JP3582168B2 - Azeotropic cleaning composition - Google Patents

Azeotropic cleaning composition Download PDF

Info

Publication number
JP3582168B2
JP3582168B2 JP21859595A JP21859595A JP3582168B2 JP 3582168 B2 JP3582168 B2 JP 3582168B2 JP 21859595 A JP21859595 A JP 21859595A JP 21859595 A JP21859595 A JP 21859595A JP 3582168 B2 JP3582168 B2 JP 3582168B2
Authority
JP
Japan
Prior art keywords
cleaning
composition
present
azeotropic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21859595A
Other languages
Japanese (ja)
Other versions
JPH0959680A (en
Inventor
良和 小田
浩明 中村
重美 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP21859595A priority Critical patent/JP3582168B2/en
Publication of JPH0959680A publication Critical patent/JPH0959680A/en
Application granted granted Critical
Publication of JP3582168B2 publication Critical patent/JP3582168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、ノルマルデカンと3−メトキシ−3−メチル−1−ブタノールとからなる非水系の共沸様洗浄剤組成物に関する。
【0002】
更に詳しくは、自動車、電機、電子、機械、精密機器等の加工部品類に付着する機械油、グリース、フラックス、ワックス等の油類に対する洗浄力に優れ、リンスが不要で且つ繰り返し蒸留回収される条件下においても使用可能で、1,1,1−トリクロロエタン、フロン113等の洗浄剤用途を代替することが可能な共沸様洗浄剤組成物に関する。
【0003】
【従来の技術】
各種工業分野で使用される脱脂洗浄剤は、非水系洗浄剤と水系洗浄剤に大別され、従来使用されて来た非水系洗浄剤としては、1,1,1−トリクロロエタン、フロン113、トリクロロエチレン、テトラクロロエチレン、メチレンクロライド等のハロゲン系溶剤、ガソリン、灯油等の石油系溶剤、メチルアルコール、イソプロピルアルコール等のアルコール系溶剤等があげられ、水系洗浄剤としては、種々の酸、アルカリ、界面活性剤等が配合されたものがある。
【0004】
これらの洗浄剤は、各分野で使いわけられているが、特に多岐に亘る洗浄分野、鉱物性の油脂分が多量に付着した加工部品、精密部品、しみや錆びの発生しやすい金属部品、洗浄籠に多数の部品を入れて扱う小物部品等の脱脂洗浄については、非水系で高脱脂力、不燃性等に優れた特性を備えた1,1,1−トリクロロエタン、フロン113を中心とするハロゲン系溶剤が主体に使用されてきた。
【0005】
しかし、近年、地球環境問題がクローズアップし、優れた脱脂洗浄剤として大量に使用されて来た1,1,1−トリクロロエタンとフロン113は、成層圏のオゾン層を破壊する物質として規制され、1995年末までに全廃しなければならないことになり、代替洗浄剤への転換が急がれている。
【0006】
また、トリクロロエチレンやパークロロエチレン等の他のハロゲン系溶剤も毒性問題や地下水汚染等の大きな環境問題を有しており、将来が危惧されている。
【0007】
そこで、代替洗浄剤候補として、従来、一部の分野で使用されていた石油系溶剤、アルコール系溶剤、及び水系洗浄剤に加えHCFC−141b、HCFC−225等のハイドロクロロフルオロカーボン類、テルペン類、グリコールエーテル類、N−メチルピロリドン等の種々の溶剤の検討が試みられている。
【0008】
しかし、これらの代替洗浄剤候補は、いずれにおいても大きな欠点があり、洗浄力、安全性、経済性等のすべての要求項目を満たすものはない。
【0009】
すなわち、HCFC−225等のハイドロクロロフルオロカーボン類は、非水系の不燃性溶剤として扱えるが、オゾン層破壊物質としても追加指定されており、将来的な代替洗浄剤にはなり得ない。
【0010】
また、石油系溶剤やアルコール系溶剤等の他の非水系溶剤は、いずれも引火の危険性があり、加えて脱脂力、安定性、毒性、臭気等のいずれかの問題要因を含んでいる。
【0011】
さらに、水系洗浄剤は、引火性がないという利点はあるが、脱脂力が弱く、且つ金属部品に対してしみや腐食問題を起こしやすく、すすぎ、乾燥、廃水処理等の付帯設備やそのためのスペースが必要等、多くの問題点がある。
【0012】
このように、いずれの代替洗浄剤候補も種々の問題点があるが、近い将来望ましい代替品が開発される見込みもなく、早急にいずれかの代替洗浄剤候補に転換せざる得ない状況にある。
【0013】
また、洗浄工程は、被洗浄物の最終製品の品質、寿命等を左右するため極めて重要であり、さらに、1,1,1−トリクロロエタンは中小企業における金属部品の洗浄に多く使用されているため、洗浄工程の拡張や廃水処理設備等を含めた多くの設備投資を伴う水系洗浄剤は、敬遠されがちである。
【0014】
そのため、自ずと腐食性のない非水系洗浄剤に着目され、オゾン層破壊がなく、高脱脂力で低毒性、且つ常温では引火性のない、比較的安全な炭化水素系溶剤が見直されている。
【0015】
しかし、これらの炭化水素系溶剤は、危険物の指定数量としての制約や安全性の問題から、洗浄槽の液容量を出来るだけ少なくすることが要求され、そのため、持ち込まれる油分量に対して十分な液容量がとれず、頻繁な液交換を強いられ、作業効率や経済性等を考慮すれば、洗浄液に混入した油分を強制的に排除するために、蒸留回収が不可欠となる。
【0016】
ところが、今までの炭化水素系の洗浄剤は、石油留分、もしくは、これらに種々の物質を配合した組成物が主体であり、これらを繰り返し蒸留回収していると、成分変化が起こり、組成物の特性を維持できず、被洗浄物の洗浄不良や腐食問題等を引き起こすことが分かった。
【0017】
そこで、本発明者らは特開平6−220494号公報において、ノルマルデカン、ノルマルウンデカン等を使用した洗浄剤組成物を提案し、上記の問題解決を図っているが、これらの洗浄剤組成物においても、フラックス等に対しては、除去効果が十分でないことが分かった。
【0018】
また、フラックス等の洗浄剤として提案されている種々のグリコールエーテル系化合物は、水や界面活性剤と混合され、水系、準水系洗浄剤として使用されるため、油類に対する除去効果は低く、さらには蒸留回収できないといった問題もある。
【0019】
このように、機械油、フラックス、ワックス、グリース等の全ての汚れに対する洗浄力を満足し、リンスが不要で、且つ繰り返し蒸留回収して使用できるといった総合的な要求性能を満足しうる非水系の洗浄剤は、まだ開発されていないのが現状である。
【0020】
【発明が解決しようとする課題】
本発明は、上記の課題に鑑みてなされたものであり、その目的は、機器等の加工部品に付着する機械油、フラックス、ワックス等に対して洗浄力に優れ、リンス剤が不要で、洗浄後の乾燥性も良く、繰り返し蒸留回収使用が可能で、且つ、オゾン層破壊の問題のない、非水系の共沸様洗浄剤組成物を提供することである。
【0021】
【課題を解決するための手段】
かかる事情をふまえ、本発明者らは、前述の問題点を解決すべく種々の検討を重ねた結果、目的の共沸様洗浄剤組成物を見出し、本発明を完成するに至った。
【0022】
すなわち本発明は、50〜90重量%のノルマルデカンと、10〜50重量%の3−メトキシ−3−メチル−1−ブタノールとからなる2成分系の共沸様洗浄剤組成物である。
【0023】
本願発明において共沸様洗浄剤組成物とは、機械油やフラックス等に対して高い除去能力を有する洗浄剤であって、ノルマルデカンと3−メトキシ−3−メチル−1−ブタノールとからなる2成分系組成物であり、沸点がこれら2成分の各々より低い値を示し、洗浄作業や蒸留操作を繰り返し行っても、組成や特性がほとんど変化しない組成物をいう。
【0024】
本発明の共沸様洗浄剤組成物の組成比は、ノルマルデカンが50〜90重量%、3−メトキシ−3−メチル−1−ブタノールが10〜50重量%であり、機械油やフラックス等の各種汚れの除去剤として、より望ましい共沸様洗浄剤組成物の組成比は、ノルマルデカンが70〜85重量%、3−メトキシ−3−メチル−1−ブタノールが15〜30重量%である。
【0025】
本発明の共沸様組成物は、機械油、フラックス等に対して、高脱脂力を有すると共に、洗浄工程において蒸留操作があっても、成分変化が少ないため、本組成物の特性を維持することができる。
【0026】
さらに、本発明の共沸様組成物は、ノルマルデカン、3−メトキシ−3−メチル−1−ブタノールの各々の沸点より低い沸点を有するため、揮発速度が早くなる等の優れた特性を有している。
【0027】
なお、本発明は上記2成分の共沸組成物において、優れた効果を発揮するものであり、ノルマルデカン単品では、機械油に対する除去能力は優れているが、フラックスに対する除去能力は不十分である。
【0028】
一方、3−メトキシ−3−メチル−1−ブタノール単品では、表面張力、粘度が大きく、機械油、フラックス等のいずれに対しても除去能力が不十分である。
【0029】
また、これら2成分の混合割合が、ノルマルデカン50重量%以下で、3−メトキシ−3−メチル−1−ブタノール50重量%以上の場合は、本発明の効果は得られない。
【0030】
本発明で使用されるノルマルデカンのかわりに他の飽和脂肪族炭化水素、例えば、ウンデカン、ドデカン、イソデカン等を使用しても、良好な洗浄効果を維持することはできない。
【0031】
また、本発明で使用される3−メトキシ−3−メチル−1−ブタノールのかわりに、他のグリコールエーテル系化合物、例えば、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールエーテル等を使用しても、同様に、良好な洗浄効果は得られない。
【0032】
すなわち、本発明は、50〜90重量%のノルマルデカンと10〜50重量%の3−メトキシ−3−メチル−1−ブタノールを組み合わせて使用することにより、初めて顕著な効果が現われ、目的とする非水系の共沸様洗浄剤組成物が得られる。
【0033】
本発明における共沸様洗浄剤組成物には、本組成物の性能を損なわない範囲で、他の炭化水素類、エステル類、アルコール類、エーテル類、フェノール類、界面活性剤、防錆剤等を配合することも可能である。
【0034】
本発明の共沸様洗浄剤組成物を用いて、金属、電子、精密部品等の洗浄を行なう方法は、特に限定されないが、例えば、浸漬洗浄、超音波洗浄、加温洗浄、シャワー洗浄方式等が有効であり、その後に、温風もしくは真空乾燥を行ない、洗浄液は、断続的又は連続的に蒸留回収しながら使用することが効果的である。
【0035】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明は、これらに限定されるものではない。
【0036】
実施例1
還流器を備えた300mlのフラスコに、予め調整したノルマルデカンと3−メトキシ−3−メチル−1−ブタノール混合液を100gを入れ、オイルバスで沸騰させた。
【0037】
30分後に温度が一定になったところで、フラスコ内の液相及び気相の組成をガスクロマトグラフィーにより分析し、また、その時の気相と液層の温度を測定した。
【0038】
試験結果より得られた混合組成物の気液平衡曲線を図1に示す。
【0039】
図1から明らかなように、ノルマルデカン及び3−メトキシ−3−メチル−1−ブタノールの混合液は、ノルマルデカンが50〜90重量%、3−メトキシ−3−メチル−1−ブタノールが10〜50重量%の範囲で、気相と液相の組成がほぼ同一となり、これは明らかに共沸様組成物となっている。またノルマルデカンが54〜58重量%、3−メトキシ−3−メチル−1−ブタノールが42〜46重量%の範囲で沸点が極小(約164℃)になった。
【0040】
また図1から明らかなように、ノルマルデカンが50重量%より少なく、3−メトキシ−3−メチル−1−ブタノールが50重量%より多くなると、気液相の差が大きくなっている。
【0041】
実施例2
56.0重量%のノルマルデカンと44.0重量%の3−メトキシ−3−メチル−1−ブタノールの混合物200gを蒸留フラスコに入れ、理論段数20の蒸留装置で蒸留した。
【0042】
蒸気温度を測定しながら分取液を採取し、ガスクロマトグラフィーにより分析した。結果を、表1に示す。
【0043】
【表1】

Figure 0003582168
【0044】
表1の結果より、本発明の組成物は、蒸発中に大きな組成変化を起こさず、共沸様の性質を有していることが明らかになった。
【0045】
実施例3〜実施例8、比較例1〜比較例14
試験1(マシン油の除去試験)
予め一定量のマシン油を注入したSUSパイプ(1mmφ×60mmL)を、試験溶剤500mlを入れ、25℃に保持したビーカー中に、水平にして浸漬した。
【0046】
40分後にSUSパイプを引き上げ、SUSパイプ中のマシン油の除去率を測定し、下記の評価基準で脱脂力評価を行なった。
【0047】
(評価基準)
マシン油の除去率を以下のごとく表示する。
【0048】
○:90%以上
◇:70〜89%
△:50〜69%
×:50%以下
試験1の結果を表2に示す。
【0049】
【表2】
Figure 0003582168
【0050】
試験2(フラックスの除去試験)
フラックス溶液にプリント基板を浸漬後、取り出し、30分間風乾し、230℃で2分間リフローした。
【0051】
室温に冷却したプリント基板を、40℃に保持した超音波洗浄機で、6分間洗浄した。
【0052】
洗浄後のプリント基板を、80℃で10分間乾燥し、純水中に残存フラックスを抽出後、導電率計で、イオン性残渣を測定した。
【0053】
これらの結果を表2にあわせて示す。
【0054】
(評価基準)
イオン性残渣を以下のごとく表示する。
【0055】
○:10μg/in as NaCl 以下
△:10〜14μg/in as NaCl
×:14μg/in as NaCl 以上
表2から明らかなように、本発明の共沸様洗浄剤組成物は、マシン油、フラックス、いずれの汚れに対しても、十分な洗浄効果が得られ、また、繰り返し蒸留再生を行っても、特性を維持できることが明らかになった。
【0056】
【発明の効果】
本発明の共沸様洗浄剤組成物は、機器等の加工部品に付着する機械油やプリント基板等に付着するフラックス等のいずれの汚れに対しても、十分な除去能力を持ち、且つ繰り返し蒸留回収使用が可能であり、オゾン層破壊といった環境汚染の心配もないため、従来から使用されてきた塩素系及びフロン系溶剤の代替洗浄剤として極めて有効である。
【図面の簡単な説明】
【図1】実施例1より得られたノルマルデカンと3−メトキシ−3−メチル−1−ブタノールとの混合組成物の気液平衡曲線である。[0001]
[Industrial applications]
The present invention relates to a non-aqueous azeotropic detergent composition comprising normal decane and 3-methoxy-3-methyl-1-butanol.
[0002]
More specifically, it has excellent detergency against machine oils, greases, fluxes, waxes, and other oils adhering to processed parts such as automobiles, electric appliances, electronics, machinery, precision equipment, etc., and requires no rinsing and is repeatedly distilled and collected. The present invention relates to an azeotropic detergent composition that can be used under conditions and can substitute for detergents such as 1,1,1-trichloroethane and Freon 113.
[0003]
[Prior art]
Degreasing detergents used in various industrial fields are roughly classified into non-aqueous detergents and aqueous detergents. Non-aqueous detergents conventionally used include 1,1,1-trichloroethane, Freon 113, trichloroethylene and the like. , Tetrachloroethylene, halogen solvents such as methylene chloride, petroleum solvents such as gasoline and kerosene, alcohol solvents such as methyl alcohol and isopropyl alcohol, etc. Examples of aqueous detergents include various acids, alkalis and surfactants Etc. are blended.
[0004]
These cleaning agents are used in various fields, especially in a wide variety of cleaning fields, processed parts with a large amount of mineral oils and fats, precision parts, metal parts that are prone to stains and rust, and cleaning. As for degreasing cleaning of small parts handled by putting a large number of parts in a basket, halogens such as 1,1,1-trichloroethane, non-aqueous, high-defining power, non-flammable, etc. System solvents have been mainly used.
[0005]
However, in recent years, 1,1,1-trichloroethane and chlorofluorocarbon 113, which have been used in large quantities as excellent degreasing agents due to global environmental problems, have been regulated as substances that destroy the stratospheric ozone layer. They must be completely eliminated by the end of the year, and the switch to alternative detergents is urgent.
[0006]
Other halogenated solvents such as trichlorethylene and perchlorethylene also have serious environmental problems such as toxicity problems and groundwater pollution, and their future is concerned.
[0007]
Thus, as alternative cleaning agent candidates, in addition to petroleum solvents, alcohol solvents, and aqueous cleaning agents that have been used in some fields, HCFC-141b, HCFC-225 and other hydrochlorofluorocarbons, terpenes, Various solvents such as glycol ethers and N-methylpyrrolidone have been studied.
[0008]
However, these alternative cleaning agent candidates all have major drawbacks, and none of them satisfy all the required items such as detergency, safety, and economy.
[0009]
That is, hydrochlorofluorocarbons such as HCFC-225 can be treated as a non-aqueous nonflammable solvent, but they are additionally specified as ozone depleting substances and cannot be used as a substitute in the future.
[0010]
In addition, other non-aqueous solvents such as petroleum solvents and alcohol solvents have a danger of ignition, and further include any problem factors such as degreasing power, stability, toxicity and odor.
[0011]
Further, although the water-based cleaning agent has the advantage of not being flammable, it has a weak degreasing power, and is liable to cause stains and corrosion problems on metal parts. There are many problems, such as the need for
[0012]
As described above, each of the alternative cleaning agent candidates has various problems, but there is no possibility that a desirable alternative product will be developed in the near future, and there is a situation that it is necessary to immediately switch to any of the alternative cleaning agent candidates. .
[0013]
In addition, the cleaning process is extremely important because it affects the quality and life of the final product of the object to be cleaned, and 1,1,1-trichloroethane is often used for cleaning metal parts in small and medium-sized enterprises. Water-based cleaning agents that involve a large amount of capital investment, including expansion of the cleaning process and wastewater treatment equipment, are often avoided.
[0014]
Therefore, attention has been paid to non-aqueous cleaning agents that are naturally non-corrosive, and relatively safe hydrocarbon solvents that do not deplete the ozone layer, have high degreasing power, have low toxicity, and are not flammable at room temperature are being reviewed.
[0015]
However, these hydrocarbon solvents are required to minimize the liquid volume of the washing tank as much as possible due to restrictions on the specified quantity of hazardous materials and safety issues, and therefore, a sufficient amount of A large liquid volume cannot be obtained, frequent liquid exchange is required, and in consideration of work efficiency and economy, distillation and recovery are indispensable in order to forcibly remove oil mixed in the cleaning liquid.
[0016]
However, the conventional hydrocarbon-based detergents are mainly composed of petroleum fractions or compositions in which various substances are blended with these components. It was found that the properties of the object could not be maintained, causing poor cleaning of the object to be cleaned and a problem of corrosion.
[0017]
Therefore, the present inventors have proposed a detergent composition using normal decane, normal undecane and the like in JP-A-6-220494 to solve the above-mentioned problems. However, it was found that the effect of removing flux was not sufficient.
[0018]
Further, various glycol ether compounds proposed as detergents such as fluxes are mixed with water or a surfactant, and are used as aqueous or semi-aqueous detergents. Also has the problem that it cannot be recovered by distillation.
[0019]
As described above, non-aqueous materials that satisfy the detergency of all dirt such as machine oil, flux, wax, grease, etc., do not require rinsing, and can satisfy the overall required performance such as repeated distillation and recovery. At present, cleaning agents have not been developed yet.
[0020]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an excellent detergency for machine oil, flux, wax, and the like adhering to a machined part such as equipment, without the need for a rinse agent, and for cleaning. An object of the present invention is to provide a non-aqueous azeotropic cleaning composition which has good drying properties, can be repeatedly recovered by distillation, and has no problem of destruction of the ozone layer.
[0021]
[Means for Solving the Problems]
In view of such circumstances, the present inventors have conducted various studies in order to solve the above-mentioned problems, and as a result, have found a desired azeotropic detergent composition, and have completed the present invention.
[0022]
That is, the present invention is a two-component azeotropic cleaning composition comprising 50 to 90% by weight of normal decane and 10 to 50% by weight of 3-methoxy-3-methyl-1-butanol.
[0023]
In the present invention, the azeotropic detergent composition is a detergent having a high removal ability against machine oil, flux, and the like, and is composed of normal decane and 3-methoxy-3-methyl-1-butanol. It is a component-based composition having a boiling point lower than each of these two components, and its composition and properties hardly change even when washing and distillation operations are repeated.
[0024]
The composition ratio of the azeotropic cleaning composition of the present invention is such that normal decane is 50 to 90% by weight, 3-methoxy-3-methyl-1-butanol is 10 to 50% by weight, More preferably, the composition ratio of the azeotrope-like cleaning composition as a stain remover is 70 to 85% by weight of normal decane and 15 to 30% by weight of 3-methoxy-3-methyl-1-butanol.
[0025]
The azeotrope-like composition of the present invention has a high degreasing power with respect to machine oil, flux and the like, and maintains the characteristics of the present composition because there is little change in components even when a distillation operation is performed in the washing step. be able to.
[0026]
Furthermore, since the azeotropic composition of the present invention has a boiling point lower than the boiling points of normal decane and 3-methoxy-3-methyl-1-butanol, the azeotropic composition has excellent properties such as an increased volatilization rate. ing.
[0027]
In the present invention, the azeotropic composition of the two components exhibits an excellent effect. Normal decane alone has an excellent ability to remove machine oil, but an insufficient ability to remove flux. .
[0028]
On the other hand, 3-methoxy-3-methyl-1-butanol alone has a large surface tension and a high viscosity, and has insufficient removal ability with respect to any of machine oil, flux and the like.
[0029]
When the mixing ratio of these two components is 50% by weight or less for normal decane and 50% by weight or more for 3-methoxy-3-methyl-1-butanol, the effect of the present invention cannot be obtained.
[0030]
Even if other saturated aliphatic hydrocarbons such as undecane, dodecane and isodecane are used in place of normal decane used in the present invention, a good cleaning effect cannot be maintained.
[0031]
Further, instead of 3-methoxy-3-methyl-1-butanol used in the present invention, other glycol ether compounds, for example, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, Similarly, even if dipropylene glycol ether is used, a good cleaning effect cannot be obtained.
[0032]
That is, the present invention provides a remarkable effect for the first time by using 50 to 90% by weight of normal decane and 10 to 50% by weight of 3-methoxy-3-methyl-1-butanol in combination. A non-aqueous azeotropic detergent composition is obtained.
[0033]
The azeotropic detergent composition of the present invention includes other hydrocarbons, esters, alcohols, ethers, phenols, surfactants, rust preventives, etc. within a range that does not impair the performance of the present composition. Can also be blended.
[0034]
The method for cleaning metals, electrons, precision parts, and the like using the azeotropic cleaning composition of the present invention is not particularly limited. For example, immersion cleaning, ultrasonic cleaning, warming cleaning, shower cleaning method, and the like. After that, it is effective to carry out hot air or vacuum drying, and to use the washing liquid while collecting it intermittently or continuously by distillation.
[0035]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
[0036]
Example 1
In a 300 ml flask equipped with a reflux condenser, 100 g of a previously prepared mixed solution of normal decane and 3-methoxy-3-methyl-1-butanol was put, and the mixture was boiled in an oil bath.
[0037]
When the temperature became constant after 30 minutes, the compositions of the liquid phase and the gas phase in the flask were analyzed by gas chromatography, and the temperatures of the gas phase and the liquid layer at that time were measured.
[0038]
FIG. 1 shows a gas-liquid equilibrium curve of the mixed composition obtained from the test results.
[0039]
As is clear from FIG. 1, the mixture of normal decane and 3-methoxy-3-methyl-1-butanol contained 50 to 90% by weight of normal decane and 10 to 90% by weight of 3-methoxy-3-methyl-1-butanol. In the range of 50% by weight, the composition of the gas phase and the liquid phase becomes almost the same, which is clearly an azeotropic composition. The boiling point was extremely low (about 164 ° C.) in the range of 54 to 58% by weight of normal decane and 42 to 46% by weight of 3-methoxy-3-methyl-1-butanol.
[0040]
Further, as is apparent from FIG. 1, when the amount of normal decane is less than 50% by weight and the amount of 3-methoxy-3-methyl-1-butanol is more than 50% by weight, the difference between the gas and liquid phases becomes large.
[0041]
Example 2
200 g of a mixture of 56.0% by weight of normal decane and 44.0% by weight of 3-methoxy-3-methyl-1-butanol was placed in a distillation flask and distilled with a distillation apparatus having 20 theoretical plates.
[0042]
An aliquot was collected while measuring the vapor temperature, and analyzed by gas chromatography. Table 1 shows the results.
[0043]
[Table 1]
Figure 0003582168
[0044]
From the results in Table 1, it was clarified that the composition of the present invention did not cause a large change in composition during evaporation and had azeotropic properties.
[0045]
Examples 3 to 8, Comparative Examples 1 to 14
Test 1 (machine oil removal test)
A SUS pipe (1 mmφ × 60 mmL) into which a predetermined amount of machine oil had been injected in advance was horizontally immersed in a beaker kept at 25 ° C., containing 500 ml of a test solvent.
[0046]
After 40 minutes, the SUS pipe was pulled up, the removal rate of machine oil in the SUS pipe was measured, and the degreasing power was evaluated according to the following evaluation criteria.
[0047]
(Evaluation criteria)
The removal rate of the machine oil is displayed as follows.
[0048]
:: 90% or more ◇: 70 to 89%
Δ: 50 to 69%
X: 50% or less The results of Test 1 are shown in Table 2.
[0049]
[Table 2]
Figure 0003582168
[0050]
Test 2 (flux removal test)
The printed circuit board was immersed in the flux solution, taken out, air-dried for 30 minutes, and reflowed at 230 ° C. for 2 minutes.
[0051]
The printed circuit board cooled to room temperature was washed with an ultrasonic cleaner kept at 40 ° C. for 6 minutes.
[0052]
The washed printed circuit board was dried at 80 ° C. for 10 minutes, and after extracting residual flux in pure water, ionic residues were measured with a conductivity meter.
[0053]
The results are shown in Table 2.
[0054]
(Evaluation criteria)
The ionic residue is indicated as follows.
[0055]
:: 10 μg / in 2 as NaCl or less Δ: 10 to 14 μg / in 2 as NaCl
×: 14 μg / in 2 as NaCl As is clear from Table 2, the azeotropic cleaning composition of the present invention can provide a sufficient cleaning effect on machine oil, flux, and any stain. It was also found that the characteristics could be maintained even after repeated distillation regeneration.
[0056]
【The invention's effect】
The azeotropic cleaning composition of the present invention has a sufficient removing ability for any dirt such as machine oil adhering to machined parts such as equipment and flux adhering to printed circuit boards and the like, and is repeatedly distilled. Since it can be recovered and used and there is no concern about environmental pollution such as destruction of the ozone layer, it is extremely effective as an alternative to the conventionally used chlorine-based and chlorofluorocarbon-based solvents.
[Brief description of the drawings]
FIG. 1 is a vapor-liquid equilibrium curve of a mixed composition of normal decane and 3-methoxy-3-methyl-1-butanol obtained from Example 1.

Claims (1)

50〜90重量%のノルマルデカンと、10〜50重量%の3−メトキシ−3−メチル−1−ブタノールとからなる2成分系の共沸様洗浄剤組成物。A two-component azeotropic detergent composition comprising 50 to 90% by weight of normal decane and 10 to 50% by weight of 3-methoxy-3-methyl-1-butanol.
JP21859595A 1995-08-28 1995-08-28 Azeotropic cleaning composition Expired - Fee Related JP3582168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21859595A JP3582168B2 (en) 1995-08-28 1995-08-28 Azeotropic cleaning composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21859595A JP3582168B2 (en) 1995-08-28 1995-08-28 Azeotropic cleaning composition

Publications (2)

Publication Number Publication Date
JPH0959680A JPH0959680A (en) 1997-03-04
JP3582168B2 true JP3582168B2 (en) 2004-10-27

Family

ID=16722429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21859595A Expired - Fee Related JP3582168B2 (en) 1995-08-28 1995-08-28 Azeotropic cleaning composition

Country Status (1)

Country Link
JP (1) JP3582168B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018231689A1 (en) * 2017-06-15 2018-12-20 Eastman Chemical Company A novel minimum boiling azeotrope of n-butyl-3-hydroxybutyrate and n-undecane and application of the azeotrope to solvent cleaning

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303313A (en) * 2007-06-08 2008-12-18 Asahi Kasei Chemicals Corp Cable cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018231689A1 (en) * 2017-06-15 2018-12-20 Eastman Chemical Company A novel minimum boiling azeotrope of n-butyl-3-hydroxybutyrate and n-undecane and application of the azeotrope to solvent cleaning

Also Published As

Publication number Publication date
JPH0959680A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
KR100210135B1 (en) A process and composition for cleaning contaminants with terpent and monobasic ester
JP2763270B2 (en) Cleaning method, cleaning apparatus, cleaning composition and steam-dried composition
JP4761293B2 (en) Cleaning composition and cleaning method
JPH04232288A (en) Environmentally safe cleaning method and cleaning composition useful in same
EP0638131A1 (en) Azeotrope-like compositions of 1,1,2,3,3-pentafluoropropane.
JP4767002B2 (en) Pre-cleaning method and cleaning device
JP3582168B2 (en) Azeotropic cleaning composition
CN109706008B (en) Halogenated hydrocarbon combined solvent containing octafluoropentyl olefin ether and application thereof
KR100196953B1 (en) Cleaning method of parts
JP5021186B2 (en) Processing and cleaning of metal parts
JP3089089B2 (en) Detergent composition
KR0182375B1 (en) Process for producing clean article
JP2838347B2 (en) Detergent composition
JPH0598297A (en) Detergent
JP2011031144A (en) Washing method having no rinsing process and washing device
US5259983A (en) Azeotrope-like compositions of 1-H-perfluorohexane and trifluoroethanol or n-propanol
JP5363225B2 (en) Cleaning method
JP4601124B2 (en) Cleaning composition having no flash point and cleaning method
JPH05271693A (en) Detergent
US5352375A (en) Azeotrope-like compositions of 1,1,1,2,2,3,3,-heptafluoropentane, C1 -C3 alkanol and optionally nitromethane
JP2009262090A (en) Method for prewashing and washing equipment
JPH08333600A (en) Detergent composition
JP2004307839A (en) Azeotrope-like detergent composition
JP2001131593A (en) Nonflammable detergent
JP2001220598A (en) Detergent composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees