JP3581907B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP3581907B2
JP3581907B2 JP12627893A JP12627893A JP3581907B2 JP 3581907 B2 JP3581907 B2 JP 3581907B2 JP 12627893 A JP12627893 A JP 12627893A JP 12627893 A JP12627893 A JP 12627893A JP 3581907 B2 JP3581907 B2 JP 3581907B2
Authority
JP
Japan
Prior art keywords
bush
peripheral surface
holding hole
blade
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12627893A
Other languages
Japanese (ja)
Other versions
JPH06336989A (en
Inventor
泰司 山本
正典 増田
孝洋 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12627893A priority Critical patent/JP3581907B2/en
Publication of JPH06336989A publication Critical patent/JPH06336989A/en
Application granted granted Critical
Publication of JP3581907B2 publication Critical patent/JP3581907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、主として冷凍装置に使用するロータリー圧縮機に関する。
【0002】
【従来の技術】
一般に、ロータリー圧縮機は、密閉ケーシング内にモータと、このモ−タで駆動される圧縮要素とを内装して構成しており、この圧縮要素は、シリンダ室をもつシリンダと、前記モータにより駆動される駆動軸の偏心軸部に挿嵌され、該駆動軸の回転に伴い前記シリンダ室内を公転するローラと、前記シリンダの吸入口と吐出口との中間部位に進退自由に支持されたブレードとを備えており、このブレードは、その背面側に前記吐出口から吐出された高圧ガスの一部を背圧として作用させ、この背圧によって前記ブレードの先端を前記ローラの外周面に常時接触させることにより、前記シリンダ室の内部を前記吸入口に通じる低圧室と前記吐出口に通じる高圧室とに区画するようにしている。
【0003】
所が、以上のように、前記シリンダに前記ブレードを進退自由に支持し、該ブレードの背面側に背圧を付与することにより、その先端を前記ローラの外周面に常時接触させるようにした場合、該ローラと前記ブレードとの相対回転時に、このブレードとローラ外周面との接触部位には潤滑油が給油されにくゝまた、金属接触となるため、前記ブレードとローラとの摺動抵抗による摩擦損失が大きくなって動力損失が大となる問題があった。また、前記ブレードの先端と前記ローラとの接触部位から、前記高圧室で圧縮される高圧ガスが前記低圧室側に漏れたりすることがあって、圧縮機の圧縮効率が低下する問題もあった。
【0004】
そこで、本願出願人は、以上のような問題点を解決できるようにしたロータリー圧縮機を先に提案した(特願平4−252750号)。その提案内容は、図6で示したように、シリンダ室A1をもつシリンダAと、駆動軸Bの偏心軸部B1に嵌合され、前記シリンダ室A1に内装されるローラCとを備えたロータリー圧縮機において、前記ローラCの外周面にブレードDを径方向外方に向けて突出状に設けると共に、前記シリンダAに設ける吸入口A2と吐出口A3との中間部位に、前記シリンダ室A1に開口する開口部A4をもつ横断面円形状の保持孔A5を形成して、この保持孔A5に、前記ブレードDの突出先端側を進退自由に受入れる受入溝E1をもち、前記シリンダAに揺動可能に保持される円柱形状の揺動ブッシュEを設けて、該ブッシュEの受入溝E1に前記ブレードDの突出先端側を進退自由に挿入させることにより、前記シリンダ室A1の内部を前記吸入口A2に通じる低圧室Yと前記吐出口A3に通じる高圧室Xとに区画する一方、前記ブレードDを前記ブッシュE内に挿入させることにより前記ローラCを非自転式として、該ローラCを前記シリンダ室A1の内周面に沿って動作するようにしたのである。尚、同図中、Fは前記吐出口A3の外部側に配設した弁板、Gは弁板Fの受板である。
【0005】
そして、前記駆動軸Bの駆動に伴い前記ローラCがシリンダ室A1の内周面に沿って動作する時に、前記ローラCの外周面に突設した前記ブレードDが、前記ブッシュEの受入溝E1に対し進退移動しながら、前記ブッシュEを介して揺動し、前記シリンダ室A1内を高圧室Xと低圧室Yとに区画するのであって、前記ローラC及びブレードDの動作により前記吸入口A2から低圧室Y内に吸入したガス流体を、前記高圧室Xで圧縮し、この高圧室Xで圧縮したガス流体を前記吐出口A3から外部に吐出させ得るのである。
【0006】
以上のように、前記ローラCの外周面に前記ブレードDを径方向外方に向けて突設し、かつ、該ブレードDの突出先端側を前記ブッシュEの受入溝E1に進退自由に挿入させた所謂揺動式ブレードでは、前記シリンダA側に前記ブレードDを支持して、このブレードDの突出先端側を前記ローラCの外周面に常時接触させる従来のもののように、これらブレードDとローラCとは相対移動されることなく、また、該ローラCの外周面に対する前記ブレードDの接触も行われないことから、これらローラCとブレードDとの接触による摩擦損失をなくして動力損失を小さくでき、しかも、このブレードDとローラCとの接触面から前記高圧室X内の高圧ガスが前記低圧室Y側に漏れたりするのを阻止できて、圧縮機の圧縮効率を高めることができるのである。
【0007】
【発明が解決しようとする課題】
ところで、以上の構成によれば、前記シリンダ室A1内における前記ローラCの動作時に、このローラCに前記ブレードDが追従動作し、該ブレードDの先端側が前記ブッシュEの受入溝E1内を進退移動すると共に、該ブッシュEが前記保持孔A5内で揺動することから、前記シリンダ室A1内で前記ローラCを円滑に動作させ、かつ、該ローラCに前記ブレードDを円滑に追従動作させるためには、特に前記ブッシュEの外周面と前記保持孔A5の内周面との間に積極的に給油し、これら両者間の摺動損失をできるだけ少なくして、前記保持孔A5内で前記ブッシュEをスムーズに揺動させる必要がある。
【0008】
