JP3579145B2 - Ultrasonic probe - Google Patents

Ultrasonic probe Download PDF

Info

Publication number
JP3579145B2
JP3579145B2 JP25850595A JP25850595A JP3579145B2 JP 3579145 B2 JP3579145 B2 JP 3579145B2 JP 25850595 A JP25850595 A JP 25850595A JP 25850595 A JP25850595 A JP 25850595A JP 3579145 B2 JP3579145 B2 JP 3579145B2
Authority
JP
Japan
Prior art keywords
ultrasonic probe
water film
ultrasonic
flaw detection
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25850595A
Other languages
Japanese (ja)
Other versions
JPH09101288A (en
Inventor
泉 佐藤
正弘 北爪
正敏 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Inc filed Critical Tokyo Keiki Inc
Priority to JP25850595A priority Critical patent/JP3579145B2/en
Publication of JPH09101288A publication Critical patent/JPH09101288A/en
Application granted granted Critical
Publication of JP3579145B2 publication Critical patent/JP3579145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道レール、厚板鋼材、ビレット鋼材などの被検査材の探傷を行う際に、被検査材と水膜とを介して音響結合を図って超音波パルスを送信し、かつ、反射波を受信する超音波探触子に関する。
【0002】
【従来の技術】
図8は従来の鉄道などのレール(被検査材)に対する超音波での探傷の計測状態を示す斜視図であり、図9は、その電気的構成を示すブロック図である。また、図10は超音波探触子と被検査材との接合状態を説明するための図である。
図8、図9及び図10において、この例では、探傷対象のレール(被検査材)1に、超音波探傷装置2と接続されるケーブル3の先端に設けられた超音波探触子4を移動させてレール1の探傷を行っている。この場合、図9及び図10に示すように探触子ホルダ4aに固定された超音波探触子4とレール1との間の水膜5を介して探傷を行っている。この超音波探触子4のレール1と対向する表面部材(遅延材)は平滑な構造となっている。この表面部材及び水膜5を介して被検査材のレール1と音響結合が図られている。
【0003】
図9に示す超音波探傷装置2では、超音波探触子4又はレール1を水膜5を介して移動させている。この際、送信部7が一定周期で出力する送信信号が超音波探触子4に入力され、内部の図示しない振動子からの超音波パルスが水膜5を介してレール1に入射される。この超音波パルスがレール1の傷で反射し、この反射波が超音波探触子4の振動子で受信される。
【0004】
この受信波信号が受信部8に入力され、ここで増幅などを行い、信号処理部9のゲート回路を通じて受信波信号を抽出する。さらに、信号処理部9でデジタル信号化処理を行い、受信波を判定レベルと比較してレール1における傷を検出し、この傷データと図示しない走行距離センサからの移動量に基づいたレール1の位置などをブラウン管(CRT)などの表示部10で画面表示している。
【0005】
また、信号処理部9が出力する傷波形やレール1の位置などの探傷情報を記録装置11のメモリなどに記憶して保存し、さらに、必要に応じて記録紙に印字して出力している。
このような探傷では、この探傷を行う際の被検査材のレール1又は超音波探触子4の移動に伴って、水膜5の厚さが変化して、その探傷感度が変動し、所望の一定値を維持できないという問題点がある。
【0006】
図11は送信超音波パルスの透過と多重反射による探傷感度の変動を説明するための図であり、図12は透過波及び多重反射波の位相状態から探傷感度の変動を説明するための図である。また、図13は水膜厚さの変化に対する探傷感度の変動を示す特性図である。
図11において、超音波探触子4の振動子4cで発生した送信超音波パルスが遅延材を介して超音波探触子4の表面から水膜5に入射する。この送信超音波パルスは水膜5を透過波aとして通過し、レール1の被検査材の表面から入射する。同時に透過波aの一部が被検査材の表面で反射して、この反射波が超音波探触子4の表面方向に戻って反射し、再度、レール1の被検査材の表面に向かうことになる。すなわち、多重反射波bが発生する。
【0007】
この場合、図12(A)に示すように、水膜5内で透過波aと多重反射波bの位相が反転していると打ち消し合ってレール1の被検査材表面から入射する透過波aの波高レベルが低下する。また、図12(B)に示すように水膜5内の透過波aと多重反射波bが同相の場合、透過波aと多重反射波bの波高レベルが加算されて、レール1の被検査材表面から入射する透過波aの波高レベルが高くなる。したがって、探傷を行う際の被検査材のレール1又は超音波探触子4の移動に伴って水膜5の厚さが変化すると、その探傷感度が変動することになる。例えば、図13に示すように、水膜5の厚さが0.2mm,0.6mmで、その感度 (dB)が大きく低下し、また、水膜5の厚さが0.4mmで、その感度(dB)が高くなる。このように従来の超音波探触子では、水膜5の厚さの変化による探傷感度が大きく変動(10dB程度)してしまう。
【0008】
【発明が解決しようとする課題】
しかしながら、このような従来の超音波探触子では、探傷を行う際の被検査材のレール1又は超音波探触子4の移動に伴って水膜5の厚さが変化する。このため一定値の探傷感度が要求される場合の、その探傷精度が悪化し、かつ、確実な再現性が得られないという欠点がある。
【0009】
本発明は、このような従来の技術における欠点を解決するものであり、被検査材又は超音波探触子の移動に伴う水膜の厚さの変化による探傷感度の変動をなくして、探傷精度が向上し、かつ、その再現性などが向上する超音波探触子を提供することを解決課題とする。
【0010】
【課題を解決するための手段】
この課題を達成するために、本発明は、水膜を介して被検査材と音響結合し、超音波パルスを送信し、かつ、反射波を受信する超音波探触子であり、超音波パルスを送信し、かつ、反射波を受信する表面部材に少なくとも1/4波長の深さの複数の溝を設けている。
【0011】
また、本発明の超音波探触子は、1/4波長の深さの溝の長手方向を、水膜が流れる方向に形成している。
さらに、本発明の超音波探触子は溝に代えて少なくとも1/4波長の深さの円柱状、三角柱状、多角柱状、楕円柱状を含むくぼみを設けている。
また、本発明の超音波探触子は、溝の幅、及び、溝と溝の間隔、又は、くぼみの開口幅、及び、くぼみとくぼみの間隔を1波長付近としている。
【0012】
さらに、本発明の超音波探触子は超音波パルスを送信し、かつ、反射波を受信する表面部材におけるくぼみの開口面積と、平坦部の面積を同一に形成している。
また、本発明は水膜を介して被検査材と音響結合し、超音波パルスを送信し、かつ、反射波を受信する超音波探触子であり、反射波を受信する振動子と、反射波を遅延する遅延材と、超音波探触子の表面となる遅延材の一方側に設けられ、1/4波長の厚さ、かつ、水と遅延材の音響インピーダンスの相乗平均となる音響インピーダンスの整合膜とを備えている。
【0013】
このように本発明の超音波探触子は、超音波パルスを送信し、かつ、反射波を受信する表面部材に、1波長付近の間隔で設けた1/4波長の深さの溝やくぼみでの反射波と、平坦部での反射波とが入り混じって入射する。この際、溝やくぼみの経路での反射波は、その溝の深さが1/4波長であるため往復では1/2波長の長さになり、この溝やくぼみの凹部での反射波と平坦部のでの反射波との位相が1/2波長(180度)反転して打ち消される。
【0014】
したがって、超音波探触子の表面での反射が無い場合と同じ動作になり、波高レベルが低下したり、波高レベルが高くなるなどの干渉が発生しなくなる。すなわち、被検査材又は超音波探触子の移動に伴う水膜の厚さが変化しても、その探傷感度が変動しなくなる。この結果、探傷精度及び再現性などが向上することになる。
【0015】
また、本発明は、溝の長手方向を水膜の流れ方向に形成しているため、被検査材又は超音波探触子の移動に伴う水膜の水がスムーズに流れて、安定した音響結合が得られるようになる。さらに、超音波探触子の表面が被検査材と接触する際の磨耗、損傷状態を視覚的に確認し易くなる。
さらに、超音波探触子の表面となる遅延材の他方側に配置された1/4波長の厚さ、かつ、水と遅延材の音響インピーダンスの相乗平均となる音響インピーダンスの整合膜によって、反射波が再反射せずに、多重反射波が極めて少なくなり、透過波との干渉が発生しなくなる。この結果、水膜の厚さの変化による探傷感度の変動が少なくなり、超音波探触子の表面での反射が無い場合と同じ動作が得られ、探傷精度及び再現性が向上することになる。
【0016】
【発明の実施の形態】
次に、本発明の超音波探触子の実施の形態を図面を参照して詳細に説明する。
図1は本発明の超音波探触子の第1の実施形態の構成を示す断面図及び底面図である。図1において、この超音波探触子20は従前の図8に示した鉄道などのレール(被検査材)に対する超音波による探傷を行うものであり、外装体(筐体)21に、図示しない超音波探傷装置の送受信部に接続されるケーブル22が接続されている。
【0017】
また、外装体21内には、この開口面から挿入して固定された遅延材23が配置されている。この遅延材23の外装体21内側(一方側)に、超音波パルスを発生し、かつ、反射波が入射され、その電気変換した受信信号を出力する振動子24が取り付けられている。遅延材23の他方側は溝状の凹凸が形成された凹凸部23aとなっている。
【0018】
この凹凸部23aの溝は深さは振動子24が送出する超音波信号の波長の1/4とする。尚以下の説明では波長は全てλで現わす。さらに、溝(凹部)の幅及び平坦部(凸部)の幅は、凹凸部23aでの凹部の反射波と凸部による反射波とが分離せずに、入り混じって確実に打ち消すように経験的な値である約1λとする。
【0019】
次に、この第1の実施形態における動作及び機能について説明する。
図2は超音波探触子20の凹凸部23aによる送信超音波パルスの透過と多重反射による探傷感度の変動を説明するための図である。図3は透過波及び多重反射波の位相状態から探傷感度の変動を説明するための図である。
図2において、超音波探触子20の振動子24が発生した超音波パルスが遅延材23の凹凸部23aを通じて水膜40に入射する。この送信超音波パルスは凹凸部23aの凸部(A)から、水膜40を透過波a1として通過し、被検査材41の表面から入射する。同時に透過波a1の一部が被検査材41の表面で反射して、この反射波b1が超音波探触子20の凹凸部23aの凸部(A)に戻る。
【0020】
また、送信超音波パルスは凹凸部23aの凹部(B)から水膜40を透過波a2として通過し、被検査材41の表面から入射する。同時に透過波a2の一部が被検査材41の表面で反射して、この反射波b2が超音波探触子20の凹凸部23aの凹部(B)に戻ることになる。
このように、超音波探触子20の振動子24が送出した超音波パルスは、凹凸部23aの凸部(A)と凹部(B)の二種類の経路で反射することになる。ここで凹部(B)の経路での反射は、その溝の深さが1/4波長であり、往復では1/2波長の長さになる。この場合、凸部(A)と凹部(B)の二種類の経路での反射波が水膜40内で入り混じることになる。したがって、図3に示すように凸部(A)での反射波b1と、凹部(B)での反射波b2は位相が1/2波長(180度)反転しており、主に水膜40内で打ち消される。すなわち、超音波探触子20の表面(凹凸部23a)での反射が無い場合と同じ動作になる。このように超音波探触子20の表面(凹凸部23a)での反射が無いことになり、従前の図11(A)(B)で説明したように波高レベルが低下したり、波高レベルが高くなるなどの干渉が発生しなくなり、被検査材41又は超音波探触子20の移動に伴う水膜40の厚さが変化しても、その探傷感度が変動しなくなる。
【0021】
図4は、この水膜厚さの変化に対する探傷感度の変動を示す特性図である。図4において、超音波探触子20の凹凸部23aを設けない改善前では、水膜40の厚さが0.2mm,0.6mmで、その感度(dB)が大きく低下し、また、水膜40の厚さが0.4mmでその感度(dB)が極めて高くなっており、水膜の厚さの変化による探傷感度の変動が発生している。
【0022】
これに対して、この第1の実施形態のように超音波探触子20の凹凸部23aを設けた改善後では、水膜40の厚さが0.2mm,0.6mmで、その感度 (dB)がやや低下し、また、水膜40の厚さが0.4mmでその感度(dB)がやや高くなっている。したがって、改善前に10dB程度あった水膜の厚さの変化による探傷感度の変動が1〜2dB程度のフラットな特性に改善されており、超音波探触子20の表面(凹凸部23a)での反射が無い場合と同じ動作が得られ、その再現性が向上するとになる。
【0023】
また、この第1の実施形態では、超音波探触子20の凹凸部23aの凹凸の溝を水膜の流れる方向に形成すると、スムーズな水の流れが出来るようになり、安定した音響結合が得られるようになる。さらに、超音波探触子20の移動に伴って、その表面が被検査材と接触する場合が多く、磨耗、損傷が発生し易い。この凹凸部23aの磨耗、損傷状態を視覚的に確認し易くなる。
【0024】
図5は、超音波探触子20の遅延材23の凹凸部23aの変形例を示す底面図である。この例は、超音波探触子20の遅延材23の表面に凹凸部23aに代えて円柱状くぼみ45を多数形成したものである。この円柱状くぼみ45も、その深さを1/4λとし、かつ、円柱状くぼみ45の開口の幅、及び、円柱状くぼみ45の間の平坦部を約1λにすることによって、前記の溝の凹凸部23aと同様に動作して、同様の効果が得られる。
【0025】
なお、円柱状くぼみ45に代えて四角柱状、三角柱状、多角柱状、楕円柱状のくぼみでも同様の効果がある。この場合も、深さを1/4λとし、かつ、開口の幅、及び、この間の平坦部を約1λに設定する。
また、このくぼみは、くぼみと平坦部とで位相が反転した二つの反射波が入り混じって打ち消すようにしているため、くぼみの合計の開口面積と、平坦部の合計の面積を同一に形成し、かつ、約1λ間隔でくぼみ部と平坦部とをとなり合うように形成すれば効果的である。
【0026】
図6は第2の実施形態の構成を示す側面図である。
図6において、この例は図1の構成と同様の遅延材23の一方側には振動子24が取り付けられ、遅延材23の他方側に凹凸部23aに代えた整合膜50が配置されている。この整合膜50は水膜51を介して被検査材52と接合している。整合膜50はその厚さが1/4λであり、かつ、音響インピーダンスが、遅延材23の音響インピーダンスZ1と水(水膜51)の音響インピーダンスZ2の相乗平均値の部材を用いる。
【0027】
次に、この第2の実施形態における動作及び機能について説明する。
この超音波探触子は、遅延材23に整合膜50を設けており、この整合膜50と水膜51を介して被検査材52と接合している。この場合、整合膜50はその厚さが1/4λである。そして、整合膜50の音響インピーダンスが、遅延材23の音響インピーダンスZ1と水(水膜51)の音響インピーダンスZ2の相乗平均値となっており、遅延材23と水膜51とのインピーダンスの値が近似し、そのインピーダンスが整合する。したがって、送信超音波パルスが、遅延材23、整合膜50、水膜51を介して、被検査材52に透過し、その際の反射波が整合膜50に到達した際に、この整合膜50の表面(超音波探触子の表面)で反射することなく、遅延材23へ容易に入射される。
【0028】
したがって、水膜51での多重反射波が極めて少なくなり、透過波との干渉が発生しなくなる。この結果、水膜の厚さの変化による探傷感度の変動が少なくなり、超音波探触子20の表面での反射が無い場合と同じ動作が得られ、その再現性が向上することになる。
その改善例は図4に示す特性と同様の特性が得られる。すなわち、改善前に10dB程度あった水膜の厚さの変化による探傷感度の変動が1〜2dB程度のフラットな特性に改善される。
【0029】
なお、この第1及び第2の実施形態では、遅延材の一方側に一つの振動子を設けた例をもって説明したが、他の構成タイプにも、そのまま適用できる。例えば、図7(A)に示すように斜め方向で超音波パルスを送信し、かつ、反射波を受信する斜角タイプにもそのまま適用可能である。さらに、図7(B)に示すように送受信用の別個の振動子を遅延部材などに配置して超音波パルスを送信し、かつ、反射波の受信を行う垂直分割タイプにもそのまま適用可能である。
【0030】
尚、上記の実施形態にあっては、凹凸部23a、整合50を1/4λとした場合を例にとってるが、1/4λの奇数倍の3/4λ、5/4λ等であってもよい。
【0031】
【発明の効果】
以上説明したように本発明の超音波探触子によれば、約1波長間隔で設けた1/4波長の深さの溝やくぼみと平坦部に反射波が入り混じって入射する。この際、溝やくぼみ経路での1/2波長の長さを通過した反射波の位相が、平坦部での反射波と1/2波長反転して打ち消されるため、超音波探触子の表面での反射が無い場合と同じ動作になり、波高レベルが低下したり、波高レベルが高くなるなどの干渉が発生しなくなる。これによって、被検査材又は超音波探触子の移動に伴う水膜の厚さが変化しても、その探傷感度が変動しなくなり、その探傷精度及び再現性などが向上するようになる。
【0032】
また、本発明は、溝の長手方向を水膜の流れ方向に形成しているため、被検査材又は超音波探触子の移動に伴う水膜の水がスムーズに流れて、安定した音響結合が得られると共に、超音波探触子の表面が被検査材と接触する際の磨耗、損傷状態を視覚的に容易に確認できるようになる。
さらに、超音波探触子の表面となる遅延材の一方側に配置された1/4波長の厚さ、かつ、水と遅延材の音響インピーダンスの相乗平均となる音響インピーダンスの整合膜によって、反射波が表面で反射せずに、水膜での多重反射波が極めて少なくなって透過波との干渉が発生しなくなる。この結果、水膜の厚さの変化による探傷感度の変動が少なくなり、超音波探触子の表面での反射が無い場合と同じ動作が得られ、探傷精度及び再現性が向上する。
【図面の簡単な説明】
【図1】本発明の超音波探触子の第1の実施形態の構成を示す断面図及び底面図
【図2】図1に示す超音波探触子の凹凸部での送信超音波パルスの透過と多重反射による探傷感度の変動を説明するための図
【図3】第1実施形態にあって透過波及び多重反射波の位相状態から探傷感度の変動を説明するための図
【図4】第1実施形態にあって水膜厚さの変化に対する探傷感度の変動を示す特性図
【図5】第1実施形態にあって超音波探触子の変形例を示す断面図及び底面図
【図6】第2の実施形態の構成を示す側面図
【図7】第1及び第2の実施形態の適用例を示す側面図
(A)は斜め方向で超音波パルスを送信し、かつ、反射波を受信する斜角タイプの概略構成を示す図
(B)は送受信用の別個の振動子を設けた垂直分割タイプの概略構成を示す図
【図8】従来の被検査材に対する超音波による探傷の計測状態を示す斜視図
【図9】図8に示す構成の電気的構成を示すブロック図
【図10】従来例にあって超音波探触子と被検査材との接合状態を説明するための図
【図11】従来例にあって送信超音波パルスの透過と多重反射による探傷感度の変動を説明するための図
【図12】従来例にあって透過波及び多重反射波の位相状態から探傷感度の変動を説明するための図
(A)は透過波と多重反射波の位相が反転した状態を示す波形図
(B)は透過波と多重反射波が同相の場合を示す波形図
【図13】従来例にあって水膜厚さの変化に対する探傷感度の変動を示す特性図
【符号の説明】
20:超音波探触子
21:外装体(筐体)
22:ケーブル
23:遅延材
24:振動子
23a:凹凸部
40,51:水膜
41,52:被検査材
45:円柱状くぼみ
50:整合膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is intended to transmit ultrasonic pulses through acoustic coupling via a material to be inspected and a water film when detecting a material to be inspected such as a railroad rail, a thick steel plate, a billet steel, and the like. The present invention relates to an ultrasonic probe that receives waves.
[0002]
[Prior art]
FIG. 8 is a perspective view showing a state of measurement of flaw detection by ultrasonic waves on a rail (a material to be inspected) of a conventional railway or the like, and FIG. 9 is a block diagram showing an electrical configuration thereof. FIG. 10 is a diagram for explaining a bonding state between the ultrasonic probe and the test object.
8, 9, and 10, in this example, an ultrasonic probe 4 provided at the tip of a cable 3 connected to an ultrasonic inspection device 2 is attached to a rail (inspection material) 1 to be inspected. The rail 1 is moved for flaw detection. In this case, as shown in FIGS. 9 and 10, flaw detection is performed via the water film 5 between the ultrasonic probe 4 fixed to the probe holder 4a and the rail 1. The surface member (delay material) of the ultrasonic probe 4 facing the rail 1 has a smooth structure. Acoustic coupling with the rail 1 of the material to be inspected is achieved via the surface member and the water film 5.
[0003]
In the ultrasonic flaw detector 2 shown in FIG. 9, the ultrasonic probe 4 or the rail 1 is moved via the water film 5. At this time, a transmission signal output from the transmission unit 7 at a constant cycle is input to the ultrasonic probe 4, and an ultrasonic pulse from an internal vibrator (not shown) is incident on the rail 1 via the water film 5. The ultrasonic pulse is reflected by the scratch on the rail 1, and the reflected wave is received by the transducer of the ultrasonic probe 4.
[0004]
The received wave signal is input to the receiving unit 8, where amplification is performed, and the received wave signal is extracted through the gate circuit of the signal processing unit 9. Further, the signal processing unit 9 performs digital signal processing, compares the received wave with the determination level to detect a flaw on the rail 1, and detects the flaw data and the rail 1 based on the amount of movement from a travel distance sensor (not shown). The position and the like are displayed on a screen on a display unit 10 such as a cathode ray tube (CRT).
[0005]
Further, flaw detection information such as a flaw waveform output from the signal processing unit 9 and the position of the rail 1 is stored and stored in a memory or the like of the recording device 11, and further printed and output on recording paper as necessary. .
In such flaw detection, the thickness of the water film 5 changes with the movement of the rail 1 or the ultrasonic probe 4 of the material to be inspected during the flaw detection, and the flaw detection sensitivity fluctuates. There is a problem that the constant value cannot be maintained.
[0006]
FIG. 11 is a diagram for explaining a change in flaw detection sensitivity due to transmission and multiple reflection of a transmission ultrasonic pulse, and FIG. 12 is a diagram for explaining a change in flaw detection sensitivity based on the phase state of a transmitted wave and a multiple reflection wave. is there. FIG. 13 is a characteristic diagram showing a change in the flaw detection sensitivity with respect to a change in the water film thickness.
In FIG. 11, the transmission ultrasonic pulse generated by the transducer 4c of the ultrasonic probe 4 enters the water film 5 from the surface of the ultrasonic probe 4 via the delay member. The transmitted ultrasonic pulse passes through the water film 5 as a transmitted wave a, and enters from the surface of the material to be inspected on the rail 1. At the same time, a part of the transmitted wave a is reflected on the surface of the material to be inspected, and this reflected wave is reflected back toward the surface of the ultrasonic probe 4 and again travels toward the surface of the material to be inspected on the rail 1. become. That is, a multiple reflection wave b is generated.
[0007]
In this case, as shown in FIG. 12A, when the phases of the transmitted wave a and the multiple reflected wave b are inverted in the water film 5, the transmitted wave a and the reflected wave a incident from the surface of the material to be inspected on the rail 1 cancel each other out. Wave height level decreases. When the transmitted wave a and the multiple reflected wave b in the water film 5 have the same phase as shown in FIG. 12B, the peak levels of the transmitted wave a and the multiple reflected wave b are added, and the rail 1 is inspected. The crest level of the transmitted wave a incident from the material surface increases. Therefore, if the thickness of the water film 5 changes in accordance with the movement of the rail 1 or the ultrasonic probe 4 of the material to be inspected during the flaw detection, the flaw detection sensitivity changes. For example, as shown in FIG. 13, when the thickness of the water film 5 is 0.2 mm and 0.6 mm, the sensitivity (dB) is greatly reduced. The sensitivity (dB) increases. As described above, in the conventional ultrasonic probe, the flaw detection sensitivity greatly varies (about 10 dB) due to a change in the thickness of the water film 5.
[0008]
[Problems to be solved by the invention]
However, in such a conventional ultrasonic probe, the thickness of the water film 5 changes with the movement of the rail 1 or the ultrasonic probe 4 of the material to be inspected when performing a flaw detection. Therefore, when a certain level of flaw detection sensitivity is required, there are drawbacks that the flaw detection accuracy is deteriorated and that reliable reproducibility cannot be obtained.
[0009]
The present invention solves such a drawback in the conventional technology, and eliminates a change in the flaw detection sensitivity due to a change in the thickness of the water film due to the movement of the material to be inspected or the ultrasonic probe. It is an object of the present invention to provide an ultrasonic probe in which the reproducibility and the like are improved.
[0010]
[Means for Solving the Problems]
In order to achieve this object, the present invention is an ultrasonic probe that acoustically couples with a material to be inspected via a water film, transmits an ultrasonic pulse, and receives a reflected wave, And a plurality of grooves having a depth of at least 1/4 wavelength are provided on the surface member for transmitting the reflected wave.
[0011]
In the ultrasonic probe according to the present invention, the longitudinal direction of the groove having a depth of 1/4 wavelength is formed in the direction in which the water film flows.
Further, the ultrasonic probe according to the present invention is provided with a hollow having a depth of at least 1/4 wavelength, including a column, a triangle, a polygon, and an ellipse, instead of the groove.
Further, in the ultrasonic probe of the present invention, the width of the groove, the interval between the grooves, the opening width of the depression, and the interval between the depressions are set to about one wavelength.
[0012]
Further, the ultrasonic probe according to the present invention has the same opening area of the depression and the same area of the flat portion in the surface member that transmits the ultrasonic pulse and receives the reflected wave.
Further, the present invention is an ultrasonic probe which acoustically couples with a material to be inspected via a water film, transmits an ultrasonic pulse, and receives a reflected wave. A delay material that delays a wave and an acoustic impedance that is provided on one side of the delay material that is the surface of the ultrasonic probe and that has a thickness of 1/4 wavelength and a geometric mean of the acoustic impedance of water and the delay material And a matching film.
[0013]
As described above, the ultrasonic probe according to the present invention is capable of transmitting an ultrasonic pulse and receiving a reflected wave on a surface member having a depth of 1/4 wavelength and a recess provided at an interval of about 1 wavelength. And the reflected wave at the flat portion are mixed and incident. At this time, the reflected wave in the groove or the recessed path has a length of 波長 wavelength in the round trip because the depth of the groove is 4 wavelength, and the reflected wave in the concave portion of the groove or the recessed portion The phase of the reflected wave at the flat portion is inverted by 波長 wavelength (180 degrees) and canceled.
[0014]
Therefore, the operation is the same as when there is no reflection on the surface of the ultrasonic probe, and interference such as a decrease in the peak level or an increase in the peak level does not occur. That is, even if the thickness of the water film changes due to the movement of the inspection material or the ultrasonic probe, the flaw detection sensitivity does not change. As a result, flaw detection accuracy and reproducibility are improved.
[0015]
Further, in the present invention, since the longitudinal direction of the groove is formed in the flow direction of the water film, the water of the water film accompanying the movement of the material to be inspected or the ultrasonic probe flows smoothly, and stable acoustic coupling is achieved. Can be obtained. Furthermore, it becomes easy to visually check the wear or damage state when the surface of the ultrasonic probe comes into contact with the inspection object.
Further, the reflection is performed by a matching film having a thickness of 1/4 wavelength, which is disposed on the other side of the delay member serving as the surface of the ultrasonic probe, and an acoustic impedance matching the geometrical average of the acoustic impedances of water and the delay member. The wave does not re-reflect, the number of multiple reflected waves becomes extremely small, and interference with the transmitted wave does not occur. As a result, the variation in the flaw detection sensitivity due to the change in the thickness of the water film is reduced, and the same operation as in the case where there is no reflection on the surface of the ultrasonic probe is obtained, so that the flaw detection accuracy and reproducibility are improved. .
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of an ultrasonic probe according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view and a bottom view showing the configuration of a first embodiment of the ultrasonic probe of the present invention. In FIG. 1, this ultrasonic probe 20 performs ultrasonic flaw detection on a rail (inspected material) such as a railway shown in FIG. 8 and is not shown on an exterior body (housing) 21. The cable 22 connected to the transmission / reception unit of the ultrasonic flaw detector is connected.
[0017]
Further, a delay member 23 inserted and fixed from the opening surface is disposed in the exterior body 21. A vibrator 24 that generates an ultrasonic pulse, receives a reflected wave, and outputs an electrical converted reception signal is attached to the inside (one side) of the exterior body 21 of the delay member 23. The other side of the delay member 23 is an uneven portion 23a in which groove-shaped unevenness is formed.
[0018]
The depth of the groove of the concave-convex portion 23a is set to 1 / of the wavelength of the ultrasonic signal transmitted by the transducer 24. In the following description, all wavelengths are represented by λ. Further, the width of the groove (concave portion) and the width of the flat portion (convex portion) are set so that the reflected wave of the concave portion and the reflected wave of the convex portion in the concave and convex portion 23a are mixed and surely canceled out. Approximately 1λ.
[0019]
Next, an operation and a function in the first embodiment will be described.
FIG. 2 is a diagram for explaining the change in the flaw detection sensitivity due to the transmission and multiple reflection of the transmission ultrasonic pulse by the uneven portion 23a of the ultrasonic probe 20. FIG. 3 is a diagram for explaining a change in the flaw detection sensitivity from the phase states of the transmitted wave and the multiple reflected waves.
In FIG. 2, an ultrasonic pulse generated by the transducer 24 of the ultrasonic probe 20 is incident on the water film 40 through the uneven portion 23 a of the delay member 23. The transmitted ultrasonic pulse passes through the water film 40 as a transmitted wave a1 from the convex portion (A) of the concave-convex portion 23a, and enters from the surface of the inspection object 41. At the same time, a part of the transmitted wave a1 is reflected on the surface of the inspection object 41, and the reflected wave b1 returns to the convex portion (A) of the concave / convex portion 23a of the ultrasonic probe 20.
[0020]
Further, the transmitted ultrasonic pulse passes through the water film 40 as the transmitted wave a2 from the concave portion (B) of the concave-convex portion 23a and enters from the surface of the inspection object 41. At the same time, a part of the transmitted wave a2 is reflected on the surface of the inspection object 41, and the reflected wave b2 returns to the concave portion (B) of the concave and convex portion 23a of the ultrasonic probe 20.
As described above, the ultrasonic pulse transmitted by the transducer 24 of the ultrasonic probe 20 is reflected on the two kinds of paths of the convex part (A) and the concave part (B) of the concave and convex part 23a. Here, in the reflection on the path of the concave portion (B), the depth of the groove is 4 wavelength, and in the reciprocation, the length is 波長 wavelength. In this case, the reflected waves on the two types of paths, that is, the convex portion (A) and the concave portion (B), mix in the water film 40. Therefore, as shown in FIG. 3, the phase of the reflected wave b1 at the convex portion (A) and the phase of the reflected wave b2 at the concave portion (B) are inverted by 波長 wavelength (180 degrees). Canceled within. That is, the operation is the same as the case where there is no reflection on the surface of the ultrasonic probe 20 (the uneven portion 23a). As described above, there is no reflection on the surface (the uneven portion 23a) of the ultrasonic probe 20, and as described with reference to FIGS. 11A and 11B, the crest level is reduced or the crest level is reduced. Interference such as an increase in height does not occur, and even if the thickness of the water film 40 changes due to the movement of the test object 41 or the ultrasonic probe 20, the flaw detection sensitivity does not change.
[0021]
FIG. 4 is a characteristic diagram showing a change in the flaw detection sensitivity with respect to the change in the water film thickness. In FIG. 4, before the improvement without providing the concave and convex portions 23 a of the ultrasonic probe 20, the sensitivity (dB) of the water film 40 is significantly reduced when the thickness of the water film 40 is 0.2 mm and 0.6 mm, and The sensitivity (dB) is extremely high when the thickness of the film 40 is 0.4 mm, and the flaw detection sensitivity varies due to a change in the thickness of the water film.
[0022]
On the other hand, after the improvement in which the irregularities 23a of the ultrasonic probe 20 are provided as in the first embodiment, the thickness of the water film 40 is 0.2 mm and 0.6 mm, and the sensitivity ( (dB) is slightly lowered, and the sensitivity (dB) is slightly higher when the thickness of the water film 40 is 0.4 mm. Therefore, the change in the flaw detection sensitivity due to the change in the thickness of the water film, which was about 10 dB before the improvement, has been improved to a flat characteristic of about 1 to 2 dB, and the surface of the ultrasonic probe 20 (the uneven portion 23 a) has been improved. The same operation as when there is no reflection is obtained, and the reproducibility is improved.
[0023]
In the first embodiment, when the concave and convex grooves of the concave and convex portions 23a of the ultrasonic probe 20 are formed in the direction in which the water film flows, smooth water flow can be performed, and stable acoustic coupling can be achieved. You will be able to obtain. Further, the surface of the ultrasonic probe 20 often comes into contact with the material to be inspected as the ultrasonic probe 20 moves, and wear and damage are likely to occur. It is easy to visually confirm the worn or damaged state of the uneven portion 23a.
[0024]
FIG. 5 is a bottom view showing a modified example of the uneven portion 23a of the delay member 23 of the ultrasonic probe 20. In this example, a large number of cylindrical depressions 45 are formed on the surface of the delay member 23 of the ultrasonic probe 20 in place of the concave and convex portions 23a. The columnar recess 45 is also formed to have a depth of 1 / 4λ, a width of the opening of the columnar recess 45, and a flat portion between the columnar recesses 45 of about 1λ. The same operation as that of the uneven portion 23a is obtained, and the same effect is obtained.
[0025]
It should be noted that a similar effect can be obtained by using a square, triangular, polygonal, or elliptical hollow instead of the cylindrical hollow 45. Also in this case, the depth is set to 4λ, and the width of the opening and the flat portion therebetween are set to about 1λ.
In addition, since the two reflected waves whose phases are inverted between the dent and the flat portion are mixed and canceled, the total opening area of the dent and the total area of the flat portion are formed to be the same. It is effective if the recessed portion and the flat portion are formed adjacent to each other at an interval of about 1λ.
[0026]
FIG. 6 is a side view showing the configuration of the second embodiment.
6, in this example, a vibrator 24 is attached to one side of the delay member 23 similar to the configuration of FIG. 1, and a matching film 50 is disposed on the other side of the delay member 23 instead of the concave and convex portions 23a. . The matching film 50 is joined to the test object 52 via the water film 51. The matching film 50 is a member having a thickness of 1 / 4λ and an acoustic impedance having a geometric mean value of the acoustic impedance Z1 of the delay member 23 and the acoustic impedance Z2 of water (water film 51).
[0027]
Next, the operation and functions of the second embodiment will be described.
In the ultrasonic probe, a matching film 50 is provided on the delay member 23, and the ultrasonic probe is bonded to the test object 52 via the matching film 50 and the water film 51. In this case, the thickness of the matching film 50 is 4λ. The acoustic impedance of the matching film 50 is a geometric mean value of the acoustic impedance Z1 of the delay member 23 and the acoustic impedance Z2 of water (water film 51), and the impedance value of the delay member 23 and the water film 51 is Approximate and their impedances match. Accordingly, when the transmitted ultrasonic pulse passes through the delay member 23, the matching film 50, and the water film 51, and passes through the inspection target material 52, and the reflected wave at that time reaches the matching film 50, this matching film 50 Is easily incident on the delay member 23 without being reflected on the surface (the surface of the ultrasonic probe).
[0028]
Therefore, multiple reflected waves at the water film 51 are extremely reduced, and interference with transmitted waves does not occur. As a result, a change in the flaw detection sensitivity due to a change in the thickness of the water film is reduced, and the same operation as in the case where there is no reflection on the surface of the ultrasonic probe 20 is obtained, and the reproducibility is improved.
In the improved example, characteristics similar to the characteristics shown in FIG. 4 are obtained. That is, the change in the flaw detection sensitivity due to the change in the thickness of the water film, which was about 10 dB before the improvement, is improved to a flat characteristic of about 1 to 2 dB.
[0029]
In the first and second embodiments, an example is described in which one vibrator is provided on one side of the delay member. However, the present invention can be applied to other configuration types without change. For example, as shown in FIG. 7A, the present invention can be applied to an oblique type in which an ultrasonic pulse is transmitted in an oblique direction and a reflected wave is received. Further, as shown in FIG. 7 (B), a separate transducer for transmission and reception is arranged on a delay member or the like to transmit an ultrasonic pulse and also to a vertical division type for receiving a reflected wave. is there.
[0030]
Incidentally, in the above embodiments, the concave-convex portion 23a, but Ru had an example a case where the alignment film 50 and the 1 / 4λ, 1 / 4λ of odd multiples of 3 / 4.lamda, a 5 / 4.lamda etc. Is also good.
[0031]
【The invention's effect】
As described above, according to the ultrasonic probe of the present invention, a reflected wave is mixed and incident on grooves and depressions having a depth of 1/4 wavelength provided at approximately one wavelength interval and flat portions. At this time, the phase of the reflected wave that has passed the length of 波長 wavelength in the groove or the recessed path is inverted by と wavelength with respect to the reflected wave in the flat portion and is canceled out. The operation is the same as in the case where there is no reflection at the surface, and no interference such as a decrease in the crest level or an increase in the crest level occurs. As a result, even if the thickness of the water film changes due to the movement of the material to be inspected or the ultrasonic probe, the flaw detection sensitivity does not change, and the flaw detection accuracy and reproducibility are improved.
[0032]
Further, in the present invention, since the longitudinal direction of the groove is formed in the flow direction of the water film, the water of the water film accompanying the movement of the material to be inspected or the ultrasonic probe flows smoothly, and stable acoustic coupling is achieved. Is obtained, and the abrasion and damage when the surface of the ultrasonic probe comes into contact with the material to be inspected can be easily visually confirmed.
Further, reflection is caused by a quarter-wavelength-thickness film disposed on one side of the delay member serving as the surface of the ultrasonic probe and a matching film of acoustic impedance which is a geometric mean of acoustic impedances of water and the delay member. The wave does not reflect on the surface, and the multiple reflection wave on the water film is extremely small, so that interference with the transmitted wave does not occur. As a result, a change in the flaw detection sensitivity due to a change in the thickness of the water film is reduced, and the same operation as in the case where there is no reflection on the surface of the ultrasonic probe is obtained, thereby improving the flaw detection accuracy and reproducibility.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view and a bottom view showing the configuration of a first embodiment of an ultrasonic probe according to the present invention. FIG. 2 is a diagram showing a configuration of an ultrasonic probe shown in FIG. FIG. 3 is a diagram illustrating a change in flaw detection sensitivity due to transmission and multiple reflection. FIG. 3 is a diagram illustrating a change in flaw detection sensitivity based on the phase state of a transmitted wave and a multiple reflection wave in the first embodiment. FIG. 5 is a characteristic diagram showing a change in flaw detection sensitivity with respect to a change in water film thickness in the first embodiment. FIG. 5 is a cross-sectional view and a bottom view showing a modification of the ultrasonic probe in the first embodiment. 6 is a side view showing the configuration of the second embodiment. FIG. 7A is a side view showing an application example of the first and second embodiments. FIG. (B) showing a schematic configuration of an oblique type for receiving a signal is a schematic configuration of a vertical division type provided with a separate vibrator for transmission and reception. FIG. 8 is a perspective view showing a conventional state of measurement of flaw detection by ultrasonic waves on a material to be inspected. FIG. 9 is a block diagram showing an electrical configuration of the configuration shown in FIG. 8; FIG. FIG. 11 is a diagram for explaining a bonding state between an ultrasonic probe and a material to be inspected. FIG. 11 is a diagram for illustrating a change in flaw detection sensitivity due to transmission and multiple reflection of a transmission ultrasonic pulse in a conventional example. FIG. 7A for explaining the variation in the flaw detection sensitivity based on the phase state of the transmitted wave and the multiple reflected wave in the conventional example is shown in FIG. Waveform diagram showing the case where transmitted wave and multiple reflected wave are in phase. [FIG. 13] Characteristic diagram showing variation of flaw detection sensitivity with respect to change of water film thickness in the conventional example.
20: Ultrasonic probe 21: Outer body (housing)
22: cable 23: delay member 24: vibrator 23a: concave and convex portions 40, 51: water films 41, 52: inspected material 45: cylindrical depression 50: matching film

Claims (5)

水膜を介して被検査材と音響結合し、超音波パルスを送信し、かつ、反射波を受信する超音波探触子に於いて、
超音波パルスを送信し、かつ、反射波を受信する表面部材に深さが1/4波長またはその奇数倍である複数の溝を設けたことを特徴とする超音波探触子。
In the ultrasonic probe that acoustically couples with the material to be inspected via the water film, transmits ultrasonic pulses, and receives reflected waves,
An ultrasonic probe, wherein a plurality of grooves each having a depth of 1/4 wavelength or an odd multiple thereof are provided on a surface member for transmitting an ultrasonic pulse and receiving a reflected wave.
請求項1記載の超音波探触子に於いて、
深さが1/4波長またはその奇数倍である複数の溝の長手方向を、水膜が流れる方向に形成することを特徴とする超音波探触子。
In the ultrasonic probe according to claim 1,
An ultrasonic probe, wherein a longitudinal direction of a plurality of grooves having a depth of 1/4 wavelength or an odd multiple thereof is formed in a direction in which a water film flows.
請求項1に記載の超音波探触子に於いて、
溝に代えて深さが1/4波長またはその奇数倍の円柱状、三角柱状、多角柱状、楕円柱状を含むくぼみを設けたことを特徴とする超音波探触子。
In the ultrasonic probe according to claim 1 ,
An ultrasonic probe comprising a hollow having a cylindrical shape, a triangular prism, a polygonal prism, and an elliptical cylinder having a depth of 1/4 wavelength or an odd multiple thereof , instead of the groove.
前記請求項1,2又は3の何れかに記載の超音波探触子に於いて、
溝の幅、及び、溝と溝の間隔、又は、くぼみの開口幅、及び、くぼみとくぼみの間隔を1波長付近とすることを特徴とする超音波探触子。
In the ultrasonic probe according to any one of claims 1, 2, and 3,
An ultrasonic probe, wherein a width of a groove, a distance between grooves, or an opening width of a depression, and a distance between depressions are set at around one wavelength.
前記請求項3に記載の超音波探触子において、
超音波パルスを送信し、かつ、反射波を受信する表面部材におけるくぼみの開口面積と、平坦部の面積を同一に形成することを特徴とする超音波探触子。
The ultrasonic probe according to claim 3 ,
An ultrasonic probe, wherein an opening area of a depression and an area of a flat portion in a surface member for transmitting an ultrasonic pulse and receiving a reflected wave are formed to be the same.
JP25850595A 1995-10-05 1995-10-05 Ultrasonic probe Expired - Fee Related JP3579145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25850595A JP3579145B2 (en) 1995-10-05 1995-10-05 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25850595A JP3579145B2 (en) 1995-10-05 1995-10-05 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPH09101288A JPH09101288A (en) 1997-04-15
JP3579145B2 true JP3579145B2 (en) 2004-10-20

Family

ID=17321149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25850595A Expired - Fee Related JP3579145B2 (en) 1995-10-05 1995-10-05 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JP3579145B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604421B1 (en) 1998-10-23 2003-08-12 Gang Li Method, transducer wheel and flaw detection system for ultrasonic detecting railroad rails
WO2000025126A1 (en) * 1998-10-23 2000-05-04 Gang Li Method, transducer wheel and flaw detection system for ultrasonic detecting railroad rails
US7325180B2 (en) * 2003-11-26 2008-01-29 Carnegie Mellon University System and method to test integrated circuits on a wafer
JP4902508B2 (en) * 2007-12-03 2012-03-21 日本電信電話株式会社 Component concentration measuring apparatus and component concentration measuring apparatus control method
JP6097659B2 (en) 2013-08-30 2017-03-15 川崎重工業株式会社 Ultrasonic flaw detector
JP7214573B2 (en) * 2019-06-05 2023-01-30 東日本旅客鉄道株式会社 Rail flaw detector

Also Published As

Publication number Publication date
JPH09101288A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
EP1043584A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
GB2298277A (en) Delay line for an ultrasonic probe with an interface allowing inbuilt calibration
EP0807243A1 (en) Ultrasonic flowmeter "w"
US4702112A (en) Ultrasonic phase reflectoscope
EP0053034B1 (en) Method of determining stress distribution in a solid body
JP3579145B2 (en) Ultrasonic probe
JPH0216966B2 (en)
JP2001305111A (en) Ultrasonic rail flaw detector
JP2659236B2 (en) Ultrasonic probe
JP3282472B2 (en) Composite probe device
JP4500391B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JP4632474B2 (en) Ultrasonic flaw detection image display method and ultrasonic flaw detection image display device
JPH0146027B2 (en)
JPH04157360A (en) Supersonic probe
JP4171130B2 (en) Ultrasonic rail flaw detector
JP3493941B2 (en) Ultrasonic probe
JPS63186143A (en) Ultrasonic wave probe
JPH1151909A (en) Ultrasonic wave flaw detecting method
JP2824488B2 (en) Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method
JP3023642B2 (en) Insertion depth measurement method for welded pipe joints
JPH11316216A (en) Ultrasonic probe
JPH1151910A (en) Crack detection method and measuring method for cracked part plate thickness
KR101806306B1 (en) Apparatus for measuring flow velocity based on measurement for thickness of pipe
JP4500390B2 (en) Inspection object wound determination method and inspection object damage determination apparatus
JP3379166B2 (en) Ultrasound spectrum microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees