に配筋され、コンクリート部材1中に定着されてその側面から突出する他、上端筋1aと下端筋1bが連続して配筋される場合の一部としてコンクリート部材1の側面から突出する。
【0032】
定着筋3はコンクリート部材1の側面からは湾曲した形で、継ぎ目のない状態で、または上下に分離している場合は引張力に対して湾曲した形を維持できる程度に部分的に重複した状態で突出する。突出する部分の形状は円弧状、トラック形状、楕円形状等となる。
【0033】
隣接するコンクリート部材1,1は定着筋3,3が互いに重複しない程度に、定着筋3,3の先端間に距離が保たれるように配置され、図2−(b) に示すように平面上は必ずしも両定着筋3,3が同一線上に位置している必要はないが、両定着筋3,3が同一線上に配置されることもある
【0034】
ループ筋4はコンクリート部材1の幅方向には図2−(a) に示すように縦断面上、双方の定着筋3,3の突出する部分と交わる程度の長さを持ち、定着筋3に重なる両側の湾曲部分とその湾曲部分をつなぐ部分から円弧状、トラック形状、楕円形状等、実質的に環状に閉じた形をする。
【0035】
ループ筋4はコンクリート部材1,1の側面間の接合部2に充填されるコンクリート等の充填材5を通じて定着筋3から伝達される引張力に対して形状を維持できればよいため、1本の鉄筋を環状に折り曲げ、突合せ部分を溶接して完全に閉じた形に形成される他、1本の鉄筋を折り曲げ、両端部分を重複させる等により実質的に閉じた形と同等の機能を発揮する形に形成される場合もある。
【0036】
ループ筋4は定着筋3,3間に跨って配筋されることで、充填材5との付着力によって定着筋3との間で引張力を伝達し、定着筋3に重なって配置されないため、図2−(b) に示すようにコンクリート部材1の軸方向にクリアランスを確保した状態で軸方向に配列する定着筋3,3の間に配筋される
【0037】
図2,図8,図9は定着筋3とループ筋4に包囲された領域に、双方に交差する方向としてコンクリート部材1の軸方向に補強筋6を配筋し、接合部2の耐力と靱性を高めた場合を示す。接合部2にはまた、軸方向に上端筋7と下端筋8が配筋され、更に必要により図9に示すようにPC鋼材9が配置される。
【0038】
【発明の効果】
各コンクリート部材の対向する面から上端筋位置と下端筋位置を結ぶ定着筋を突出させ、双方のコンクリート部材の定着筋間に跨って環状のループ筋を配筋することで、コンクリート部材間に充填される充填材との付着力によって定着筋との間でコンクリート部材の幅方向の引張力を伝達させるため、ループ筋を定着筋に重ねて配置する必要がなく、製作誤差や施工誤差に関係なく、双方のコンクリート部材の定着筋をループ筋によって連結することが可能になる。
【0039】
定着筋間に跨るループ筋によって定着筋間で引張力の伝達が行われることで、双方の定着筋が互いに重なる必要もなく、ループ筋が定着筋に重なる必要もないため、ループ筋の配筋の前後を問わずにコンクリート部材を高さ方向と幅方向、及び軸方向のいずれの方向にも自由に移動させることができ、製作誤差を吸収するための位置調整や施工誤差が生じたときの位置調整の他、先行するコンクリート部材の脇や上方にコンクリート部材を設置するための空間が確保されない場合にも最後のコンクリート部材を設置することが可能になる。
【0040】
また図5,図6の結果から、初期弾性限界点以降には重ね継手による場合よりループ筋による場合の方が高い変形能力を発揮する上、ループ筋による場合は重ね継手で連結した場合と同等程度のひび割れ発生限界応力度の発生荷重と終局曲げ耐力を発揮すると言える。
【0041】
更に定着筋とループ筋に包囲された領域に、双方に交差する方向に補強筋を配筋することで、ループ筋が負担する引張力を、ループ筋と補強筋を介して定着筋とループ筋に包囲された領域の充填材に圧縮力として作用させることができるため、定着筋とループ筋に包囲された領域におけるひび割れ発生防止効果が向上する。またループ筋が負担する引張力に対して補強筋が抵抗するため、ループ筋自身の抵抗力が向上する。
【図面の簡単な説明】
【図1】隣接するコンクリート部材に埋設された定着筋とループ筋の関係を示した斜視図である。
【図2】(a) は図4で使用した本発明の試験体の配筋状態を示した立面図、(b) は(a) の平面図である。
【図3】図4で使用した重ね継手による試験体の配筋状態を示した立面図である。
【図4】(a) は試験体への載荷要領を示した立面図、(b) は(a) の平面図である。
【図5】図2,図3に示す試験体の接合部における変位と荷重の関係を示したグラフである。
【図6】図2,図3に示す試験体の接合部における鉄筋の歪みと荷重の関係を示したグラフである。
【図7】(a) ,(b) は橋桁を構成するコンクリート部材の例を示した斜視図である。
【図8】コンクリート部材接合部の詳細を示した斜視図である。
【図9】定着筋とループ筋に囲まれた部分にコンクリート部材の軸方向にPC鋼材を配置した様子を示した立面図である。
【図10】(a) はコンクリート部材が複数個のユニットから構成される場合の架設状態を示した立面図、(b) は(a) のx−x線断面図である。
【図11】図10−(b) の配筋状態を示した正面図である。
【図12】(a) は継手筋を用いて主筋を互いに連結した従来構造を示した立面図、(b) は(a) の平面図である。
【図13】(a) は継手筋を用いて主筋を互いに連結した他の従来構造を示した立面図、(b) は(a) の平面図である。
【図14】(a) は主筋を直接互いに連結した従来構造を示した立面図、(b) は(a) の平面図である。
【図15】(a) はループ状に形成した主筋や定着筋を直接互いに連結した従来構造を示した立面図、(b) は(a) の平面図である。
【符号の説明】
1……コンクリート部材、1a……上端筋、1b……下端筋、2……接合部、3……定着筋、4……ループ筋、5……充填材、6……補強筋、7……上端筋、8……下端筋、9……PC鋼材、10……ユニット、10a……上床版、10b……下床版、10c……横桁、13……継手筋。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to a concrete slab arranged in parallel in the direction perpendicular to the bridge axis in the case of a bridge girder, or a concrete slab laid between beams in the case of a building, etc. The present invention relates to a concrete member connecting structure for connecting concrete members arranged in a horizontal direction.
[0002]
Problems to be solved by the prior art and the invention
For example, when a bridge girder or a building slab is constructed from a precast concrete slab, the concrete members that have a certain length in the axial direction in the completed state and are connected in the width direction are arranged in parallel in the width direction. In the case, since it is necessary to ensure the continuity of the adjacent concrete members, the concrete members are arranged at a distance from each other in the width direction, and the reinforcing steel for the joints arranged in the space between the adjacent concrete members and the concrete to be filled. Joined by
[0003]
Concrete slabs are manufactured in a form that is divided into a plurality of units (segments) in the axial direction for convenience of manufacture and transportation, and are connected to each other in the width direction while being connected to each other in the erection (construction) position of the slab. It may be done.
[0004]
As shown in FIGS. 12 and 13, the adjacent concrete members are usually provided with joint bars 13 between main bars and anchor bars protruding from the side surfaces of the respective concrete members, and connected by lap joints. As shown in FIG. 15, a concrete member is formed by directly overlapping and connecting both main reinforcing bars and anchoring bars, or by overlapping anchoring bars which are curved and project in an arc shape from the end face of each concrete member as shown in FIG. It is joined so that the transmission of tensile force is performed between them.
[0005]
In either method, the transmission capacity of the tensile force is determined by the joint length by overlapping and connecting the reinforcing bars. However, as shown in FIGS. 14 and 15, in the method in which both main bars and anchor bars are directly overlapped in the axial direction of the concrete member, Since both main reinforcements are engaged in the axial direction of the concrete member, and since many main reinforcements are arranged in the axial direction on the side surface of the concrete member, the reinforcement of the main reinforcement at the time of manufacturing the concrete member is provided. If there is an error, it is difficult to completely overlap all the main bars and the like.
[0006]
Further, in these cases, since the concrete member installed later cannot be moved in the axial direction, it is also difficult to adjust the position of the concrete member installed later so as to overlap the main reinforcement of the preceding concrete member.
[0007]
Further, the concrete member installed later is dropped to a position at a distance from the preceding concrete member and then moved in a direction approaching the preceding concrete member or dropped into the erection position from above. Since it is inevitable to install the concrete member, if the space for installing the concrete member is not ensured beside or above the preceding concrete member, the last concrete member cannot be installed.
[0008]
From the above background, the present invention makes it possible to install a concrete member without being affected by a manufacturing error or a construction error of the concrete member, or a space around an installation position, while securing the same strength as that of a lap joint or the like. It proposes a possible connection structure of concrete members.
[0009]
[Means for Solving the Problems]
The present invention is protruded fixing muscles connecting the upper muscle position and lower muscle position from the opposite sides of each concrete element, Ri straddled between fixing muscles of both concrete element, on a cross section perpendicular to the axis of the concrete member, fixing muscle Arranging an annular loop between the anchoring streaks arranged in the axial direction so as to intersect with the anchoring streaks without intersecting with the anchoring streaks. It is possible to install up to the last concrete member regardless of the manufacturing error or construction error of the member, or the size of the space around the installation position.
[0010]
The connected concrete members are joined by arranging the loop reinforcement and filling the concrete members with a filler such as concrete or mortar.
The loop bars straddle between the anchor bars of both concrete members to be connected, and are arranged so as to intersect the anchor bars on a cross section orthogonal to the axis of the concrete member, and are attached to the filler filled between the concrete members. The tensile force transmits the tensile force in the width direction of the concrete member between the fixing member and the anchoring muscle.
[0011]
From doing tensile force transmitted adhesion, loop muscle does not need to be arranged to overlap the fixing muscle, construction error during fabrication errors or concrete member installation on reinforcement of the fixing muscle to concrete members It is permissible and it is possible to connect the anchoring streaks of both concrete members by loop stirrups, regardless of manufacturing or construction errors .
[0012]
Since loop muscles and by fixing muscle between a tensile force of the transfer of both concrete parts is carried out by the filling material, there is no need to both fixing muscle overlap each other and never loop muscle overlaps directly fixing muscle, The concrete member can be freely moved in any of the height direction, the width direction, and the axial direction regardless of the arrangement of the loop reinforcement.
[0013]
As a result, in addition to the position adjustment to absorb manufacturing errors and the position adjustment when a construction error occurs, the axial direction can be adjusted even when the space for installing the concrete member is not secured beside or above the preceding concrete member. Movement to allows the last concrete member to be installed.
[0014]
Also, when reinforcing bars are arranged in the direction surrounded by the anchoring bars and the loop bars in directions intersecting with each other, such as the axial direction of the concrete member, the tensile force borne by the loop bars is applied to the loop bars and the reinforcing bars. Can act as a compressive force on the filler in the region surrounded by the fixing and loop streaks, thereby improving the effect of preventing cracking in the region surrounded by the fixing and loop streaks. In addition, since the reinforcing bar engaging with the loop bar resists the tensile force borne by the loop bar, the resistance of the loop bar itself is improved.
[0015]
FIG. 5 shows the relationship between the displacement and the load at the center of the joint 2 at the joint 2 where the concrete members 1 and 1 are connected using the loop streak 4 and the anchor streak 3 shown in FIG. This is shown in comparison with the case where they are connected by the used lap joint.
[0016]
Here, as shown in FIG. 10, for the purpose of grasping the bending behavior of the connecting floor slab in an actual bridge girder using a concrete member 1 composed of a plurality of units (segments) 10, two concrete members 1 are used. , 1 are connected in the width direction to give a specimen with a bending span length of 2500 mm and a thickness of 250 mm as a shape close to the actual size, and the width (depth) is set to the span length so that the behavior as a plate is not outstanding. Is set to 500 mm as 1/3 or less.
[0017]
The loading was performed by applying a concentrated load from above the loading plate covering the entire surface of the joint until a tensile failure occurred, so that the load was evenly applied to the joint as shown in FIG.
FIG. 5 shows a joint bar 13 used for a test body 11 connected by a lap joint, a case where a normal reinforcing bar is used as a loop bar 4 used for a test body 12 of the present invention, and a case where an epoxy resin is coated on the surface. 2 shows the results of two types of test specimens (11N, 11E, 12N, and 12E).
[0018]
11N and 11E show the results of a test piece using a normal reinforcing bar as the joint reinforcing bar 13 and a test piece using an epoxy resin-coated reinforcing bar, respectively. The result of the test body using the resin-coated rebar is shown.
[0019]
From the results shown in FIG. 5, there is no difference in the behavior of each specimen (11N, 11E, 12N, 12E) in the initial elastic range, but the behavior after the initial elastic limit point is higher than that in the case of the lap joint (11N, 11E). It can be seen that the loop muscle 4 (12N, 12E) exhibits a higher deformability. In the case of the loop bars 4, the fixing bars 3, 3 buried in each concrete member 1 are connected via the loop bars 4 without being directly overlapped with each other, so that the fixing bars 3, 3 that bear the tensile force are provided. This is considered to be because the continuity of the film is reduced.
[0020]
When the load P at which the crack occurrence limit stress is generated is calculated from the design limit value of the crack occurrence limit stress (σ t = 3.36 N / mm 2 ), P = 30.5 kN. As shown, it almost coincides with the crack generation limit stress generation load of each specimen obtained from the curve of each specimen shown in FIG.
[0021]
Therefore, it is confirmed that the design limit value σ t of the crack generation limit stress may be used as the crack generation limit stress of the concrete slab to which the concrete members 1 and 1 are connected by using the loop bars 4.
[0022]
[Table 1]
Figure 0003585444
Table 2 shows the ultimate bending strength obtained from the curve for each specimen in FIG. According to Table 2, with regard to the ultimate bending strength, when the loop bar 4 is used (12N, 12E), the proof strength tends to be relatively lower than when the lap joint is used (11N, 11E). Since the loop bars 4 are not overlapped with the anchor bars 3 embedded in the concrete member 1, the loop bars 4 are more easily deformed when the anchor bars 3, 3 are connected using the loop bars 4, and the compressive strain of the concrete is reduced. It is thought that this is to excel early. However, it can be seen that even when the loop streaks 4 are used, the design proof stress is sufficiently exceeded.
[0023]
[Table 2]
Figure 0003585444
FIG. 6 shows the measurement results of the reinforcing bar strain at the joint 2 of the concrete members 1 and 1. In the case of a lap joint, the strain of the joint bar 13 is shown, and when the loop bar 4 is used, the strain of the loop bar 4 is shown. From FIG. 6, it can be seen from FIG. 6 that when the loop bar 4 is used, the loop bar 4 together with the anchor bar 3 constrains the concrete, which is the filler 5 surrounded by both, together with the anchor bar 3 in the final state after the occurrence of a crack, thereby simultaneously reducing the tensile force. It can be seen that resistance is exerted and the toughness of the joint 2 is improved.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the relationship between the fixing bars 3 and 3 and the loop bars 4 protruding from the opposing surfaces of the concrete members 1 and 1 connected to each other.
[0025]
As shown in FIGS. 7 (a) and 7 (b), the concrete members 1 have a certain length in the axial direction in the completed state, and are arranged side by side at intervals in the width direction. FIG. 7 shows an example of a slab of a bridge girder. The concrete member 1 is supported by piers, abutments, beams and other fulcrums at both ends in the axial direction, such as a slab of a building, and is connected to each other in the width direction. The concrete member 1 is used for general concrete floor slabs, and the sectional shape of the concrete member 1 is not limited.
[0026]
Although the concrete member 1 is mainly made of precast concrete, the concrete member 1 is cast at the joint 2 between the concrete members 1 or 1 or before the filling or filling of the filler 5 such as concrete to be filled. In the case where the concrete 1 is cast or filled and is separately cast from the joint 2, it may be made of cast-in-place concrete. Further, the prestress may be introduced into the concrete member 1 in the axial direction or in the axial direction and the width direction depending on the length of the erection section, the application, and the like.
[0027]
When the erection section (distance between fulcrums) is large, the concrete member 1 is manufactured in a form divided into a plurality of units (segments) 10 in the axial direction as shown in FIG. While being connected to each other in the axial direction at the erection (construction) position, there are cases where the connection is also made in the width direction. In this case, the integrity of the plurality of units 10 in the axial direction is ensured by the PC steel material 9 or the like that is installed in the unit 10 located on the fulcrum and is installed in the axial direction of the concrete member 1. In FIG. 10- (a), △ indicates a fulcrum.
[0028]
FIG. 10- (b) shows the unit 10 located on the fulcrum to which the PC steel material 9 and the like are fixed. The PC steel material 9 and the like are deflected between the floor slabs 10a and 10b above and below the unit 10 on the fulcrum. A horizontal beam 10c is formed for fixing the ends thereof. FIG. 10- (b) shows a section taken along line xx of FIG. FIG. 11 shows the arrangement of reinforcing bars in each unit 10 and the joint 2 between the units 10 and 10 adjacent in the width direction.
[0029]
The fixing streaks 3 project from the opposing surfaces of each concrete member 1 so as to connect the positions of the upper streaks 1a and the lower streaks 1b, and the loop streaks 4 straddle between the fixing streaks 3 of the concrete members 1,1. Arranged.
[0030]
The side surface of the concrete member 1 from which the anchoring streaks 3 protrude is inclined from the lower end to the upper end so that the distance from the opposing side surface of the concrete member 1 increases from the lower end to the upper end in order to ensure safety against shear failure of the joint 2. .
[0031]
The fixing streaks 3 are arranged separately from the upper end streaks 1a and the lower streaks 1b arranged inside the concrete member 1 as shown in FIGS. 1 and 2, and are fixed in the concrete member 1 and project from the side surfaces thereof. As a part of the case where the upper reinforcing bar 1a and the lower reinforcing bar 1b are continuously arranged, they protrude from the side surface of the concrete member 1.
[0032]
The anchoring streak 3 is curved from the side of the concrete member 1 and is in a seamless state or, if separated vertically, partially overlapping so as to maintain a curved shape against tensile force. Protrude with. The shape of the protruding portion is an arc, a track, an ellipse, or the like.
[0033]
The adjacent concrete members 1 and 1 are arranged so that the distance between the tips of the anchoring streaks 3 and 3 is maintained so that the anchoring streaks 3 and 3 do not overlap with each other, and as shown in FIG. On the upper side, both fixing streaks 3 are not necessarily located on the same line, but both fixing streaks 3 are sometimes arranged on the same line .
[0034]
The loop streak 4 has a length in the width direction of the concrete member 1 such that it intersects with the protruding portions of both anchoring streaks 3 and 3 in the longitudinal section as shown in FIG. A substantially circular closed shape such as an arc shape, a track shape, or an elliptical shape is formed from the overlapping curved portions on both sides and a portion connecting the curved portions.
[0035]
Since the loop bar 4 only needs to be able to maintain its shape with respect to the tensile force transmitted from the anchoring bar 3 through a filler 5 such as concrete filled in the joint 2 between the side surfaces of the concrete members 1 and 1, one reinforcing bar In addition to being formed into a completely closed shape by bending the butt portion into a circular shape and welding the butt portion, a shape that exhibits the same function as the substantially closed shape by bending one rebar and overlapping both end portions, etc. In some cases.
[0036]
Loop muscle 4 by being reinforcement over between fixing muscles 3,3, transmit a tensile force between the fixing muscle 3 by adhesion between the filler 5 and is not disposed to overlap the fixing muscle 3 Therefore, as shown in FIG. 2 (b), the concrete members 1 are arranged between the fixing bars 3, 3 arranged in the axial direction with a clearance secured in the axial direction .
[0037]
2, 8 and 9 show that reinforcing bars 6 are arranged in the area surrounded by the anchoring bars 3 and the loop bars 4 in the axial direction of the concrete member 1 as a direction intersecting both, and the strength of the joint 2 is improved. The case where toughness is increased is shown. An upper end bar 7 and a lower end bar 8 are arranged in the joint portion 2 in the axial direction, and a PC steel material 9 is further arranged as necessary as shown in FIG.
[0038]
【The invention's effect】
Filling between concrete members by protruding anchoring bars connecting the upper and lower muscle positions from the opposing surfaces of each concrete member, and arranging annular loop bars across the anchoring muscles of both concrete members Since the tensile force in the width direction of the concrete member is transmitted between the anchoring streaks and the anchoring streaks by the adhesive force with the filling material, there is no need to arrange loop streaks on the anchoring streaks, regardless of manufacturing errors and construction errors. In addition, it becomes possible to connect the anchoring streaks of both concrete members by loop streaks.
[0039]
Since the tensile force is transmitted between the anchoring muscles by the loop muscles extending between the anchoring muscles, both the anchoring muscles do not need to overlap each other, and the loop muscles do not need to overlap the anchoring muscles. The concrete member can be freely moved in any of the height direction, the width direction, and the axial direction regardless of the front and back, and the position adjustment to absorb the manufacturing error and the construction error In addition to the position adjustment, the last concrete member can be installed even when a space for installing the concrete member is not secured beside or above the preceding concrete member.
[0040]
Also, from the results of FIGS. 5 and 6, after the initial elastic limit point, the case using the loop streaks exhibits higher deformation capacity than the case using the lap joints, and the case using the loop streaks is equivalent to the case where the joints are connected with the lap joints. It can be said that it exerts the load generated at the crack occurrence limit stress level and the ultimate bending strength.
[0041]
In addition, by arranging reinforcing bars in a direction intersecting both in the region surrounded by the anchoring muscle and the loop muscle, the tensile force borne by the loop muscle is increased by the fixing muscle and the loop muscle via the loop muscle and the reinforcing muscle. Can act as a compressive force on the filler in the region surrounded by the fixing streaks and the loop streaks, thereby improving the effect of preventing cracks in the region surrounded by the fixing streaks and the loop streaks. Further, since the reinforcing bars resist the tensile force borne by the loop bars, the resistance of the loop bars themselves is improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a relationship between a fixing streak embedded in an adjacent concrete member and a loop streak.
2 (a) is an elevation view showing the arrangement of reinforcing bars of the specimen of the present invention used in FIG. 4, and FIG. 2 (b) is a plan view of FIG.
FIG. 3 is an elevation view showing a state of reinforcing bars of a test body by a lap joint used in FIG. 4;
FIG. 4A is an elevation view showing a procedure for loading a test piece, and FIG. 4B is a plan view of FIG.
FIG. 5 is a graph showing a relationship between a displacement and a load at a joint of the test pieces shown in FIGS. 2 and 3;
FIG. 6 is a graph showing a relationship between a strain of a reinforcing bar and a load at a joint portion of the test body shown in FIGS. 2 and 3;
FIGS. 7A and 7B are perspective views showing examples of concrete members constituting a bridge girder.
FIG. 8 is a perspective view showing details of a concrete member joint.
FIG. 9 is an elevational view showing a state where a PC steel material is arranged in the axial direction of the concrete member in a portion surrounded by the fixing streaks and the loop streaks.
FIG. 10A is an elevation view showing an erected state when a concrete member is composed of a plurality of units, and FIG. 10B is a sectional view taken along line xx of FIG.
FIG. 11 is a front view showing the bar arrangement state of FIG. 10- (b).
12A is an elevational view showing a conventional structure in which main reinforcements are connected to each other using joint reinforcements, and FIG. 12B is a plan view of FIG.
13 (a) is an elevation view showing another conventional structure in which main reinforcements are connected to each other using joint reinforcements, and FIG. 13 (b) is a plan view of FIG.
14A is an elevation view showing a conventional structure in which main bars are directly connected to each other, and FIG. 14B is a plan view of FIG.
FIG. 15A is an elevation view showing a conventional structure in which main loops and fixing streaks formed in a loop shape are directly connected to each other, and FIG. 15B is a plan view of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Concrete member, 1a ... Top bar, 1b ... Bottom bar, 2 ... Junction, 3 ... Fixing bar, 4 ... Loop bar, 5 ... Filling material, 6 ... Reinforcing bar, 7 ... ... Top bar, 8 ... Bottom bar, 9 ... PC steel, 10 ... Unit, 10a ... Top floor slab, 10b ... Bottom floor slab, 10c ... Girder, 13 ... Joint bar.

Claims (2)

互いに距離を隔てて対向するコンクリート部材の連結構造であり、各コンクリート部材の対向する面からは上端筋位置と下端筋位置を結ぶ定着筋が突出し、双方のコンクリート部材の定着筋間に跨り、コンクリート部材の軸に直交する断面上、定着筋と交わるように、且つ定着筋と重ね合わせられることなく、環状のループ筋が配筋されると共に、定着筋とループ筋に包囲される領域に、双方に交差する方向に、定着筋に前記領域の内側から係合する補強筋とループ筋に前記領域の内側から係合する補強筋が配筋され、コンクリート部材間に充填材が充填され、ループ筋が充填材との付着力によって定着筋との間でコンクリート部材の幅方向の引張力を伝達しつつ、ループ筋が負担する引張力を、ループ筋と補強筋を介して定着筋とループ筋に包囲された領域の充填材に圧縮力として作用させるコンクリート部材の連結構造。It is a connection structure of concrete members facing each other at a distance from each other, and anchoring bars connecting the upper and lower muscle positions project from the opposing surfaces of each concrete member, straddling between the anchoring muscles of both concrete members, and on the section perpendicular to the axis of the member, to intersect fixing muscle, without being brought and superimposed with fixing muscle, in the region where the annular loop muscle is surrounded Rutotomoni is Haisuji, the fixing muscle and loop muscle, both In the direction intersecting the reinforcing bars, reinforcing bars that engage the anchoring bars from the inside of the region and reinforcing bars that engage the loop bars from the inside of the region are arranged , the filler is filled between the concrete members, and the loop bars are filled. There while transmitting the width direction of the tensile force of the concrete element between the fixing muscles by adhesion to the filler, the tensile force loop muscles will bear, fixing muscle and loop muscles via the loop muscle and reinforcement Coupling structure of concrete member which acts as a compression force to the filler surrounding area. コンクリート部材は軸方向に複数個のユニットに分割された形で製作され、ユニットはコンクリート部材の設置位置において軸方向に互いに連結される請求項記載のコンクリート部材の連結構造。Coupling structure of the concrete member is manufactured in a form which is divided into a plurality of units in the axial direction, the concrete member of claim 1, wherein units are connected to each other in the axial direction in the installed position of the concrete member.
JP2001028105A 2001-02-05 2001-02-05 Concrete member connection structure Expired - Lifetime JP3585444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028105A JP3585444B2 (en) 2001-02-05 2001-02-05 Concrete member connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028105A JP3585444B2 (en) 2001-02-05 2001-02-05 Concrete member connection structure

Publications (2)

Publication Number Publication Date
JP2002227130A JP2002227130A (en) 2002-08-14
JP3585444B2 true JP3585444B2 (en) 2004-11-04

Family

ID=18892662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028105A Expired - Lifetime JP3585444B2 (en) 2001-02-05 2001-02-05 Concrete member connection structure

Country Status (1)

Country Link
JP (1) JP3585444B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007337A (en) * 2008-06-26 2010-01-14 East Japan Railway Co Jointing structure of concrete member
KR101528033B1 (en) * 2013-08-29 2015-06-10 주식회사 포스코 Precast segment assembly and precast segment structure by using of it)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651509B2 (en) * 2005-11-09 2011-03-16 三井住友建設株式会社 Columnar structure
JP4660405B2 (en) * 2006-03-23 2011-03-30 カイエー共和コンクリート株式会社 Concrete block connection structure
JP5285305B2 (en) * 2008-03-05 2013-09-11 大成建設株式会社 Precast member joint structure
JP5667546B2 (en) * 2011-04-08 2015-02-12 横河工事株式会社 Precast floor slab and its joint structure and connection method
NZ713761A (en) 2013-05-24 2017-05-26 Raytheon Co Adaptive-optic having meander resistors
KR101833373B1 (en) * 2014-07-25 2018-02-28 김선곤 Precast modular bridge and its construction method
JP6411836B2 (en) * 2014-09-25 2018-10-24 中日本高速道路株式会社 Joining method and structure between existing structure and replacement member
JP6932049B2 (en) * 2017-08-31 2021-09-08 鹿島建設株式会社 Connection structure and connection method
JP7169152B2 (en) * 2018-10-18 2022-11-10 清水建設株式会社 Joint structure of precast concrete members
JP7328004B2 (en) * 2019-05-23 2023-08-16 鹿島建設株式会社 Reinforcing bar and its manufacturing method
CN110130489A (en) * 2019-06-17 2019-08-16 湘潭大学 The modulated shearing double inclined plane assembling type node of one kind and its construction method
JP7157092B2 (en) * 2020-02-20 2022-10-19 東亜建設工業株式会社 Construction method of precast concrete structure
CN112227175A (en) * 2020-09-30 2021-01-15 山东交通学院 Assembly type bridge structure for improving fulcrum shear-resisting bearing capacity and construction method
JP7456686B1 (en) 2023-06-23 2024-03-27 共和コンクリート工業株式会社 How to join concrete parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007337A (en) * 2008-06-26 2010-01-14 East Japan Railway Co Jointing structure of concrete member
KR101528033B1 (en) * 2013-08-29 2015-06-10 주식회사 포스코 Precast segment assembly and precast segment structure by using of it)

Also Published As

Publication number Publication date
JP2002227130A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP3585444B2 (en) Concrete member connection structure
KR100704874B1 (en) Structures of prefabricated concrete pier strengthened in shear by steel pipe
JP6652754B2 (en) Joint structure of precast concrete slab for rapid construction and its construction method
KR101913069B1 (en) Prestressed Steel-Concrete Composite Girder and Method for Fabricating thereof
JP6375079B1 (en) Joint structure of precast composite floor slab perpendicular to the bridge axis and its construction method
JP5525489B2 (en) Concrete floor slab joint structure
KR20160097888A (en) End Continuing Structure for Truss Decks
KR101998822B1 (en) Composite rahmen bridge, steel girder for that and construction method of composite rahmen bridge
JP5004880B2 (en) Concrete member joint structure
JP2017036554A (en) Cast-in-place joint structure of precast floor slab
JP2003253621A (en) Continuous beam structure for continuing existing simple beam bridge
JP3830767B2 (en) Continuous girder for bridge
JP4447632B2 (en) Beam and beam-column joint structure and method of joining the same
KR102274358B1 (en) Precast Deck for Bridge Structure Cantilever
JP2008088634A (en) Composite steel-concrete floor slab
JPH05340031A (en) Prestressed concrete girder and its manufacture
KR102327700B1 (en) Girder structure and construction method for continuity of supporting portion of girder using the same
JP5508070B2 (en) Joining structure and joining method of steel member and concrete member
JP6573111B2 (en) Beam-column joint structure
JP4247485B2 (en) Full PCa floor panel joint structure
KR101874755B1 (en) Prestressed Steel-Concrete Composite Girder and Method for Fabricating thereof
KR102398121B1 (en) Connection structure of the girder and composite rahmen bridge using the same
JP7449126B2 (en) Column beam joint structure
KR102655163B1 (en) Prefabricated deck-girder composite connection structures and it's construction methods
JP6978895B2 (en) Column-beam joint structure and its construction method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040803

R150 Certificate of patent or registration of utility model

Ref document number: 3585444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150813

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term