所が先に提案したものでは、前記ローラDがシリンダ室A1の内周面に沿って動作し、前記高圧室X側の圧縮されたガス流体が前記揺動ブッシュEと保持孔A5との間から低圧室Y側に漏れようとするとき、シリンダ室A1内の潤滑油を前記漏れようとするガス流体とともに前記保持孔A5の開口部A4から、前記揺動ブッシュEと保持孔A5との間に給油することはでき、また、前記ガス流体の吐出行程完了後、ローラD外周面とシリンダ室A1内周面とのコンタクトポイントの移行でシリンダ室A1内周面とか、ローラD外周面などに付着している潤滑油が前記保持孔A5の開口部A4から、前記揺動ブッシュEと保持孔A5との間に押込められ、この押込められる油により前記揺動ブッシュEに対し給油することはできるが、量的には少なく、しかも、間欠的にしか給油できないのであるから潤滑不足を来し、特に前記ブッシュEの軸方向両側端部での潤滑に難があったし、また、前記シリンダ室A1に注入される潤滑油が一時的にも減少することがある場合には、前記ブッシュEと保持孔A5との間への給油が不足することになり、その潤滑性に難点があった。
【0009】
本発明の目的は、揺動ブッシュを介してブレードを揺動させる構造でありながら、揺動ブッシュと、該ブッシュを保持する保持孔との間の潤滑不足を低減して、潤滑性を高めることができ、しかも、シリンダ室内に注入される潤滑油が一時的に減少することがあっても、前記ブッシュと保持孔との間の潤滑不足を低減できて、潤滑性を高めることができ、これら両者間の摺動損失を軽減することができるロータリー圧縮機を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、シリンダ室21をもつシリンダ2と、駆動軸6の偏心軸部61に嵌合され、前記シリンダ室21に内装されるローラ3と、このローラ3の外周部に突設状に結合され、前記シリンダ室21の内部を吸入口22に通じる低圧室Yと吐出口23に通じる高圧室Xとに区画するブレード4と、このブレード4の突出先端側を進退自由に受入れる受入溝51をもち、前記シリンダ2に設ける保持孔25に揺動可能に保持される揺動ブッシュ5とを備えたロータリー圧縮機において、前記揺動ブッシュ5の外周面と前記保持孔25の内周面との間に、前記外周面と内周面との少なくとも一方を前記揺動ブッシュ5の揺動方向と直交する方向に凹入して形成する油溜7を設け、前記揺動ブッシュ5の円弧面5aの一部をフラット状とする切欠部5fを、前記保持孔25のシリンダ室21への開口部24との対向側に設けたのである。
【0011】
【作用】
請求項1記載の発明では、揺動ブッシュ5を介してブレード4を揺動させる構造でありながら、揺動ブッシュ5外周面と保持孔25内周面との少なくとも一方を揺動ブッシュ5の揺動方向と直交する方向に凹入させて、揺動ブッシュ5外周面と保持孔25内周面との間に油溜7を設けているから、揺動ブッシュ5外周面と保持孔25内周面との間に給油された潤滑油を前記油溜7に貯留できるのであり、従って、前記揺動ブッシュ5の揺動に伴い前記油溜7の潤滑油により前記揺動ブッシュ5と保持孔25との接触面を潤滑することができ、該接触面の潤滑不足を低減できて潤滑性を高めることができるのであって、特に前記ブッシュ5における軸方向両端部の潤滑性を改善できるのである。しかも、前記油溜7に潤滑油を貯留できるから、シリンダ室21内に注入される潤滑油が一時時に減少して、前記油溜7への給油が少なくなることがあっても、前記油溜7に貯溜している潤滑油により揺動ブッシュ5と保持孔25との接触面を潤滑することができ、該接触面の潤滑不足を低減できて潤滑性を高めることができるのであり、これら揺動ブッシュ5と保持孔25との間の摺動損失を軽減することができる。また、前記揺動ブッシュ5外周面と保持孔25内周面との少なくとも一方を凹入させるだけの簡単な構造であるから、前記潤滑性を高めることができる割に安価に提供できる。
【0012】
【実施例】
図1はロータリー圧縮機の密閉ケーシング内に設ける圧縮要素のシリンダ部分を示しており、この圧縮要素1は、内部にシリンダ室21をもち、該シリンダ室21に開口する吸入口22と吐出口23とを形成したシリンダ2と、該シリンダ2の上下両側に対接させて前記シリンダ室21の軸方向両側を閉鎖するフロントヘッド及びリヤヘッド(何れも図示せず)と、前記シリンダ室21に内装されるローラ3とを備え、このローラ3の外周一部に径方向外方に向けて突出するブレード4を一体形成すると共に、前記シリンダ2における吸入口22と吐出口23との中間部位に、前記シリンダ室21に開口する開口部24をもつ横断面円形状の保持孔25を形成して、この保持孔25に前記ブレード4の突出先端側を進退自由に受入れる受入溝51をもち、前記シリンダ2に揺動可能に保持される揺動ブッシュ5を設けて、該ブッシュ5の受入溝51に前記ブレード4の突出先端側を進退自由に挿入させることにより、前記シリンダ室21の内部を前記吸入口22に通じる低圧室Yと前記吐出口23に通じる高圧室Xとに区画する一方、前記ブレード4を前記ブッシュ5内に挿入させることにより前記ローラ3を非自転式として、該ローラ3は前記シリンダ室21の内周面に沿って動作させ、前記シリンダ室21内で圧縮された高圧ガスを前記吐出口23から前記密閉ケーシング内に吐出し、該密閉ケーシングに接続される吐出管から外部に供給されるようにしている。尚、同図中、6は駆動軸で、その偏心軸部61を前記ローラ3に挿嵌させている。
【0013】
以上のように、前記ローラ3の外周部に前記ブレード4を一体形成して、該ブレード4の突出先端側を前記ブッシュ5の受入溝51に進退自由に挿入させることにより、つまり、前記ブレード4として揺動式のものを採用することにより、前記シリンダ2側に前記ブレード4を支持して、このブレード4の突出先端を前記ローラ3の外周面に常時接触させる従来のもののように、これらローラ3とブレード4との接触による摩擦損失をなくして動力損失を小さくでき、また、該ブレード4とローラ3との接触面から高圧室X内の高圧ガスが低圧室Y側に漏れたりするのを阻止して、圧縮機の圧縮効率を高めることができるのである。
【0014】
しかして、以上の構成において、前記揺動ブッシュ5の外周面と前記保持孔25の内周面との間に、これら内,外周面の少なくとも一方を前記ブッシュ5の揺動方向と直交する方向に全長に亘って凹入させて油溜7を形成したのである。
【0015】
具体的には、図3で明らかにしたように、前記揺動ブッシュ5を円弧面5aとフラット面5bとをもった半円柱形状の2つの部材に分割形成して、これら分割ブッシュ5A,5Bのフラット面5b,5b間を前記ブレード4を受入可能な受入溝51となすと共に、前記各円弧面5aにおける前記各フラット面5bとの対向側一部に、該各フラット面5bと平行状にフラットな第1切欠部5cを長さ方向全長にわたって形成する一方、前記各円弧面5aにおける前記フラット面5bの両端側に、一対の円弧残部5d,5eを介して前記第1切欠部5cに連続されるフラットな第2,第3切欠部5f,5gをそれぞれ長さ方向全長にわたって対称状に形成する。
【0016】
そして、図2で示したように、前記シリンダ2に設けた前記保持孔25の内部に前記各分割ブッシュ5A,5Bを、その各円弧残部5d,5eが前記保持孔25の内周面一部に摺接されるように挿入して、前記各分割ブッシュ5A,5Bの各フラット面5bで形成される受入溝51に前記ローラ3から延びるブレード4を進退動可能に介入させると共に、前記保持孔25の内周面と前記各分割ブッシュ5A,5Bの各第1切欠部5c及び各円弧残部5d,5eとで囲まれる空間内に前記油溜7を形成するのである。
【0017】
また、前記揺動ブッシュ5は、図4,図5で示したように、前述した場合と同じく、円弧面5aとフラット面5bとをもった半円柱形状の2つの部材に分割形成して、これら分割ブッシュ5A,5Bのフラット面5b,5b間を前記ブレード4を受入可能な受入溝51となすと共に、前記各円弧面5aにおける前記フラット面5bの両端側に、それぞれ前記第2,第3切欠部5f,5gを長さ方向全長にわたって形成する一方、前記各円弧面5aに径方向内方に向けて半円弧形状に凹入する複数の凹入部5hを長さ方向全長にわたって設け、これら各凹入部5hと前記保持孔25の内周面との間に前記油溜7を形成するようにしてもよい。さらに、前記油溜7を形成するに際しては、図示しないが、前記各分割ブッシュ5A,5Bの円弧面5aに螺旋形状の凹入部を長さ方向全長にわたって設け、この凹入部と前記保持孔25の内周面との間に前記油溜7を形成するようにしてもよいのである。
【0018】
以上の構成とすることにより、前記シリンダ室21内における前記ローラ3の動作時で、前記高圧室X側の圧縮されたガス流体が前記揺動ブッシュ5と保持孔25との間から低圧室Y側に漏れようとするとき、シリンダ室21内の潤滑油が前記漏れようとするガス流体とともに前記保持孔25の開口部24から、前記揺動ブッシュ5と保持孔25との間に給油されるし、また、前記ローラ3が上死点位置近くに至ったとき、つまり、図2で示すように、前記ブレード4の先端側が前記ブッシュ5における受入溝51の奥内部側にまで挿入されて、前記ローラ3外周面とシリンダ室21内周面とのコンタクトポイントが前記保持孔25の開口部24に移行するとき、シリンダ室21内周面とか、ローラ3外周面などに付着している潤滑油が前記保持孔25の開口部24から、前記揺動ブッシュ5と保持孔25との間に押込められて給油されるのであり、この揺動ブッシュ5と保持孔25との間に給油された潤滑油が前記油溜7内に貯溜されるのである。そして、前記揺動ブッシュ5の揺動に伴い前記油溜7の潤滑油により前記揺動ブッシュ5と保持孔25との接触面を潤滑することができるから、該接触面の潤滑不足を低減できて潤滑性を高めることができ、特に前記ブッシュ5における軸方向両端部の潤滑性を改善できて、揺動ブッシュ5と保持孔25との間の摺動損失を軽減することができる。しかも、前記油溜7に潤滑油を貯留できるから、シリンダ室21内に注入される潤滑油が一時時に減少して、前記油溜7への給油が少なくなることがあっても、前記油溜7に貯溜している潤滑油により揺動ブッシュ5と保持孔25との接触面を潤滑することができ、該接触面の潤滑不足を低減できて潤滑性を高めることができるのである。
【0019】
尚、前記油溜7に潤滑油を供給させるに際しては、前記したように前記保持孔25を盲孔状としてシリンダ室21内の潤滑油を前記ローラ3の動作で前記ブッシュ5と保持孔25との隙間を介して前記油溜7に供給するごとく成す他、前記シリンダ2の下面側に対接するリヤヘッドに前記保持孔25を貫通状に形成して前記ブッシュ5と保持孔25との下部側を前記密閉ケーシングの底部油溜に浸漬状に開口させて、この底部油溜の高圧の潤滑油を供給するごとくしてもよい。この場合、前記油溜7を含む前記ブッシュ5と保持孔25との隙間は何れも高圧になり、前記低圧室Yとの差圧が大きくなるため、この低圧室Y側への油漏れが生ずることになるが、前記したように、シリンダ室21内の潤滑油を前記油溜7に供給する如く成した場合、前記ブッシュ5外周面と保持孔25内周面との隙間の中間部の圧力は、前記高圧室X側圧力と低圧室Y側圧力との中間圧になり、前記低圧室Y側との差圧を小さくできるから、低圧室Y側への油漏れを少なくできる利点があるし、また、ブレード4の先端面には、前記高圧室X側圧力と低圧室Y側圧力との中間圧が作用するから、前記ブレード4の先端面に高圧が作用する場合に比べて前記ローラ3が一回転する間におけるトルク変動を小さくできる利点がある。
【0020】
また、前記各分割ブッシュ5A,5Bにおける各円弧面5aの一部で、前記保持孔25の開口部24との対向側に、フラット状とされた前記第2切欠部5fを形成することにより、図2で示したように、前記ローラ3の外周面が前記ブッシュ5と対向される上死点位置に至ったとき、この上死点位置においてローラ3外周面と前記ブッシュ5との間で、かつ、高圧室X側に形成される無効容積を小さくできて、圧縮機の容積効率を高めることができる。即ち、図2の仮想線で示すように、前記ブッシュ5における前記開口部24との対向部位を円弧形状に形成するときには、前記ローラ3が上死点位置に至ったとき、該ローラ3が前記ブッシュ5の円弧部に当接されて、前記シリンダ室51の内壁面と前記ローラ3の外周面との間で前記高,低圧室X,Yとの対向側に大きな隙間が形成され、これら隙間のうち高圧室X側に形成される隙間が無効容積となり、吐出行程の終了後に吸入行程へと移行して前記低圧室TY内に吸入ガスを吸入するとき、前記無効容積内に残留した高圧ガスが前記低圧室Y側に逆流して再膨張することになり、圧縮機の容積効率が悪くなるのであるが、以上のように、前記各分割ブッシュ5A,5Bにおける各円弧面5aの一部で、前記保持孔25の開口部24との対向側に、フラット状とされた前記第2切欠部5fを形成することにより、前記ローラ3が前記上死点位置に至ったとき、この上死点位置における前記ローラ3外周面と分割ブッシュ5Aとの間の無効容積を小さくできて、圧縮機の容積効率を高めることができるのである。
【0021】
さらに、前記各分割ブッシュ5A,5Bにおける各円弧面5aの一部でフラット面5bの端部側に、前記第2切欠部5fと対称状にフラットな前記第3切欠部5gを形成するときには、前記円弧面5aとフラット面5bとの間で前記第3切欠部5gの形成部分にエッジ部が残ったりすることなく、該エッジ部が物品と衝突したようなとき欠落したりするのを未然に防止することができ、特に、前記各分割ブッシュ5A,5Bにおけるフラット面5bの両端側に、前記第2,第3切欠部5f,5gを形成することによって、前記ブッシュ5の外周面全体にエッジ部が形成されることがないため、このブッシュ5の外周面全体の欠落を防止することができる。しかも、以上のように、前記揺動ブッシュ5を2つの部材に分割形成して、これら各分割ブッシュ5A,5Bに、前記第1切欠部5cや凹入部5hを、また、前記第2,第3切欠部5f,5gをそれぞれ対称状に設けることにより、前記各分割ブッシュ5A,5Bを左右対称の同一形状に形成することができて部品の共通化が可能となり、その上、前記保持孔25内に前記各分割ブッシュ5A,5Bを挿入して組付けるとき、これら各分割ブッシュ5A,5Bは同一形状とされていることから、該各分割ブッシュ5A,5Bの組付ミスを防止することもでき、さらには、前記ブッシュ5に前記受入溝51や前記油溜7を設けるための第1切欠部5cなどを設けるとき、これら受入溝51や第1切欠部5cなどを容易に形成することができて製作上好都合となるのである。
【0022】
尚、以上の各実施例においては、前記各分割ブッシュ5A,5Bの外周面一部に第1切欠部5cや凹入部5hを設けて、これら切欠部5cや凹入部5hを油溜7としたが、その他、この油溜7は、前記ブッシュ5に設けることなく、前記保持孔25の内周面に設けてもよいし、また、前記保持孔25の内周面と前記揺動ブッシュ5の外周面とに設けてもよい。さらに、以上の各実施例では、前記揺動ブッシュ5を2つの分割ブッシュ5A,5Bに分割形成したが、本発明では、前記ブッシュ5を分割することなく、円柱形状の揺動ブッシュ5を用いて、このブッシュ5に前記受入溝51や前記油溜7を設けるための第1切欠部5cや凹入部5hなどを形成するようにしてもよい。
【0023】
【発明の効果】
以上説明したように、請求項1記載の発明は、シリンダ室21をもつシリンダ2と、駆動軸6の偏心軸部61に嵌合され、前記シリンダ室21に内装されるローラ3と、このローラ3の外周部に突設状に結合され、前記シリンダ室21の内部を吸入口22に通じる低圧室Yと吐出口23に通じる高圧室Xとに区画するブレード4と、このブレード4の突出先端側を進退自由に受入れる受入溝51をもち、前記シリンダ2に設ける保持孔25に揺動可能に保持される揺動ブッシュ5とを備えたロータリー圧縮機において、前記揺動ブッシュ5の外周面と前記保持孔25の内周面との間に、前記外周面と内周面との少なくとも一方を前記揺動ブッシュ5の揺動方向と直交する方向に凹入して形成する油溜7を設けたから、揺動ブッシュ5外周面と保持孔25内周面との間に給油された潤滑油を前記油溜7に貯留できるのであり、従って、前記揺動ブッシュ5の揺動に伴い前記油溜7の潤滑油により前記揺動ブッシュ5と保持孔25との接触面を潤滑することができ、該接触面の潤滑不足を低減できて潤滑性を高めることができるのであって、特に前記ブッシュ5における軸方向両端部の潤滑性を改善できるのである。しかも、前記油溜7に潤滑油を貯留できるから、シリンダ室21内に注入される潤滑油が一時時に減少して、前記油溜7への給油が少なくなることがあっても、前記油溜7に貯溜している潤滑油により揺動ブッシュ5と保持孔25との接触面を潤滑することができ、該接触面の潤滑不足を低減できて潤滑性を高めることができるのであり、これら揺動ブッシュ5と保持孔25との間の摺動損失を軽減することができる。
【0024】
また、前記揺動ブッシュ5外周面と保持孔25内周面との少なくとも一方を凹入させるだけの簡単な構造であるから、前記潤滑性を高めることができる割に安価に提供できるのである。
【図面の簡単な説明】
【図1】本発明にかかるロータリー圧縮機の要部を示す平面図である。
【図2】同要部の拡大平断面図である。
【図3】図2で使用する揺動ブッシュを取出して示す斜視図である。
【図4】他のブッシュ例を示す平面図である。
【図5】同ブッシュの斜視図である。
【図6】従来例を示す平断面図である。
【符号の説明】
2 シリンダ
21 シリンダ室
22 吸入口
23 吐出口
25 保持孔
3 ローラ
4 ブレード
5 ブッシュ
51 受入溝
6 駆動軸
61 偏心軸部
7 油溜
X 高圧室
Y 低圧室
[0001]
[Industrial applications]
The present invention relates to a rotary compressor mainly used for a refrigeration system.
[0002]
[Prior art]
Generally, a rotary compressor includes a motor and a compression element driven by the motor inside a closed casing. The compression element is driven by a cylinder having a cylinder chamber and the motor. A roller that is inserted into the eccentric shaft portion of the drive shaft to be rotated and revolves in the cylinder chamber with the rotation of the drive shaft, and a blade that is freely supported at an intermediate position between the suction port and the discharge port of the cylinder. This blade has a part of the high-pressure gas discharged from the discharge port on its back side acting as a back pressure, and the back pressure constantly brings the tip of the blade into contact with the outer peripheral surface of the roller. Thus, the inside of the cylinder chamber is partitioned into a low-pressure chamber communicating with the suction port and a high-pressure chamber communicating with the discharge port.
[0003]
However, as described above, when the blade is supported on the cylinder so as to freely advance and retreat, and a back pressure is applied to the back side of the blade so that the tip is always in contact with the outer peripheral surface of the roller. During relative rotation between the roller and the blade, lubricating oil is difficult to be supplied to a contact portion between the blade and the outer peripheral surface of the roller, and metal contact is caused by sliding resistance between the blade and the roller. There was a problem that the friction loss increased and the power loss increased. In addition, there is also a problem that high-pressure gas compressed in the high-pressure chamber leaks from the contact portion between the tip of the blade and the roller to the low-pressure chamber side, thereby lowering the compression efficiency of the compressor. .
[0004]
Therefore, the applicant of the present application has previously proposed a rotary compressor capable of solving the above problems (Japanese Patent Application No. 4-252750). As shown in FIG. 6, the proposed content is a rotary having a cylinder A having a cylinder chamber A1 and a roller C fitted to an eccentric shaft portion B1 of a drive shaft B and housed in the cylinder chamber A1. In the compressor, a blade D is provided on the outer peripheral surface of the roller C so as to protrude radially outward, and the cylinder A is provided at an intermediate portion between a suction port A2 and a discharge port A3 provided in the cylinder A. A holding hole A5 having a circular cross section having an opening A4 to open is formed. The holding hole A5 has a receiving groove E1 for freely receiving the protruding tip side of the blade D, and swings the cylinder A. By providing a cylindrical swinging bush E that is held so as to be able to move, the protruding tip side of the blade D is inserted into a receiving groove E1 of the bush E so as to be able to advance and retreat freely, thereby allowing the inside of the cylinder chamber A1 to enter the suction port. 2 is divided into a low-pressure chamber Y communicating with the discharge port A3 and a high-pressure chamber X communicating with the discharge port A3, while the blade C is inserted into the bush E to make the roller C non-rotating. It operates along the inner peripheral surface of the chamber A1. In the figure, F is a valve plate disposed outside the discharge port A3, and G is a plate for receiving the valve plate F.
[0005]
When the roller C moves along the inner peripheral surface of the cylinder chamber A1 with the driving of the drive shaft B, the blade D protruding from the outer peripheral surface of the roller C is inserted into the receiving groove E1 of the bush E. While moving forward and backward, the cylinder swings through the bush E to partition the inside of the cylinder chamber A1 into a high-pressure chamber X and a low-pressure chamber Y. The operation of the roller C and the blade D causes the suction port to move. The gas fluid sucked into the low-pressure chamber Y from A2 is compressed in the high-pressure chamber X, and the gas fluid compressed in the high-pressure chamber X can be discharged from the discharge port A3 to the outside.
[0006]
As described above, the blade D is protruded radially outward from the outer peripheral surface of the roller C, and the protruding tip side of the blade D is inserted into the receiving groove E1 of the bush E so as to freely advance and retreat. In the so-called oscillating blade, the blade D is supported on the cylinder A side and the blade D and the roller C is not relatively moved, and the blade D is not in contact with the outer peripheral surface of the roller C. Therefore, the friction loss due to the contact between the roller C and the blade D is eliminated, and the power loss is reduced. Further, the high pressure gas in the high pressure chamber X can be prevented from leaking from the contact surface between the blade D and the roller C to the low pressure chamber Y side, and the compression efficiency of the compressor can be increased. It's that.
[0007]
[Problems to be solved by the invention]
By the way, according to the above configuration, when the roller C operates in the cylinder chamber A1, the blade D follows the roller C, and the tip side of the blade D advances and retreats in the receiving groove E1 of the bush E. Since the bush E moves and swings in the holding hole A5, the roller C is smoothly operated in the cylinder chamber A1, and the blade D is smoothly operated to follow the roller C. For this purpose, in particular, oil is actively supplied between the outer peripheral surface of the bush E and the inner peripheral surface of the holding hole A5, and the sliding loss therebetween is reduced as much as possible. It is necessary to swing the bush E smoothly.
[0008]
The roller D operates along the inner peripheral surface of the cylinder chamber A1, and the compressed gas fluid in the high-pressure chamber X moves between the swing bush E and the holding hole A5. From the swing bush E and the holding hole A5 through the opening A4 of the holding hole A5 together with the gas fluid to leak the lubricating oil in the cylinder chamber A1 when the oil leaks from the cylinder chamber A1 to the low pressure chamber Y side. After the gas fluid discharge process is completed, the contact point between the outer peripheral surface of the roller D and the inner peripheral surface of the cylinder chamber A1 shifts to the inner peripheral surface of the cylinder chamber A1 or the outer peripheral surface of the roller D. The attached lubricating oil is pushed in between the swinging bush E and the holding hole A5 from the opening A4 of the holding hole A5, and the pushed-in oil is supplied to the swinging bush E by the pushed-in oil. Can be done, but quantitatively In addition, since lubrication can be performed only intermittently, there is insufficient lubrication. Particularly, there is difficulty in lubricating both ends in the axial direction of the bush E, and lubrication injected into the cylinder chamber A1. If the oil may temporarily decrease, the oil supply between the bush E and the holding hole A5 becomes insufficient, and there is a problem in lubricity.
[0009]
An object of the present invention is to improve lubricity by reducing insufficient lubrication between an oscillating bush and a holding hole for holding the bush, while having a structure in which the blade is oscillated via the oscillating bush. In addition, even if the lubricating oil injected into the cylinder chamber is temporarily reduced, insufficient lubrication between the bush and the holding hole can be reduced, and lubricity can be improved. An object of the present invention is to provide a rotary compressor capable of reducing a sliding loss between the two.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 includes a cylinder 2 having a cylinder chamber 21, a roller 3 fitted in an eccentric shaft portion 61 of a drive shaft 6 and housed in the cylinder chamber 21, A blade 4 which is protrudingly connected to an outer peripheral portion of the roller 3 and partitions the inside of the cylinder chamber 21 into a low-pressure chamber Y communicating with a suction port 22 and a high-pressure chamber X communicating with a discharge port 23; An outer peripheral surface of the oscillating bush 5 in which the oscillating bush 5 has a receiving groove 51 for receiving the tip end freely and reciprocally; And an oil reservoir 7 formed by recessing at least one of the outer peripheral surface and the inner peripheral surface in a direction perpendicular to the swing direction of the swing bush 5 between the oil reservoir 7 and the inner circumferential surface of the holding hole 25. provided, the arc of the swing bush 5 A notch 5f of the part of 5a and flat shape, than is provided on opposite sides of the opening 24 to the cylinder chamber 21 of the holding hole 25.
[0011]
[Action]
According to the first aspect of the present invention, at least one of the outer peripheral surface of the oscillating bush 5 and the inner peripheral surface of the holding hole 25 is oscillated by the oscillating bush 5 while the blade 4 is oscillated via the oscillating bush 5. The oil reservoir 7 is provided between the outer peripheral surface of the oscillating bush 5 and the inner peripheral surface of the holding hole 25 by being recessed in a direction orthogonal to the moving direction. The lubricating oil supplied between the oscillating bush 5 and the holding hole 25 can be stored in the oil sump 7 by the lubricating oil of the oil sump 7 with the oscillating motion of the oscillating bush 5. The lubrication of the contact surface can be reduced, the lubricity of the contact surface can be reduced, and the lubricity can be enhanced. In particular, the lubricity of both ends in the axial direction of the bush 5 can be improved. In addition, since the lubricating oil can be stored in the oil reservoir 7, even if the lubricating oil injected into the cylinder chamber 21 temporarily decreases and the oil supply to the oil reservoir 7 is reduced, 7 can lubricate the contact surface between the oscillating bush 5 and the holding hole 25 by using the lubricating oil stored in the contact hole 7, thereby reducing the lubrication deficiency of the contact surface and improving the lubricity. The sliding loss between the moving bush 5 and the holding hole 25 can be reduced. Further, since it has a simple structure in which at least one of the outer peripheral surface of the oscillating bush 5 and the inner peripheral surface of the holding hole 25 is simply recessed, the lubricating property can be improved and the lubricating property can be provided at a low cost.
[0012]
【Example】
FIG. 1 shows a cylinder portion of a compression element provided in a closed casing of a rotary compressor. This compression element 1 has a cylinder chamber 21 therein, and a suction port 22 and a discharge port 23 which open to the cylinder chamber 21. And a front head and a rear head (both not shown) which are in contact with upper and lower sides of the cylinder 2 to close both sides in the axial direction of the cylinder chamber 21, and which are housed in the cylinder chamber 21. A roller 3 which is integrally formed with a blade 4 projecting outward in the radial direction on a part of the outer periphery of the roller 3, and at the intermediate portion between the suction port 22 and the discharge port 23 A holding hole 25 having a circular cross section having an opening 24 opening into the cylinder chamber 21 is formed in the holding hole 25 to receive the protruding tip side of the blade 4 freely. The cylinder chamber is provided with a swinging bush 5 which is swingably held by the cylinder 2 and a protruding tip side of the blade 4 is inserted into a receiving groove 51 of the bush 5 so as to freely advance and retreat. While the interior of 21 is partitioned into a low-pressure chamber Y communicating with the suction port 22 and a high-pressure chamber X communicating with the discharge port 23, the blade 3 is inserted into the bush 5 to make the roller 3 non-rotating. The roller 3 is operated along the inner peripheral surface of the cylinder chamber 21 to discharge the high-pressure gas compressed in the cylinder chamber 21 from the discharge port 23 into the closed casing, and is connected to the closed casing. It is supplied from the discharge pipe to the outside. In the figure, reference numeral 6 denotes a drive shaft, whose eccentric shaft 61 is inserted into the roller 3.
[0013]
As described above, the blade 4 is integrally formed on the outer peripheral portion of the roller 3 and the protruding tip side of the blade 4 is inserted into the receiving groove 51 of the bush 5 so as to be able to advance and retreat. By adopting an oscillating type, the blade 4 is supported on the cylinder 2 side, and the protruding tip of the blade 4 is always in contact with the outer peripheral surface of the roller 3 as in the conventional roller. The power loss can be reduced by eliminating the friction loss caused by the contact between the blade 3 and the blade 4, and the leakage of the high-pressure gas in the high-pressure chamber X from the contact surface between the blade 4 and the roller 3 to the low-pressure chamber Y side. Blocking it can increase the compression efficiency of the compressor.
[0014]
Thus, in the above configuration, at least one of the inner and outer peripheral surfaces is provided between the outer peripheral surface of the oscillating bush 5 and the inner peripheral surface of the holding hole 25 in a direction orthogonal to the oscillating direction of the bush 5. Thus, the oil reservoir 7 was formed by being recessed over the entire length.
[0015]
Specifically, as clarified in FIG. 3, the swing bush 5 is divided into two semi-cylindrical members having an arc surface 5a and a flat surface 5b, and these divided bushes 5A and 5B are formed. Between the flat surfaces 5b, 5b is formed as a receiving groove 51 capable of receiving the blade 4, and a part of each of the arc surfaces 5a opposite to the flat surfaces 5b is formed in parallel with the flat surfaces 5b. The flat first notch 5c is formed over the entire length in the length direction, and is connected to the first notch 5c via a pair of arc remaining portions 5d and 5e at both ends of the flat surface 5b in each of the arc surfaces 5a. Flat second and third cutouts 5f and 5g are formed symmetrically over the entire length in the length direction.
[0016]
As shown in FIG. 2, each of the divided bushes 5A and 5B is placed inside the holding hole 25 provided in the cylinder 2, and each of the arc remaining portions 5 d and 5 e is part of the inner peripheral surface of the holding hole 25. The blade 4 extending from the roller 3 is inserted into the receiving groove 51 formed by each flat surface 5b of each of the divided bushes 5A and 5B so as to be able to advance and retreat, and the holding hole is also inserted. The oil sump 7 is formed in a space surrounded by the inner peripheral surface of the first bush 25 and the first cutout portions 5c and the arc-shaped remaining portions 5d and 5e of the divided bushes 5A and 5B.
[0017]
As shown in FIGS. 4 and 5, the swing bush 5 is divided into two semi-cylindrical members each having an arc surface 5a and a flat surface 5b, as described above, A space between the flat surfaces 5b, 5b of the split bushes 5A, 5B is formed as a receiving groove 51 capable of receiving the blade 4, and the second, third, and third ends are respectively provided on both ends of the flat surface 5b in the respective arc surfaces 5a. While notches 5f and 5g are formed over the entire length in the length direction, a plurality of recesses 5h are formed in the respective arc surfaces 5a in a semicircular shape inwardly in the radial direction over the entire length in the length direction. The oil reservoir 7 may be formed between the recess 5h and the inner peripheral surface of the holding hole 25. Further, when forming the oil reservoir 7, although not shown, a spiral concave portion is provided on the arc surface 5a of each of the divided bushes 5A, 5B over the entire length in the longitudinal direction, and the concave portion and the holding hole 25 are formed. The oil reservoir 7 may be formed between the oil reservoir 7 and the inner peripheral surface.
[0018]
With the above configuration, during the operation of the roller 3 in the cylinder chamber 21, the compressed gas fluid on the high pressure chamber X side flows from between the swing bush 5 and the holding hole 25 to the low pressure chamber Y. When leaking to the side, the lubricating oil in the cylinder chamber 21 is supplied between the swing bush 5 and the holding hole 25 from the opening 24 of the holding hole 25 together with the gas fluid to be leaked. Further, when the roller 3 reaches near the top dead center position, that is, as shown in FIG. 2, the tip side of the blade 4 is inserted into the inner side of the receiving groove 51 of the bush 5, When the contact point between the outer peripheral surface of the roller 3 and the inner peripheral surface of the cylinder chamber 21 shifts to the opening 24 of the holding hole 25, lubricating oil adhered to the inner peripheral surface of the cylinder chamber 21 or the outer peripheral surface of the roller 3. Is The lubricating oil supplied between the oscillating bush 5 and the holding hole 25 is fed from the opening 24 of the holding hole 25 by being pushed between the oscillating bush 5 and the holding hole 25. Is stored in the oil reservoir 7. Since the contact surface between the swing bush 5 and the holding hole 25 can be lubricated by the lubricating oil in the oil reservoir 7 with the swing of the swing bush 5, the insufficient lubrication of the contact surface can be reduced. In particular, the lubricating properties of both ends in the axial direction of the bush 5 can be improved, and the sliding loss between the swinging bush 5 and the holding hole 25 can be reduced. In addition, since the lubricating oil can be stored in the oil reservoir 7, even if the lubricating oil injected into the cylinder chamber 21 temporarily decreases and the oil supply to the oil reservoir 7 is reduced, The contact surface between the swinging bush 5 and the holding hole 25 can be lubricated by the lubricating oil stored in the contact hole 7, so that insufficient lubrication of the contact surface can be reduced and lubricity can be improved.
[0019]
When lubricating oil is supplied to the oil reservoir 7, the holding hole 25 is made blind and the lubricating oil in the cylinder chamber 21 is supplied to the bush 5 and the holding hole 25 by the operation of the roller 3 as described above. In addition to the above, the holding hole 25 is formed in the rear head which is in contact with the lower surface of the cylinder 2 so as to penetrate the bush 5 and the lower side of the holding hole 25. The bottom casing of the closed casing may be immersed in the bottom so as to supply high-pressure lubricating oil to the bottom casing. In this case, the gap between the bush 5 including the oil reservoir 7 and the holding hole 25 becomes high pressure, and the pressure difference between the low pressure chamber Y and the low pressure chamber Y increases, so that oil leaks to the low pressure chamber Y side. As described above, when the lubricating oil in the cylinder chamber 21 is supplied to the oil reservoir 7 as described above, the pressure in the middle of the gap between the outer peripheral surface of the bush 5 and the inner peripheral surface of the holding hole 25 is increased. Is an intermediate pressure between the high-pressure chamber X side pressure and the low-pressure chamber Y side pressure, and the differential pressure between the low-pressure chamber Y side can be reduced. Therefore, there is an advantage that oil leakage to the low-pressure chamber Y side can be reduced. Since the intermediate pressure between the high pressure chamber X side pressure and the low pressure chamber Y side pressure acts on the tip end surface of the blade 4, the roller 3 has a higher pressure than the case where the high pressure acts on the tip end surface of the blade 4. There is an advantage that torque fluctuation during one rotation of the motor can be reduced.
[0020]
Further, by forming the flat second cutout portion 5f on a portion of each of the arc surfaces 5a of the split bushes 5A and 5B on the side facing the opening 24 of the holding hole 25, As shown in FIG. 2, when the outer peripheral surface of the roller 3 reaches a top dead center position facing the bush 5, the outer peripheral surface of the roller 3 and the bush 5 at this top dead center position In addition, the ineffective volume formed on the high-pressure chamber X side can be reduced, and the volumetric efficiency of the compressor can be increased. That is, as shown by the imaginary line in FIG. 2, when the portion of the bush 5 facing the opening 24 is formed in an arc shape, when the roller 3 reaches the top dead center position, the roller 3 A large gap is formed between the inner wall surface of the cylinder chamber 51 and the outer peripheral surface of the roller 3 on the side facing the high and low pressure chambers X and Y by being in contact with the arc portion of the bush 5. The gap formed on the high pressure chamber X side becomes an ineffective volume, and when the process shifts to the suction stroke after the end of the discharge stroke to suck the suction gas into the low pressure chamber TY, the high pressure gas remaining in the ineffective volume Flows back to the low-pressure chamber Y and re-expands, and the volumetric efficiency of the compressor deteriorates. As described above, a part of each arc surface 5a in each of the divided bushes 5A and 5B is used. Between the holding hole 25 and the opening 24. When the roller 3 reaches the top dead center position, the outer peripheral surface of the roller 3 and the split bush 5A at the top dead center position are formed by forming the flat-shaped second notch 5f on the opposite side. And the dead volume between them can be reduced, and the volumetric efficiency of the compressor can be increased.
[0021]
Further, when forming the third cutout portion 5g, which is symmetrically flat with the second cutout portion 5f, at a part of the arc surface 5a of each of the split bushes 5A and 5B on the end side of the flat surface 5b, The edge portion does not remain in the portion where the third cutout portion 5g is formed between the arc surface 5a and the flat surface 5b, and it is possible to prevent the edge portion from being dropped when it collides with an article. In particular, by forming the second and third cutouts 5f and 5g at both ends of the flat surface 5b in each of the divided bushes 5A and 5B, the entire outer peripheral surface of the bush 5 is edged. Since no portion is formed, it is possible to prevent the entire outer peripheral surface of the bush 5 from being dropped. Moreover, as described above, the swing bush 5 is divided into two members, and the first cutout portion 5c and the concave portion 5h are formed in each of the divided bushes 5A and 5B. By providing the three notches 5f and 5g symmetrically, the divided bushes 5A and 5B can be formed in the same shape which is symmetrical to the left and right, and the components can be shared. When each of the divided bushes 5A, 5B is inserted and assembled into the inside, the divided bushes 5A, 5B are formed in the same shape, so that it is also possible to prevent an assembly error of each of the divided bushes 5A, 5B. Further, when the bush 5 is provided with the receiving groove 51 and the first notch 5c for providing the oil reservoir 7, the receiving groove 51, the first notch 5c, and the like can be easily formed. Made It is to become a top convenient.
[0022]
In each of the above embodiments, the first cutout 5c and the recess 5h are provided on a part of the outer peripheral surface of each of the divided bushes 5A and 5B, and the cutout 5c and the recess 5h are used as the oil reservoir 7. However, in addition, the oil reservoir 7 may be provided on the inner peripheral surface of the holding hole 25 without being provided on the bush 5, or between the inner peripheral surface of the holding hole 25 and the swing bush 5. It may be provided on the outer peripheral surface. Further, in each of the embodiments described above, the swing bush 5 is divided into two divided bushes 5A, 5B. However, in the present invention, the cylindrical swing bush 5 is used without dividing the bush 5. The bush 5 may be formed with a first notch 5c or a recess 5h for providing the receiving groove 51 or the oil reservoir 7.
[0023]
【The invention's effect】
As described above, the invention according to claim 1 includes the cylinder 2 having the cylinder chamber 21, the roller 3 fitted into the eccentric shaft portion 61 of the drive shaft 6 and housed in the cylinder chamber 21, 3, a blade 4 that projects from the outer periphery of the cylinder chamber 3 and partitions the interior of the cylinder chamber 21 into a low-pressure chamber Y communicating with the suction port 22 and a high-pressure chamber X communicating with the discharge port 23. A rotary bush 5 having a receiving groove 51 for receiving the side freely reciprocating and having a rocking bush 5 rockably held in a holding hole 25 provided in the cylinder 2; An oil reservoir 7 is formed between the inner peripheral surface of the holding hole 25 and formed by recessing at least one of the outer peripheral surface and the inner peripheral surface in a direction orthogonal to the swing direction of the swing bush 5. Therefore, the outer peripheral surface of the swing bush 5 The lubricating oil supplied between the oscillating bush 5 and the inner peripheral surface of the holding hole 25 can be stored in the oil sump 7. 5 and the holding hole 25 can be lubricated, and the lubricating property can be improved by reducing the lubrication insufficiency of the contact surface. It can be improved. In addition, since the lubricating oil can be stored in the oil reservoir 7, even if the lubricating oil injected into the cylinder chamber 21 temporarily decreases and the oil supply to the oil reservoir 7 is reduced, 7 can lubricate the contact surface between the oscillating bush 5 and the holding hole 25, thereby reducing insufficient lubrication of the contact surface and improving lubricity. The sliding loss between the moving bush 5 and the holding hole 25 can be reduced.
[0024]
Further, since it has a simple structure in which at least one of the outer peripheral surface of the swing bush 5 and the inner peripheral surface of the holding hole 25 is recessed, it is possible to provide the lubricating property at a low cost.
[Brief description of the drawings]
FIG. 1 is a plan view showing a main part of a rotary compressor according to the present invention.
FIG. 2 is an enlarged plan sectional view of the main part.
FIG. 3 is a perspective view showing a swing bush used in FIG. 2;
FIG. 4 is a plan view showing another example of a bush.
FIG. 5 is a perspective view of the bush.
FIG. 6 is a plan sectional view showing a conventional example.
[Explanation of symbols]
2 Cylinder 21 Cylinder chamber 22 Suction port 23 Discharge port 25 Holding hole 3 Roller 4 Blade 5 Bush 51 Receiving groove 6 Drive shaft 61 Eccentric shaft 7 Oil sump X High pressure chamber Y Low pressure chamber

Claims (1)

シリンダ室(21)をもつシリンダ(2)と、駆動軸(6)の偏心軸部(61)に嵌合され、前記シリンダ室(21)に内装されるローラ(3)と、このローラ(3)の外周部に突設状に結合され、前記シリンダ室(21)の内部を吸入口(22)に通じる低圧室(Y)と吐出口(23)に通じる高圧室(X)とに区画するブレード(4)と、このブレード(4)の突出先端側を進退自由に受入れる受入溝(51)をもち、前記シリンダ(2)に設ける保持孔(25)に揺動可能に保持される揺動ブッシュ(5)とを備えたロータリー圧縮機において、
前記揺動ブッシュ(5)の外周面と前記保持孔(25)の内周面との間に、前記外周面と内周面との少なくとも一方を前記揺動ブッシュ(5)の揺動方向と直交する方向に凹入して形成する油溜(7)を設け
前記揺動ブッシュ(5)の円弧面(5a)の一部をフラット状とする切欠部(5f)を、前記保持孔(25)の前記シリンダ室(21)への開口部(24)との対向側に設けていることを特徴とするロータリー圧縮機。
A cylinder (2) having a cylinder chamber (21); a roller (3) fitted to the eccentric shaft part (61) of the drive shaft (6) and housed in the cylinder chamber (21); ) Is protrudingly connected to the outer periphery of the cylinder chamber (21), and partitions the inside of the cylinder chamber (21) into a low-pressure chamber (Y) communicating with the suction port (22) and a high-pressure chamber (X) communicating with the discharge port (23). A swinging hole which has a blade (4) and a receiving groove (51) for freely receiving a protruding tip side of the blade (4) to advance and retreat, and which is swingably held in a holding hole (25) provided in the cylinder (2). A rotary compressor having a bush (5);
Between the outer peripheral surface of the oscillating bush (5) and the inner peripheral surface of the holding hole (25), at least one of the outer peripheral surface and the inner peripheral surface is connected to the oscillating direction of the oscillating bush (5). An oil sump (7) recessed and formed in an orthogonal direction ,
A notch (5f) that makes a part of the arc surface (5a) of the oscillating bush (5) flat is formed with the opening (24) of the holding hole (25) to the cylinder chamber (21). A rotary compressor provided on the opposite side .
JP12627893A 1993-05-27 1993-05-27 Rotary compressor Expired - Fee Related JP3581907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12627893A JP3581907B2 (en) 1993-05-27 1993-05-27 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12627893A JP3581907B2 (en) 1993-05-27 1993-05-27 Rotary compressor

Publications (2)

Publication Number Publication Date
JPH06336989A JPH06336989A (en) 1994-12-06
JP3581907B2 true JP3581907B2 (en) 2004-10-27

Family

ID=14931256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12627893A Expired - Fee Related JP3581907B2 (en) 1993-05-27 1993-05-27 Rotary compressor

Country Status (1)

Country Link
JP (1) JP3581907B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985513B2 (en) * 2001-12-07 2007-10-03 ダイキン工業株式会社 Rotary compressor
JP5413493B1 (en) * 2012-08-20 2014-02-12 ダイキン工業株式会社 Rotary compressor
JP2023044742A (en) * 2021-09-21 2023-04-03 大豊工業株式会社 compression mechanism

Also Published As

Publication number Publication date
JPH06336989A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
US4385875A (en) Rotary compressor with fluid diode check value for lubricating pump
JPH06323272A (en) Rotary compressor
JP3622216B2 (en) Swing type rotary compressor
KR100322269B1 (en) Oscillating Rotary Compressor
US5577903A (en) Rotary compressor
JP3581907B2 (en) Rotary compressor
US20220307505A1 (en) Compressor
US20220412358A1 (en) Rotary compressor
JPH0737796B2 (en) Rotary compressor
US5779463A (en) Rotary piston pump having a slide valve driven by a rotor
JP3742848B2 (en) Swing compressor
JPH10148193A (en) Rotary compressor
JP2876922B2 (en) Rolling piston type compressor
JP3033345U (en) High-pressure side sealed vertical rotary compressor
EP1805419B1 (en) Rotary compressor
JP3742849B2 (en) Rotary compressor
JPH11294353A (en) Rotary compressor
JP2006329140A (en) Expander
US11674514B2 (en) Compressor with a fitted shaft portion having two sliding surfaces and an oil retainer
JPH1137072A (en) Gas compressor
JP3156895B2 (en) Rotary compressor with integrated blade and roller
JPH10103227A (en) Refrigerant compressor
JPH05172050A (en) Refrigerant gas suction guide mechanism in piston type compressor
JP2020007991A (en) Vane pump
JPH11294324A (en) Coolant compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees