JP3580736B2 - クロック信号制御機能付フリップフロップ回路、及び、クロック制御回路 - Google Patents

クロック信号制御機能付フリップフロップ回路、及び、クロック制御回路 Download PDF

Info

Publication number
JP3580736B2
JP3580736B2 JP23772999A JP23772999A JP3580736B2 JP 3580736 B2 JP3580736 B2 JP 3580736B2 JP 23772999 A JP23772999 A JP 23772999A JP 23772999 A JP23772999 A JP 23772999A JP 3580736 B2 JP3580736 B2 JP 3580736B2
Authority
JP
Japan
Prior art keywords
signal
clock
circuit
control
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23772999A
Other languages
English (en)
Other versions
JP2000232339A (ja
Inventor
基嗣 濱田
忠広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23772999A priority Critical patent/JP3580736B2/ja
Publication of JP2000232339A publication Critical patent/JP2000232339A/ja
Application granted granted Critical
Publication of JP3580736B2 publication Critical patent/JP3580736B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、クロック信号制御機能付フリップフロップ回路及びクロック制御回路に関するものであり、特に、消費電力の抑制を図ったフリップフロップ回路及び消費電力の抑制を図るためのクロック制御回路に関する。
【0002】
【従来の技術】
フリップフロップ回路は、これを動作させるためにクロック信号を入力する必要がある。集積回路内の論理回路は時間平均で見れば、多くの部分は動作せずに停止している。しかし、クロック信号は動作周波数に応じて必ず遷移を行うために、集積回路の消費電力の多くの部分は、フリップフロップ回路とクロックツリーで占められている。このような一般的なフリップフロップ回路の例を、図14に示す。この図14からわかるように、クロック信号入力用端子であるCP端子には、ハイレベルとローレベルが交互に入力され、そのたびにフリップフロップ回路100を構成する24個の全トランジスタのうち、半分の12個のトランジスタのゲート端子が、充放電される。
ここで、フリップフロップ回路での消費電力を低減するための提案としては、特開平4−298115号公報がある。この特開平4−298115号公報にある回路では、マスタースレーブ型のフリップフロップ回路のデータ入力信号とデータ出力信号とを比較し、異なる場合のみクロック信号をフリップフロップ回路へ供給し、等しい場合は内部のクロック信号をローレベルに固定する構成をとっている。
【0003】
【発明が解決しようとする課題】
しかし、この特開平4−298115号公報に開示された構成では、クロック信号がハイレベルにある時にフリップフロップ回路の入力信号が変化すると、誤動作をするという問題がある。すなわち、フリップフロップ回路への内部のクロック信号の供給が停止され、したがって、内部のクロック信号がローレベルを保っている状態で、フリップフロップ回路への入力信号が変化したとする。この場合において、外部からのクロック信号がハイレベルであると、その時点でフリップフロップ回路へ供給される内部のクロック信号がローレベルからハイレベルに変化してしまい、誤動作を生じてしまう。
このような問題を解決するため、Nogawaらは1997 Symposium on VLSI Circuits Digest of Technical Paper p101−102において、クロック信号のハイレベルの時間を十分に短くすることで、誤動作を防ぐ方法を提案している。そして、ハイレベルの時間の十分短い短パルスのクロック信号を生成する機構を各フリップフロップ回路に持たせることは、フリップフロップ回路の面積の増大及び消費電力の増大につながるので、複数のフリップフロップ回路をグループとしてまとめ、それらに一括して短パルスのクロック信号を供給することとしている。しかしながら、パルス状の信号は配線中を伝搬する際に劣化する傾向が強いため、このような短パルスを生成するクロック信号生成回路と、フリップフロップ回路との間の距離を、慎重に設計する必要が生じる。また、このような歪みの影響を考慮した上で、短パルスのパルス幅を設計する必要も生じる。
【0004】
そこで、本発明は上記課題に鑑みてなされたものであり、消費電力の抑制を図りつつ、フリップフロップ回路のデータ入力信号が、どのようなタイミングで変化したとしても、フリップフロップ回路に誤動作が生じないにすることを目的とする。しかも、クロック信号におけるパルス幅の調整を不要にするとともに、クロック信号の伝搬による歪みの問題が生じないようすることを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明に係るクロック信号制御機能付フリップフロップ回路は、データ入力信号と内部クロック信号とが入力され、前記内部クロック信号に同期して前記データ入力信号の値を保持してデータ出力信号として出力する、データ保持出力回路と、前記データ保持出力回路の前記データ入力信号と前記データ出力信号とが入力され、これらデータ入力信号とデータ出力信号とが不一致の場合を検出して不一致信号を出力する、不一致検出回路と、外部クロック信号と前記不一致信号とが入力され、前記データ入力信号と前記データ出力信号とが不一致の場合には、前記外部クロック信号の立ち上がり又は立ち下がりに同期して、前記外部クロック信号の1サイクルよりも短いパルスを前記内部クロック信号として出力し、前記データ入力信号と前記データ出力信号とが一致する場合には、第1レベルの信号を前記内部クロック信号として出力する、クロック制御回路と、を備えたことを特徴とする。
また、本発明に係るクロック制御回路は、外部クロック信号と供給制御信号とが入力され、内部クロック信号を出力する、クロック制御回路であって、前記内部クロック信号は、クロック制御信号と前記外部クロック信号の論理積であり、前記クロック制御信号は前記供給制御信号と伝搬制御信号の論理積であり、前記伝搬制御信号は前記クロック制御信号と前記外部クロック信号の否定の論理和である、ことを特徴とする。
【0006】
【発明の実施の形態】
〔第1実施形態〕
本発明の第1実施形態は、入力信号が変化した時のみフリップフロップ回路へ内部クロック信号を供給するクロック制御回路を各フリップフロップ回路に内蔵するとともに、このクロック制御回路は外部クロック信号の立ち上がりに同期して内部クロック信号を供給し、データ出力信号の変化が確定したことを検出してから内部クロック信号の供給を停止することにより、フリップフロップ回路には短パルスの内部クロック信号が供給されたのと同じ効果が得られるようにしたものである。そして、これにより、外部クロック信号のパルス幅の調整を不要にし、短パルスの外部クロック信号を伝搬させることにより生ずる歪みの問題が生じないようにしたものである。より詳しくを、以下に説明する。
図1は本実施形態に係るクロック信号制御機能付フリップフロップ回路の回路構成の一例を示す図である。
この図1からわかるように、このクロック信号制御機能付フリップフロップ回路は、フリップフロップ回路10と、不一致検出回路DDCと、クロック制御回路CCCとを、備えて構成されている。
フリップフロップ回路10の入力端子Dにはデータ入力信号DISが入力され、出力端子Qからはデータ出力信号DOSが出力され、クロック入力端子には内部クロック信号ICLKが入力される。このフリップフロップ回路10は、マスタースレーブ型のフリップフロップ回路であり、内部クロック信号ICLKの立ち上がり時のデータ入力信号DISの値を、次の内部クロック信号ICLKの立ち上がり時まで保持する機能を有している。このフリップフロップ回路10が、本実施形態におけるデータ保持出力回路を構成する。
【0007】
不一致検出回路DDCには、フリップフロップ回路10のデータ入力信号DISとデータ出力信号DOSとが入力されており、不一致信号DSを出力する。不一致検出回路DDCは、これらデータ入力信号DISとデータ出力信号DOSとが、一致しているか否かを検出する回路であり、データ入力信号DISとデータ出力信号DOSの不一致を検出した場合に、不一致信号DSを生成する。この不一致信号DSは、クロック制御回路CCCに入力される。
本実施形態では、データ入力信号DISとデータ出力信号DOSから、不一致信号DSを生成するとしたが、フリップフロップ10内部におけるデータ入力信号DISと等価な信号や、データ出力信号DOSと等価な信号から、不一致信号DSを生成することも可能である。また、不一致信号DSを生成するためには、排他的論理和(EXOR)回路を用いることが効率的である。
クロック制御回路CCCには、この不一致信号DSの他に、外部からの外部クロック信号信号ECLKが入力されており、前述した内部クロック信号ICLKをフリップフロップ回路10へ出力する。このクロック制御回路CCCは、NOT回路12と、AND回路14と、OR回路16と、AND回路18とを、備えて構成されている。外部クロック信号ECLKはNOT回路12とAND回路14とに入力されている。NOT回路12の出力信号はOR回路16に入力されている。このOR回路16の出力信号である伝搬制御信号TCSは、AND回路18に入力されている。このAND回路18には、一致検出回路DDCからの不一致信号DSも入力されており、その出力信号としてのクロック制御信号CCSを、AND回路14とOR回路16とに出力する。つまり、不一致信号DSと伝搬制御信号TCSとの論理積により、クロック制御信号CCSを生成する。また、信号伝搬制御信号TCSは、外部クロック信号ECLKの否定と、クロック制御信号CCSとの、論理和により生成される。AND回路14には、このクロック制御信号CCSと、前述した外部クロック信号ECLKとが入力されており、出力信号として内部クロック信号ICLKをフリップフロップ回路10に出力する。すなわち、クロック制御信号CCSと外部クロック信号ECLKの論理積により内部クロック信号ICLKが生成される。
【0008】
次に、図2及び図3に基づいて本実施形態に係るクロック信号制御機能付フリップフロップ回路の動作を説明する。図2は外部クロック信号ECLKがローの時にデータ入力信号DISが変化した場合のタイミングチャートを示す図であり、図3は外部クロック信号ECLKがハイの時にデータ入力信号DISが変化した場合のタイミングチャートを示す図である。
まず、図2に基づいて、外部クロック信号ECLKがローの時にデータ入力信号DISが変化した場合の動作を説明する。
この図2からわかるように、時刻t1でデータ入力信号DISがローからハイに切り替わったとする。すると、フリップフロップ回路10におけるデータ入力信号DISとデータ出力信号DOSとが不一致になるので、不一致検出回路DDCの不一致信号DSがローからハイに切り替わる。この時刻t1においては伝搬制御信号TCSもハイであるので、クロック制御信号CCSもローからハイに切り替わる。但し、外部クロック信号ECLKがローであるので、内部クロック信号ICLKはローのままである。
次に、時刻t2で外部クロック信号ECLKがローからハイに切り替わる。すると、クロック制御信号CCSがハイであるので、内部クロック信号ICLKもローからハイに切り替わる。この内部クロック信号ICLKはフリップフロップ回路10に入力されており、この内部クロック信号ICLKの立ち上がりに同期して、フリップフロップ回路10は動作する。すなわち、フリップフロップ回路10は、この内部クロック信号ICLKの立ち上がり時のデータ入力信号DISの値を、データ出力信号DOSとして出力する。但し、この際には、フリップフロップ回路10の動作の遅延時間として、ΔTを要する。したがって、時刻t2からΔTだけ経過した時刻t3において、データ出力信号DOSはローからハイに切り替わる。
【0009】
この時刻t3において、データ出力信号DOSとデータ入力信号DISとが一致するので、不一致信号DSがハイからローに切り替わる。このため、クロック制御信号CCSもハイからローに切り替わり、内部クロック信号ICLKもハイからローに切り替わる。
次に、図3に基づいて、外部クロック信号ECLKがハイの時にデータ入力信号DISが変化した場合の動作を説明する。
この図3からわかるように、時刻t1でデータ入力信号DISがローからハイに切り替わったとする。すると、フリップフロップ回路10におけるデータ入力信号DISとデータ出力信号DOSとが不一致になるので、不一致検出回路DDCの不一致信号DSがローからハイに切り替わる。但し、この時刻t1においては伝搬制御信号TCSはローであるので、クロック制御信号CCSもローのままである。したがって、内部クロック信号ICLKもローのままである。
次に、時刻t2で外部クロック信号ECLKがハイからローに切り替わり、伝搬制御信号TCSがローからハイに切り替わる。伝搬制御信号TCSと不一致信号DSとがともにハイであるので、クロック制御信号CCSもローからハイに切り替わる。但し、外部クロック信号ECLKがローであるので、この時刻t2においては、内部クロック信号ICLKもローのままである。
【0010】
次に、時刻t3で外部クロック信号ECLKがローからハイに切り替わる。すると、クロック制御信号CCSもハイであるので、内部クロック信号ICLKもローからハイに切り替わる。この内部クロック信号ICLKはフリップフロップ回路10に入力されており、この内部クロック信号ICLKの立ち上がりに同期して、フリップフロップ回路10は動作する。すなわち、フリップフロップ回路10は、この内部クロック信号ICLKの立ち上がり時のデータ入力信号DISの値を、データ出力信号DOSとして出力する。但し、この際には、フリップフロップ回路10の動作の遅延時間として、ΔTを要する。したがって、時刻t3からΔTだけ経過した時刻t4において、データ出力信号DOSはローからハイに切り替わる。
この時刻t4において、データ出力信号DOSとデータ入力信号DISとが一致するので、不一致信号DSがハイからローに切り替わる。このため、クロック制御信号CCSもハイからローに切り替わり、内部クロック信号ICLKもハイからローに切り替わる。
以上のように、本実施形態に係るクロック信号制御機能付フリップフロップ回路によれば、データ入力信号DISとデータ出力信号DOSとが一致しているときには、内部クロック信号ICLKをローに固定し、データ入力信号DISとデータ出力信号DOSとが一致していないときのみ内部クロック信号ICLKをフリップフロップ回路10へ供給するようにしたので、消費電力の抑制を図ることができる。特に、データ入力信号があまり変化しないような、データ遷移確率の低い場合には、大幅な消費電力の抑制を図ることができる。
【0011】
しかも、クロック制御回路CCCを設けることにより、外部クロック信号ECLKの立ち上がりに同期させて内部クロック信号ICLKも立ち上げることとしたので、外部クロック信号ECLKがローの時にデータ入力信号DISが変化した場合でも、外部クロック信号ECLKがハイの時にデータ入力信号DISが変化した場合でも、このクロック信号制御機能付フリップフロップ回路に誤動作が生じないようにすることができる。
しかも、内部クロック信号ICLKを、外部クロック信号ECLKの立ち上がりに同期させて立ち上げ、データ出力信号DOSの変化を検出して立ち下げることとしたので、結果として短パルスの内部クロック信号ICLKを得ることができる。このため、内部クロック信号ICLKのパルス幅は、外部クロック信号ECLKの1クロックサイクルより、短くなる。
また、内部クロック信号ICLKにおけるパルスのパルス幅の終端は、データ入力信号DISとデータ出力信号DOSとが一致したタイミングと同期して定められることとしたので、パルス幅が短すぎてフリップフロップ回路10が動作しなくなるという事態を回避することができる。このため、従来のように外部クロック信号として、パルス状のクロックを用いる場合と比べて、配線中の伝搬過程における劣化をそれほど意識しないで設計することができるようになる。
【0012】
〔第2実施形態〕
本発明の第2実施形態は、第1実施形態のクロック信号制御機能付フリップフロップ回路におけるマスタースレーブ型のフリップフロップ回路及び不一致検出回路の具体的構成を論理素子レベルであらわしたものである。
図4は、この第2実施形態に係るクロック信号制御機能付フリップフロップ回路を示す図である。
フリップフロップ回路10は、直列的に接続された、クロックドインバータ10aと、NOT回路10bと、トランスミッションゲート10cと、NOT回路10dと、NOT回路10eとを、備えて構成されている。さらに、フリップフロップ回路10は、NOT回路10bと並列に接続されたクロックドインバータ10fと、NOT回路10dと並列に接続されたクロックドインバータ10gとを、備えて構成されている。これらのうち、クロックドインバータ10fとトランスミッションゲート10cは、内部クロック信号ICLKがハイの時、通過状態となる。また、クロックドインバータ10a、10gは、反転内部クロック信号/ICLKがハイの時、通過状態となる。クロックドインバータ10aには、このフリップフロップ回路10の入力としてのデータ入力信号DISが入力され、NOT回路10eからは、このフリップフロップ回路10の出力としてのデータ出力信号DOSが出力される。
【0013】
これら各素子のうち、クロックドインバータ10a、10fと、NOT回路10bとで、マスターラッチ回路MLを構成し、インバータ10d、10eと、クロックドインバータ10gとで、スレーブラッチ回路SLを構成している。
不一致検出回路DDCは、n型MOSトランジスタNM1、NM2と、p型MOSトランジスタPM1、PM2とを、備えて構成されている。この不一致検出回路DDCは、データ入力信号DISとデータ出力信号DOSとの不一致を検出した場合に、ローの不一致信号/DSを出力するよう構成されている。
n型MOSトランジスタNM1の制御端子には、データ入力信号DISが入力されている。n型MOSトランジスタNM1の入力端子は、NOT回路10dの入力側に接続されている。したがって、n型MOSトランジスタNM1の入力端子には、データ出力信号DOSと等価な信号が入力されている。n型MOSトランジスタNM1の出力端子はクロック制御回路CCC2へ接続されている。
p型MOSトランジスタPM1の制御端子は、NOT回路10bの入力側に接続されている。したがって、p型MOSトランジスタPM1の制御端子には、データ入力信号DISの反転信号と等価な信号が入力されている。p型MOSトランジスタPM1の入力端子は、NOT回路10dの入力側に接続されている。したがって、p型MOSトランジスタPM1の入力端子には、データ出力信号DOSと等価な信号が入力されている。p型MOSトランジスタPM1の出力端子はクロック制御回路CCC2へ接続されている。
【0014】
n型MOSトランジスタNM2の制御端子は、NOT回路10bの入力側に接続されている。したがって、n型MOSトランジスタNM2の制御端子には、データ入力信号DISの反転信号と等価な信号が入力されている。n型MOSトランジスタNM2の入力端子は、NOT回路10eの入力側に接続されている。したがって、n型MOSトランジスタNM2の入力端子には、データ出力信号DOSの反転信号と等価な信号が入力されている。n型MOSトランジスタNM2の出力端子はクロック制御回路CCC2へ接続されている。
p型MOSトランジスタPM2の制御端子には、データ入力信号DISが入力されている。p型MOSトランジスタPM2の入力端子は、NOT回路10eの入力側に接続されている。したがって、p型MOSトランジスタPM2の入力端子には、データ出力信号DOSの反転信号と等価な信号が入力されている。p型MOSトランジスタPM2の出力端子はクロック制御回路CCC2へ接続されている。
クロック制御回路CCC2は、回路構成が効率的になるように論理変換を行っている。但し、論理的には図1に示すクロック制御回路CCCと等価である。また、反転内部クロック信号/ICLKを生成するNOT回路と、クロック制御回路CCCの2入力のAND回路14を結合し、2入力のNAND回路とすることで、トランジスタ数の削減を図っている。したがって、クロック制御回路CCC2は、NOT回路11とAND回路13とNOR回路15とNAND回路17とNOT回路19とを備えて構成されている。
【0015】
AND回路13には、外部クロック信号ECLKとクロック制御信号CCSを反転した信号とが入力され、伝搬制御信号/TCSを出力する。NOR回路15には、不一致信号/DSと伝搬制御信号/TCSとが入力され、クロック制御信号CCSを出力する。NAND回路17には、クロック制御信号CCSと外部クロック信号ECLKとが入力され、反転内部クロック信号/ICLKを出力する。NOT回路19には反転内部クロック信号/ICLKが入力され、内部クロック信号ICLKを出力する。
この第2実施形態に係るクロック信号制御機能付フリップフロップ回路の動作は、上述した第1実施形態と同様のものであるので、その説明は省略する。
〔第3実施形態〕
本発明の第3実施形態は、フリップフロップ回路におけるマスターラッチ回路部分をダイナミック回路で構成することによりトランジスタ数の削減を図ったものである。
図5は本実施形態に係るクロック信号制御機能付フリップフロップ回路の回路構成の一例を示す図である。
上述した第2実施形態においては、図4からわかるように、マスタースレーブ型のフリップフロップ回路10をスタティック回路で構成した。これに対して、第3実施形態においては、図5からわかるように、本発明に係るクロック制御回路CCC、CCC2では内部クロック信号ICLKのハイである時間が非常に短いので、フリップフロップ回路20のマスターラッチ回路ML2をダイナミック回路で構成した。すなわち、マスターラッチ回路をNOT回路10hとトランスミッションゲート10iとNOT回路10jとを直列的に接続することにより構成した。
【0016】
すなわち、NOT回路10h、10jと、トランスミッションゲート10iとで、マスターラッチ回路ML2を構成し、インバータ10d、10eと、クロックドインバータ10gとで、スレーブラッチ回路SLを構成した。
このようにフリップフロップ回路20のマスターラッチ回路ML2をダイナミック回路で構成することにより、トランジスタ数の削減を図ることができる。
〔第4実施形態〕
本発明の第4実施形態は、内部クロック信号ICLKのハイの時間が非常に短いことに着目して、第1実施形態におけるフリップフロップ回路をラッチ回路に置き換えることにより、トランジスタ数の削減を図ったものである。
図6は、第4実施形態に係るクロック信号制御機能付フリップフロップ回路の回路構成の一例を示す図である。
この図6からわかるように、このクロック信号制御機能付フリップフロップ回路は、ラッチ回路22を備えて構成されている。すなわち、図1に示す第1実施形態に係るクロック信号制御機能付フリップフロップ回路におけるフリップフロップ回路10の代わりに、図6に示すように、ラッチ回路22を設けている。これは、内部クロック信号ICLKのハイである時間が非常に短いので、ラッチ回路22でフリップフロップ回路10を置換しても、エッジトリガー型のフリップフロップ動作を得ることができるためである。
【0017】
この図6に示すラッチ回路22は、内部クロック信号ICLKがハイの間は、入力端子Dのデータ入力信号DISの値を出力端子Qの出力に伝えて、データ出力信号DOSとして出力する。一方、内部クロック信号ICLKがローの間は、内部クロック信号ICLKの立ち下がり時における出力端子Qの値を保持して、データ出力信号DOSとして出力する。このラッチ回路22が、本実施形態におけるデータ保持出力回路を構成する。
このようにクロック信号制御機能付フリップフロップ回路を構成することにより、トランジスタ数の削減を図ることができる。すなわち、本実施形態に係る構成では、上述した第3実施形態に係る構成と比較して、フリップフロップの特性の一つであるホールドタイム特性が悪化するものの、さらにトランジスタ数を削減することができる。すなわち、ホールドタイム特性が悪化して、内部クロック信号ICLKのパルス幅が広くなる傾向があるものの、さらなるトランジスタ数の削減を図ることができる。
〔第5実施形態〕
本発明の第5実施形態は、第4実施形態のクロック信号制御機能付フリップフロップ回路におけるラッチ回路及び不一致検出回路の具体的構成を論理素子レベルであらわしたものである。
【0018】
図7は、この第4実施形態に係るクロック信号制御機能付フリップフロップ回路を示す図である。ラッチ回路22は、直列的に接続されたNOT回路22aとトランスミッションゲート22bとNOT回路22cとを備えて構成されている。また、NOT回路22aと並列的に接続されたクロックドインバータ22dを備えて構成されている。
この図7においては、クロック制御回路CCC2は、回路構成が効率的になるように論理変換を行ったが、論理的には図6に示すクロック制御回路CCCと等価である。また、反転内部クロック信号/ICLKを生成するNOT回路と、クロック制御回路CCCの2入力のAND回路14を結合し、2入力のNAND回路とすることで、トランジスタ数の削減を図っている。
〔第6実施形態〕
本発明の第6実施形態は、クロック制御回路の変形例を示すものである。図8は、この第6実施形態に係るクロック制御回路の回路構成の一例を示す図である。この図8からわかるように、第6実施形態に係るクロック制御回路CCC3は、上述した第1実施形態のクロック制御回路CCC(図1参照)及び第4実施形態のクロック制御回路CCC(図6参照)における2入力のAND回路14の代わりに、3入力のAND回路14Aを設けている。このAND回路14Aには、AND回路18からのクロック制御信号CCSと、外部クロック信号ECLKとの他に、不一致検出回路DDCからの不一致信号DSが、入力されている。
【0019】
以上のようにクロック制御回路CCC3を構成することにより、不一致信号DSがハイからローに変化した時に、内部クロック信号ICLKをいち早くハイからローに切り替えることができる。すなわち、不一致信号DSを内部クロック信号ICLKを発生するAND回路14Aに直接入力するパスを加えたので、AND回路18に生ずる遅延をバイパスして直接的に内部クロック信号ICLKをハイからローへ切り替えることができる。
特に、上述した第4実施形態においては、クロック制御回路CCCとラッチ回路22を組み合わせてフリップフロップ動作をさせるようにした結果、ホールドタイム特性が悪化したが、本実施形態に係るクロック制御回路CCC3を用いることにより、ホールドタイム特性を改善することができる。すなわち、上述した第4実施形態においては、内部クロック信号ICLKのハイ状態が長くなるので、ホールドタイム特性が悪化する傾向にあるが、本実施形態に係るクロック制御回路CCC3を用いることにより、内部クロック信号ICLKのハイ状態を短くすることができる。つまり、内部クロック信号ICLKのパルス幅を狭くすることができ、ホールドタイム特性を改善することができる。
【0020】
〔第7実施形態〕
本発明の第7実施形態は、クロック制御回路の別の変形例を示すものである。図9は、この第7実施形態に係るクロック制御回路の回路構成の一例を示す図である。この図9からわかるように、この第7実施形態に係るクロック制御回路CCC4は、第1実施形態のクロック制御回路CCC(図1参照)及び第4実施形態のクロック制御回路CCC(図6参照)における2入力のAND回路18の代わりに、3入力のAND回路18Aを設けている。また、AND回路14からの内部クロック信号ICLKを1又は複数のNOT回路(インバータ)19Aを介して、このAND回路18にフィードバックしている。本実施形態においては、このNOT回路19は奇数個設ける必要がある。
以上のようにクロック制御回路CCC4を構成することにより、内部クロック信号ICLKのパルス幅を調整することができる。すなわち、内部クロック信号ICLKの遷移をAND回路18Aにフィードバックすることとしたので、内部クロック信号ICLKのパルス幅を容易に制御することができる。しかも、このパルス幅は、NOT回路19Aの段数を変化させることで調整することができる。
【0021】
また、本実施形態に係るクロック制御回路CCC4を用いることは、上述した第6実施形態に係るクロック制御回路CCC3と同様に、第4実施形態のホールドタイム特性を改善する対策として、有効である。
〔第8実施形態〕
第8実施形態は、これまでのクロック制御回路を変形して、不一致信号に変えて、あるいは、加えて、他の制御信号を入力することができるようにしたものであり、具体的には出力保持信号をクロック制御回路に加えて入力することにより、フリップフロップ回路にデータ保持機能を持たせるようにしたものである。図10は、この第8実施形態に係るクロック制御回路の回路構成の一例を示す図である。
この図10からわかるように、この第8実施形態に係るクロック制御回路CCC5は、第1実施形態のクロック制御回路CCC(図1参照)及び第4実施形態のクロック制御回路CCC(図6参照)における2入力のAND回路18の代わりに、3入力のAND回路18Bを設けている。そして、このAND回路18Bに、出力保持信号OHSを入力している。この出力保持信号OHSは、クロック信号制御機能付フリップフロップ回路のデータ出力信号DOSを保持しておきたい場合はローとなり、保持する必要のない時はハイとなる、信号である。
【0022】
第1実施形態や第4実施形態に係るクロック制御回路CCCを、上述したようなクロック制御回路CCC5で構成することにより、データ保持機能付のクロック信号制御機能付フリップフロップ回路を実現することができる。すなわち、出力保持信号OHSがローのときには、不一致信号DSの値に関わらず、フリップフロップ回路10又はラッチ回路22のデータ出力信号DOSの値は保持される。一方、出力保持信号OHSがハイのときには、不一致信号DSがハイの時のみ、つまり、データ入力信号DISとデータ出力信号DOSとが不一致の時のみ、フリップフロップ回路10又はラッチ回路22は、データ入力信号DISの値を読み込む。
しかも、いわゆるデータ保持機能付のクロック信号制御機能付フリップフロップ回路と等価な機能を、第1実施形態や第4実施形態におけるクロック制御回路CCCに、2個のトランジスタを追加するだけで実現することができる。すなわち、2入力のAND回路18を3入力のAND回路18Bに変えるだけで実現できる。
〔第9実施形態〕
本発明の第9実施形態は、上述した第4実施形態にデータ出力信号をハイあるいはローに固定する機能を付加したものである。
【0023】
図11は、本実施形態に係るデータ保持機能付のクロック信号制御機能付フリップフロップ回路の具体的な回路構成の一例を示す図である。この図11からわかるように、本実施形態に係るデータ保持機能付のクロック信号制御機能付フリップフロップ回路は、データ入力信号DISによらずに、データ出力信号DOSをハイあるいはローに固定する機能を備えている。この機能を実現するため、本実施形態に係るクロック信号制御機能付フリップフロップ回路は、上述した第4、5実施形態のラッチ回路22の構成に加えて、プリセット信号PRと、クリア信号CLとを、入力する機構を設けている。
プリセット信号PRは、NAND回路22eの一方の入力へ加えられている。このNAND回路22eは、図7に示す第5実施形態のNOT回路22cの代わりに設けられたものである。クリア信号CLは、クロックドNAND回路22fの一方の入力へ加えられている。このクロックドNAND回路22fは、図7に示す第5実施形態のクロックドインバータ22dの代わりに設けられたものである。
本実施形態においては、フリップフロップの通常動作時は、プリセットPR信号とクリア信号CLとを、ともにハイにおておく。すると、このラッチ回路22は内部クロック信号ICLK及び反転内部クロック信号/ICLKに同期したフリップフロップ動作をする。一方、データ出力信号DOSをハイに固定する時は、プリセット信号PRをローにする。すると、このラッチ回路22のデータ出力信号DOSは、ハイに固定される。また、データ出力信号DOSをローに固定するときは、クリア信号CLをローにする。すると、このラッチ回路22のデータ出力信号DOSは、ローに固定される。
【0024】
以上のような構成のデータ保持機能付のクロック信号制御機能付フリップフロップ回路によれば、4個のトランジスタを増設するだけで、データ出力信号DOSをハイ又はローに固定する機能を付加することができる。すなわち、一般的なマスタースレーブ型のフリップフロップではこの機能を付加するのに8個のトランジスタを増設する必要があるのに対し、本実施形態に係る構成では4個のトランジスタの増設ですますことができる。
〔第10実施形態〕
本発明の第10実施形態は、クロック信号制御機能付フリップフロップ回路のデータ入力信号及び外部クロック信号に電圧振幅が低い電圧のVDDLを用いた場合でも、この電圧VDDLよりも高い電圧VDDのデータ出力信号を出力することができるよう、構成したものである。
図12は、本実施形態に係るクロック信号制御機能付フリップフロップ回路の具体的な回路構成の一例を示す図である。この図12からわかるように、クロック制御回路CCC2には、外部クロック信号ECLKが入力されている。この外部クロック信号ECLKは、グランドと電圧VDDLの間で振幅する。クロック制御回路CCC2は内部クロック信号ICLKと反転内部クロック信号/ICLKを出力する。これら内部クロック信号ICLKと反転内部クロック信号/ICLKとは、グランドと電圧VDD1の間で振幅する。この電圧VDD1は、電圧VDDLと等しいか、又は、低い電圧であれば足りる。
【0025】
フリップフロップ回路24には、これら内部クロック信号ICLKと反転内部クロック信号/ICLKの他に、データ入力信号DISが入力されている。このデータ入力信号DISは、グランドと電圧VDDLとの間で振幅する。また、図からは明らかでないが、フリップフロップ回路24のNOT回路24aには、電圧VDD1が印加されている。このNOT回路24a以外のフリップフロップ回路24には、電圧VDDの電源が印加されている。そして、このフリップフロップ回路24は、グランドと電圧VDDの間で振幅するデータ出力信号DOSを出力する。この電圧VDDは電圧VDDLよりも高い、通常の電圧である。以上の電圧の高低関係をまとめると、次のようになる。
VDD > VDDL ≧ VDD1
以上のような構成によれば、クロック信号制御機能付フリップフロップ回路のデータ入力信号DIS及び外部クロック信号ECLKに振幅が低い電圧のVDDLを用いた場合でも、この電圧VDDLよりも高い電圧VDDのデータ出力信号DOSを出力することができる。
なお、本実施形態においては、n型MOSトランジスタ24b、24cでトランスファーゲートを構成したが、この部分を一対のn型MOSトランジスタとp型MOSトランジスタとからなるトランスミッションゲートで構成することも可能である。
【0026】
〔第11実施形態〕
本発明の第11実施形態は、上述してきたクロック制御回路を、クロックツリー制御用に用いたものである。
図13は、本実施形態に係るクロック制御回路を含んだクロック信号配線を示す図である。この図13からわかるように、クロック制御回路CCC6には、外部クロック信号ECLKと供給制御信号SCSとが、入力されている。そして、このクロック制御回路CCC6からは、内部クロック信号ICLKが出力される。本実施形態に係るクロック制御回路CCC6は、上述した第1実施形態に係るクロック制御回路CCC(図1参照)と同様の構成である。但し、不一致信号DSの代わりに供給制御信号SCSが入力されている。この内部クロック信号ICLKは、クロックツリーCTへ供給される。このクロックツリーCTからは、最終的な供給クロック信号が出力され、この最終的な供給クロック信号は、複数のフリップフロップ回路26へ供給される。
供給制御信号SCSは、このクロック制御回路CCC6からの内部クロック信号ICLKの供給を制御する。供給制御信号SCSがハイの場合、次の外部クロック信号ECLKの立ち上がりと同期して、内部クロック信号ICLKも立ち上がり、クロックツリーCTが動作する。供給制御信号SCSがローになると、ただちに内部クロック信号ICLKもクロックツリーCTの出力もローに切り替わる。しかし、クロック信号の立ち上がりエッジに同期するフリップフロップ回路26等の論理回路では、クロックツリーCTの出力の立ち上がりエッジの同期が重要であり、立ち下がりエッジが非同期となることは一般にあまり問題とならない。
【0027】
以上のように本実施形態に係るクロック制御回路CCC6を用いることにより、クロックツリーCTでの消費電力を抑制することができる。すなわち、クロックツリーCTに最終的な供給クロック信号を出力させるか否かを制御することができる。しかも、本実施形態によれば、従来より少ないトランジスタでクロック制御回路CCC6を実現することができる。
なお、本発明は上記実施形態に限定されず種々に変形可能である。例えば、フリップフロップ回路やラッチ回路に限らず、クロック信号に同期してデータ入力信号を保持してデータ出力信号として出力するデータ保持出力回路であれば、本発明を適用することができる。
さらに、上述した各実施形態におけるハイとローの関係を入れ替えてもよい。すなわち、上述したフリップフロップ回路10を、内部クロック信号ICLKの立ち下がりエッジに同期して動作するフリップフロップ回路に置き換える。または、上述したラッチ回路22を、内部クロック信号ICLKがローの間はデータ入力信号DISの値をデータ出力信号DOSとして出力するラッチ回路22に置き換える。そして、上述した各信号のローとハイを入れ替えた信号を用いても、上記各実施形態を実現することができる。
【0028】
【発明の効果】
以上のように、本発明によれば、データ保持出力回路のデータ入力信号とデータ出力信号とが不一致の場合には外部クロック信号の立ち上がりに同期して短いパルスを内部クロック信号としてデータ保持出力回路へ供給し、データ入力信号とデータ出力信号とが一致する場合には第1レベルの信号を内部クロック信号としてデータ保持出力回路へ供給することとしたので、クロック信号を供給するのに必要となる消費電力の抑制を図りつつ、フリップフロップ動作に誤りが生じないようにすることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るクロック信号制御機能付フリップフロップ回路を示す図。
【図2】本発明の第1実施形態に係るクロック信号制御機能付フリップフロップ回路の動作を説明するためのタイミングチャートを示す図(外部クロック信号がローの時にデータ入力信号が変化した場合)。
【図3】本発明の第1実施形態に係るクロック信号制御機能付フリップフロップ回路の動作を説明するためのタイミングチャートを示す図(外部クロック信号がハイの時にデータ入力信号が変化した場合)。
【図4】第2実施形態に係るクロック信号制御機能付フリップフロップ回路を示す図。
【図5】第3実施形態に係るクロック信号制御機能付フリップフロップ回路を示す図。
【図6】第4実施形態に係るクロック信号制御機能付フリップフロップ回路を示す図。
【図7】第5実施形態に係るクロック信号制御機能付フリップフロップ回路を示す図。
【図8】クロック制御回路の変形例を示す図(第6実施形態)。
【図9】クロック制御回路の変形例を示す図(第7実施形態)。
【図10】クロック制御回路の変形例を示す図(第8実施形態)。
【図11】第9実施形態に係るクロック信号制御機能付フリップフロップ回路を示す図。
【図12】第10実施形態に係るクロック信号制御機能付フリップフロップ回路を示す図。
【図13】第1実施形態におけるクロック制御回路をクロックツリー制御用に用いた場合の一例を示す図(第11実施形態)。
【図14】従来のフリップフロップ回路を示す図。
【符号の説明】
10 フリップフロップ回路
22 ラッチ回路
DDC 不一致検出回路
CCC クロック制御信号
DIS データ入力信号
DOS データ出力信号
ICLK 内部クロック信号
ECLK 外部クロック信号
DS 不一致信号
TCS 伝搬制御信号
CCS クロック制御信号

Claims (19)

  1. データ入力信号と内部クロック信号とが入力され、前記内部クロック信号に同期して前記データ入力信号の値を保持してデータ出力信号として出力する、データ保持出力回路と、
    前記データ保持出力回路の前記データ入力信号と前記データ出力信号とが入力され、これらデータ入力信号とデータ出力信号とが不一致の場合を検出して不一致信号を出力する、不一致検出回路と、
    外部クロック信号と前記不一致信号とが入力され、前記データ入力信号と前記データ出力信号とが不一致の場合には、前記外部クロック信号の立ち上がり又は立ち下がりに同期して、前記外部クロック信号の1サイクルよりも短いパルスを前記内部クロック信号として出力し、前記データ入力信号と前記データ出力信号とが一致する場合には、第1レベルの信号を前記内部クロック信号として出力する、クロック制御回路と、
    を備えたことを特徴とするクロック信号制御機能付フリップフロップ回路。
  2. 前記クロック制御回路が出力する前記内部クロック信号における前記パルスのパルス幅終端は、前記データ入力信号と前記データ出力信号とが一致したタイミングと同期して定められることを特徴とする請求項1に記載のクロック信号制御機能付フリップフロップ回路。
  3. 前記不一致信号は、前記データ入力信号と前記データ出力信号とが不一致の場合に第2レベルとなる信号である、ことを特徴とする請求項1に記載のクロック信号制御機能付フリップフロップ回路。
  4. 前記第1レベルはローレベルであり、前記第2レベルはハイレベルであることを特徴とする請求項3に記載のクロック信号制御機能付フリップフロップ回路。
  5. 前記クロック制御回路の出力である前記内部クロック信号は、クロック制御信号と前記外部クロック信号の論理積であり、
    前記クロック制御信号は前記不一致信号と伝搬制御信号の論理積であり、
    前記伝搬制御信号は前記クロック制御信号と前記外部クロック信号の否定の論理和である、
    ことを特徴とする請求項4に記載のクロック信号制御機能付フリップフロップ回路。
  6. 前記クロック制御回路の出力である前記内部クロック信号は、クロック制御信号と前記外部クロック信号の論理積否定の否定であり、
    前記クロック制御信号は前記不一致信号と伝搬制御信号の論理和否定であり、前記伝搬制御信号は前記クロック制御信号の否定と前記外部クロック信号の論理積である、
    ことを特徴とする請求項4に記載のクロック信号制御機能付フリップフロップ回路。
  7. 前記クロック制御回路の出力である前記内部クロック信号は、クロック制御信号と前記外部クロック信号と前記不一致信号の論理積であり、
    前記クロック制御信号は前記不一致信号と伝搬制御信号の論理積であり、
    前記伝搬制御信号は前記クロック制御信号と前記外部クロック信号の否定の論理和である、
    ことを特徴とする請求項4に記載のクロック信号制御機能付フリップフロップ回路。
  8. 前記クロック制御回路の出力である前記内部クロック信号は、クロック制御信号と前記外部クロック信号の論理積であり、
    前記クロック制御信号は前記不一致信号と伝搬制御信号と前記内部クロック信号に対して一定の遅延時間を有する信号との論理積であり、
    前記伝搬制御信号は前記クロック制御信号と前記外部クロック信号の否定の論理和である、
    ことを特徴とする請求項4に記載のクロック信号制御機能付フリップフロップ回路。
  9. 前記クロック制御回路の出力である前記内部クロック信号は、クロック制御信号と前記外部クロック信号の論理積であり、
    前記クロック制御信号は、前記不一致信号と、伝搬制御信号と、前記データ出力信号を保持する場合はローとなり保持する必要がない場合はハイとなる出力保持信号との、論理積であり、
    前記伝搬制御信号は前記クロック制御信号と前記外部クロック信号の否定の論理和である、
    ことを特徴とする請求項4に記載のクロック信号制御機能付フリップフロップ回路。
  10. 前記不一致検出回路は、
    前記データ入力信号が入力される制御端子と、前記データ出力信号が入力される入力端子と、前記クロック制御回路へ接続される出力端子とを、有する、第1のn型MOSトランジスタと、
    前記データ入力信号を反転した信号が入力される制御端子と、前記データ出力信号が入力される入力端子と、前記クロック制御回路へ接続される出力端子とを、有する、第1のp型MOSトランジスタと、
    前記データ入力信号を反転した信号が入力される制御端子と、前記データ出力信号を反転した信号が入力される入力端子と、前記クロック制御回路へ接続される出力端子とを、有する、第2のn型MOSトランジスタと、
    前記データ入力信号が入力される制御端子と、前記データ出力信号を反転した信号が入力される入力端子と、前記クロック制御回路へ接続される出力端子とを、有する、第2のp型MOSトランジスタと、
    を備えることを特徴とする請求項4に記載のクロック信号制御機能付フリップフロップ回路。
  11. 前記不一致検出回路は、
    前記データ入力信号を反転した信号が入力される制御端子と、前記データ出力信号を反転した信号が入力される入力端子と、前記クロック制御回路へ接続される出力端子とを、有する、第1のn型MOSトランジスタと、
    前記データ入力信号が入力される制御端子と、前記データ出力信号を反転した信号が入力される入力端子と、前記クロック制御回路へ接続される出力端子とを、有する、第1のp型MOSトランジスタと、
    前記データ入力信号が入力される制御端子と、前記データ出力信号が入力される入力端子と、前記クロック制御回路へ接続される出力端子とを、有する、第2のn型MOSトランジスタと、
    前記データ入力信号を反転した信号が入力される制御端子と、前記データ出力信号が入力される入力端子と、前記クロック制御回路へ接続される出力端子とを、有する、第2のp型MOSトランジスタと、
    を備えることを特徴とする請求項4に記載のクロック信号制御機能付フリップフロップ回路。
  12. 前記データ保持出力回路は、前記内部クロック信号の立ち上がり時又は立ち下がり時に前記データ入力信号を取り込んでこれを保持し、前記データ出力信号として出力するフリップフロップ回路で構成されている、ことを特徴とする請求項1に記載のクロック信号制御機能付フリップフロップ回路。
  13. 前記フリップフロップ回路は、マスターラッチ回路とスレーブラッチ回路とで構成されている、ことを特徴とする請求項12に記載のクロック信号制御機能付フリップフロップ回路。
  14. 前記マスターラッチ回路は、状態保持機能のないダイナミック回路で構成されていることを特徴とする請求項13に記載のクロック信号制御機能付フリップフロップ回路。
  15. 前記データ保持出力回路は、前記内部クロック信号が第2レベルの間に前記データ入力信号を取り込んで、前記データ出力信号として出力し、前記内部クロック信号が前記第1レベルの間は前記第2レベルの間に取り込んだ前記データ入力信号を保持して、前記データ出力信号として出力する、ラッチ回路で構成されている、ことを特徴とする請求項1に記載のクロック信号制御機能付フリップフロップ回路。
  16. 前記ラッチ回路は、前記データ出力信号を前記第1レベルに固定するためのクリア信号が入力されるクリア入力と、前記データ出力信号を前記第2レベルに固定するためのプリセット信号が入力されるプリセット入力とを、備えることを特徴とする請求項15に記載のクロック信号制御機能付フリップフロップ回路。
  17. 前記データ保持出力回路は、前記データ入力信号よりも高い電圧の前記データ出力信号を出力するよう構成されていることを特徴とする請求項1に記載のクロック信号制御機能付フリップフロップ回路。
  18. 外部クロック信号と供給制御信号とが入力され、内部クロック信号を出力する、クロック制御回路であって、
    前記内部クロック信号は、クロック制御信号と前記外部クロック信号の論理積であり、
    前記クロック制御信号は前記供給制御信号と伝搬制御信号の論理積であり、
    前記伝搬制御信号は前記クロック制御信号と前記外部クロック信号の否定の論理和である、
    ことを特徴とするクロック制御回路。
  19. 前記内部クロック信号は、クロック信号配線を構成するクロックツリーに出力される、ことを特徴とする請求項18に記載のクロック制御回路。
JP23772999A 1998-08-26 1999-08-25 クロック信号制御機能付フリップフロップ回路、及び、クロック制御回路 Expired - Fee Related JP3580736B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23772999A JP3580736B2 (ja) 1998-08-26 1999-08-25 クロック信号制御機能付フリップフロップ回路、及び、クロック制御回路

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-240713 1998-08-26
JP24071398 1998-08-26
JP23772999A JP3580736B2 (ja) 1998-08-26 1999-08-25 クロック信号制御機能付フリップフロップ回路、及び、クロック制御回路

Publications (2)

Publication Number Publication Date
JP2000232339A JP2000232339A (ja) 2000-08-22
JP3580736B2 true JP3580736B2 (ja) 2004-10-27

Family

ID=26533346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23772999A Expired - Fee Related JP3580736B2 (ja) 1998-08-26 1999-08-25 クロック信号制御機能付フリップフロップ回路、及び、クロック制御回路

Country Status (1)

Country Link
JP (1) JP3580736B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606810B2 (ja) * 2003-08-20 2011-01-05 パナソニック株式会社 半導体集積回路
KR100532477B1 (ko) * 2003-10-24 2005-12-01 삼성전자주식회사 입력 신호의 트랜지션 구간에서 안정적으로 동작하는 패스게이트 회로와 이를 구비하는 셀프 리프레쉬 회로 및 패스게이트 회로의 제어방법
CN100583638C (zh) 2004-12-01 2010-01-20 富士通株式会社 使用动态电路的半导体装置
JP4702878B2 (ja) * 2005-02-18 2011-06-15 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP4820586B2 (ja) 2005-06-29 2011-11-24 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP4224094B2 (ja) 2006-09-27 2009-02-12 株式会社東芝 半導体集積回路装置
WO2009069597A1 (ja) * 2007-11-27 2009-06-04 Nec Corporation 同期化装置および同期化方法
JP5241218B2 (ja) * 2007-12-12 2013-07-17 三菱電機株式会社 半導体集積回路設計支援システム並びに半導体集積回路設計支援プログラム
JP5768703B2 (ja) * 2011-12-26 2015-08-26 富士通株式会社 電子機器及び同期リセット制御プログラム

Also Published As

Publication number Publication date
JP2000232339A (ja) 2000-08-22

Similar Documents

Publication Publication Date Title
KR100339853B1 (ko) 클록 신호 제어 기능을 가진 플립플롭 회로 및 클록 제어 회로
KR100200892B1 (ko) 클록발생회로, 피엘엘회로와 도체장치 및 블록발생회로의 설계방법
JP3644827B2 (ja) 外部負荷を考慮したdll回路
US8476947B2 (en) Duty cycle distortion correction circuitry
EP0624950B1 (en) Delay matching circuit
US7652517B2 (en) Method and apparatus for generating synchronous clock signals from a common clock signal
EP0851581A2 (en) Flip-flop circuit
KR100487654B1 (ko) 저전력 플립플롭 회로
JP3568215B2 (ja) クロック逓倍回路を備えた安定クロック発生回路
JP3580736B2 (ja) クロック信号制御機能付フリップフロップ回路、及び、クロック制御回路
US8001410B2 (en) Efficient clocking scheme for ultra high-speed systems
CN111697965B (zh) 高速相位频率检测器
US9685940B2 (en) Voltage comparator
US7528630B2 (en) High speed flip-flop
KR100416379B1 (ko) 고속 방전-억제 디 플립플롭
US4654599A (en) Four phase clock signal generator
US8558595B2 (en) Semiconductor integrated circuit device
US7049864B2 (en) Apparatus and method for high frequency state machine divider with low power consumption
US8432195B2 (en) Latch circuits with synchronous data loading and self-timed asynchronous data capture
KR20080010198A (ko) 고속 동작을 위한 플립플롭
CN114613402A (zh) 用于输入缓冲器的偏移消除校准电路的自对准控制电路
KR102643441B1 (ko) 반도체 장치의 클럭 생성 회로
WO2010146843A1 (ja) フリップフロップ、半導体集積回路、半導体デバイスおよびブレードサーバ
JP2004198302A (ja) 断線検知回路
KR100202173B1 (ko) 동기 검정기

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees