JP3578240B2 - Karamimi yarn for shuttleless loom - Google Patents

Karamimi yarn for shuttleless loom Download PDF

Info

Publication number
JP3578240B2
JP3578240B2 JP09259696A JP9259696A JP3578240B2 JP 3578240 B2 JP3578240 B2 JP 3578240B2 JP 09259696 A JP09259696 A JP 09259696A JP 9259696 A JP9259696 A JP 9259696A JP 3578240 B2 JP3578240 B2 JP 3578240B2
Authority
JP
Japan
Prior art keywords
yarn
ear
weft
section
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09259696A
Other languages
Japanese (ja)
Other versions
JPH09279428A (en
Inventor
右広 西田
完次 十河
宏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP09259696A priority Critical patent/JP3578240B2/en
Publication of JPH09279428A publication Critical patent/JPH09279428A/en
Application granted granted Critical
Publication of JP3578240B2 publication Critical patent/JP3578240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は無杼織機用搦み糸に関するものであり、より詳しくはポリエステル系マルチフィラメント糸より構成される無杼織機用搦み糸に関する。
【0002】
【従来の技術】
無杼織機はシャットル織機のような有杼織機と異なり緯入運動が往復運動ではないため織物の耳部が中央部に比べて大変弛み易く品質上の重要問題点のひとつとなっている。無杼織機に於いては上記のような従来の問題点を解決すべく、さまざまな耳組織、耳糸張力調製機構等々が考案されてきている。耳形成についてはタックイン装置を使用するグリッパー織機や一部のレピア織機、レノ装置を使用するウォータージェット織機やエアージェット織機及び一部のレピア織機、溶着による方法を使用するものがその主な種類として挙げられる。
特にポリエステルやポリアミドのマルチフィラメント織物に多用されているウォータージェット織機やエアージェット織機等々はレノ装置を用いた搦組織にて耳形成を行うものであり、高速化に伴い、搦み綜絖の原理を応用した各種の搦み耳織装置が提案されている。搦み耳織装置によってレノ組織は搦組織と捩り組織に分類される。耳用経糸は搦組織形成装置では織機の反ノズル側に設置された耳糸パッケージより供給され緯糸に搦んで耳を形成、一方の捩り組織形成装置では捩り糸(耳用経糸)を巻いた2個のボビンが、開口軸の回転に従い耳用経糸を捩りながら緯糸を織り込み耳を形成するものである。従来より該耳用経糸として広く衣料用織物用途として使用されているものは30デニールクラスのポリエステルマルチフィラメント仮撚加工糸であったが、該耳用経糸は捲縮を有するために耳用経糸パッケージ或いはボビンに巻くには嵩高く、多量に巻くことが出来ないばかりか仮撚加工によって破断強力、破断伸度が低下しており、作業性や物性面等で更に改善を求められている。
【0003】
【発明が解決しようとする課題】
本発明は上述した従来技術の問題点を改善し、布帛の染色加工やその他後加工の各加工工程中にも耳ほつれ等の支障のない無杼織機用搦み糸に関するものであり、更に詳しくには多角断面糸を用いることによって緯糸と面接触に近い型で接触させることによる充分な緯糸保持力、ひいては強度的に優れた布帛の耳を与えることが出来る無杼織機用搦み糸を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明は以下の構成よりなる。ポリエステルフィラメントの延伸糸であって、繊維断面が4〜10葉の多角断面糸であり尚且つ以下の数式を満足することを特徴とする無杼織機用搦み糸である。
破断強力;DT≧3.0g/d
160℃乾熱収縮率;18%≦SHD≦25%
沸水収縮率;16%≦SHW≦20%
【0005】
本発明の無杼織機用搦み糸に用いる繊維はポリエステルが好ましく、特にエチレンテレフタレート単位を85重量%以上含むものであることが望ましい。該エチレンテレフタレート単位が85重量%未満の構成であると、布帛構造物に製織した後の染色加工工程に於けるアルカリ減量加工によって脆化が著しく、耳ほつれや耳の強力不足による加工トラブルを誘発してしまい好ましくない。ポリエステル織物の場合には地組織及び耳組織を構成するポリエステル繊維よりエチレンテレフタレート単位の重量分率が同等かそれより大きいものが望ましい。
【0006】
また、本発明の無杼織機用搦み糸に用いるポリエステルは極限粘度数〔η〕が0.50以上0.90以下であることが望ましい。該極限粘度数〔η〕が0.50未満のポリエステルでは布帛のアルカリ減量加工による脆化を抑制することが出来ず、耳強度の低下を引き起こしてしまい望ましくない。また該極限粘度数〔η〕が0.90を著しく超過する高重合度のポリエステルはポリエステルタイヤコードなど産業資材用途に重用されており強度的にも優れ、アルカリ減量加工による脆化も極僅かとなり得るが衣料用布帛用途には高性能過ぎる他、価格的に高いものになってしまうため実用的ではない。該該極限粘度数〔η〕は布帛がポリエステル繊維の場合、地組織及び耳組織を構成するポリエステル繊維と同等かそれより大きいものが望ましい。
【0007】
更に、本発明の無杼織機用搦み糸に用いるポリエステルフィラメントは繊維断面が4葉以上10葉以下の多角断面、より好ましくは6葉以上10葉以下の多角断面糸であることを要する。繊維断面が4葉未満、即ち3葉断面糸などではフィラメントのマイグレーション効果による細密充填構造を取り難く、緯糸の保持力を期待出来ず、強度的に優れた耳を形成出来ない。また11葉となると限りなく丸断面糸に近い形状となりフィラメントのマイグレーション効果による細密充填構造を取り易くなるが、点接触に極近い型で緯糸と接触するため強度な緯糸保持力を得ることが出来ず、スリップ等々の問題を引き起こしてしまう恐れがある。従来から用いられてきた仮撚加工糸は仮撚加工によって繊維断面が歪み、多角断面となっており、その効果も奏して緯糸を強固に保持していると考えられるが搦み糸として使用する場合、仮撚加工工程を省くことが出来ない為、割高となっしまう。それ故、紡糸の際には多角断面糸を直に得ることが出来る異型紡糸口金採用しておくことが望ましく、安定的に且つ安価に多角断面糸を得ることが出来、非常に好ましい。発明者らが鋭意検討を重ねた結果、4葉以上10葉以下の多角断面、より好ましくは6葉以上10葉以下の多角断面を採用することによって緯糸と面接触に近い型で接触させることが可能となり充分な緯糸保持力を得ることが出来、ひいては、強度的に優れた耳を提供し得るということを見出したのである。
【0008】
本発明の無杼織機用搦み糸に用いるポリエステルフィラメントの総デニール、及び構成単糸デニールに関しては特に限定を加えるものではないが、一般衣料用布帛に供する際には総デニールとして10デニールから100デニール、構成単糸デニールとして1デニールから10デニールの範囲で適宜組み合わせて使用すればよい。繊維本数についてはマルチフィラメントに限定されるものではなく、構成繊維本数が1本であるモノフィラメントも当然のことながら含まれる。
【0009】
本発明の無杼織機用搦み糸に用いるポリエステルフィラメント糸は一般的に使用される溶融紡糸方法によって得ることが出来る。該フィラメント糸に適度な強度、伸度を与える延伸処理に関しては紡糸工程と別工程、即ち延撚機を使用して延伸する方法、或いは紡糸工程と同工程にて延伸処理を行うスピンドロー法の何れの方法であっても構わない。また紡糸、延伸の際には帯電防止や取扱性向上の為にオイリングを施しておくことが望ましい。
また本発明の無杼織機用搦み糸は製織に供する前に撚糸機を用い適当数の撚りを付与してもよいが撚糸工賃が余分にかかるうえに、卓越した効果も期待出来ない為、生フィラメントパッケージからの解舒の際に糸条に付与される解舒撚りで充分であり、特別な撚糸工程は特に必要ではない。
【0010】
また本発明の無杼織機用搦み糸に用いるポリエステルフィラメント糸の結晶化度χc は15%以上30%以下の範囲であることが好ましい。結晶化度χc が15%未満の範囲では結晶化度が小さすぎアルカリ減量加工工程に於ける脆化による物性低下を抑制することが出来ず、実用的に好ましい領域ではない。
また該結晶化度χc が30%を超過する範囲となれば実用的強度は充分であり、且つアルカリ減量加工による脆化を抑制することが出来るが収縮性能に乏しく緯糸を強固に保持することが出来ない。該結晶化度χc は15%以上30%以下、より好ましくは20%以上25%以下のものを用いることによって充分な緯糸保持力を得ることが出来、ひいては、強度的に優れた耳を提供することが可能となる。
【0011】
更に破断強力については3.0g/d 以上7.0g/d 以下の範囲、より好ましくは4.0g/d 以上6.0g/d 以下の範囲であることを要する。該破断強力については紡糸、延伸時の延伸倍率や熱処理等々によって種々設定可能であるが、該破断強力DTが3.0g/d 未満の範囲であれば、緯糸を保持し得るに足る物性を満足しないばかりか、出来上がった布帛耳部の引裂強力が弱くなり過ぎ実用的に満足し得るものとはならない。また7.0g/d を超過する範囲であれば、緯糸を保持するに足る物性を満足し、且つ布帛耳部の引裂強力も実用上充分なものとなり得るが、地組織を構成する糸条の破断強力より大きい値、即ち過剰性能を持つことによって地組織と耳組織の強度バランスが著しく崩れてしまい性能的に望ましいものとはならず、一般衣料用途に限定する場合には7.0g/d 以下、より好ましくは6.0g/d 以下程度にしておくことが望ましい。
【0012】
破断伸度に関しては10%以上45%以下の範囲であることが好ましい。該破断伸度も破断強力と同様に紡糸、延伸時の延伸倍率や熱処理等々によって種々設定可能であるが、該破断伸度が10%未満の範囲となると製織中の断糸等のトラブルが予想される他、出来上がった布帛の耳部の物性も実用上満足し得るものとはならない。また該破断伸度が45%を超過する範囲となると製織中の張力付与によって糸条がダラダラと伸長してしまい、緯糸を充分な強度で保持しておくことが出来ず、結果耳部のスリップ等々のトラブルを引き起こしてしまい望ましくない。
【0013】
更に160℃乾熱収縮率SHDに関しては6%以上25%以下の範囲、より好ましくは10%以上20%以下の範囲であることを要する。該160℃乾熱収縮率については紡糸、延伸時の熱処理等々によって適宜設定することが可能であるが、6%未満の範囲では染色加工工程に於ける乾熱処理、湿熱処理によっても糸条の収縮は極軽度なものとなり充分な緯糸保持力を得ることが出来す、結果として耳ホツレやスリップ等々の諸問題を引き起こし易くなる。また160℃乾熱収縮率SHDが25%を超過する範囲となれば緯糸の保持力は充分なものとなり得るが、耳部を構成する搦み糸のみ熱収縮率が大きくなり過ぎると布帛の耳端が極端にうねってしまう等、耳品位を損ねる恐れがあり好ましいものとはならない。
【0014】
また沸水収縮率SHWに関しては5%以上20%以下の範囲、より好ましくは7%以上20%以下の範囲であることを要する。該沸水収縮率についても紡糸、延伸時の熱処理等々によって適宜設定することが可能であるが、7%未満の範囲であれば染色加工工程に於ける乾熱処理、湿熱処理によっても糸条の収縮は極軽度なものとなり充分な緯糸保持力を得ることが出来す、結果として耳ホツレやスリップ等々の諸問題を引き起こし易くなる。また沸水収縮率SHWが20%を超過する範囲となれば緯糸の保持力は充分なものとなり得るが、耳部を構成する搦み糸のみ熱収縮率が大きくなり過ぎると布帛の耳端が極端にうねってしまう等、耳品位を損ねる恐れがあり好ましくない。
【0015】
【実施例】
以下、実施例により本発明を更に具体的に説明する。勿論、本発明は以下の実施例に何ら限定されるものではない。尚、本文中及び実施例中の各物性値は以下の測定方法によるものである。
(1) 極限粘度〔η〕
フェノールとテトラクロロエタンの等重量混合物を溶媒とし、ウベローデ粘度計を使用し20℃±0.5℃の恒温条件下で粘度数ηsp/cを求め、ηsp/cを溶媒濃度cに対しプロットし、c→0にηsp/cを外挿することによって〔η〕を求める。
【0016】
(2) 160℃乾熱収縮率SHD
試料に1/30g/dの荷重を掛け、その長さL1(mm)を測定する。次いで、その荷重を取り除き、試料を乾燥機に入れ乾熱160℃で30分間乾燥する。乾燥後冷却し、再度試料に1/30g/dの荷重を掛けてその長さL2(mm)を測定する。上記L1、L2を下記式に代入し、160℃乾熱収縮率SHDを算出する。測定回数5回の平均値を以てその測定値とする。
SHD(%)=(L1−L2)/L1×100
【0017】
(3) 沸水収縮率SHW
試料を枠周1.125mの検尺器を用い、0.1g/dの荷重を掛け、120回/分の速度で巻き返し、巻き回数が20回の小綛を作成し、初荷重の40倍の重りを掛けて、綛長L3(mm)を測定する。続いて重りを外し、収縮が実質的に妨げられないような方法で沸騰水(100℃)中に30分間浸漬した後、取り出して吸取紙或いは綿布で水を拭き取り、水平状態にて風乾する。風乾後、再度重りを掛けて綛長L4(mm)を測定する。上記L3、L4を下記式に代入し、沸水収縮率SHWを測定する。尚、測定回数5回の平均値を以てその測定値とする。
SHW(%)={(L3−L4)/L3}×100
【0018】
(4) 破断強力DT、破断伸度DE
オリエンテック社製テンシロンを使用し、試料長(ゲージ長)200mm、伸長速度100%/分、記録速度(チャート速度)500mm/分、初荷重1/30g/dの条件で糸条の応力−歪み曲線を作成し、糸条の破断点より破断強力DT(g/d)及び破断伸度DE(%)を算出する。尚、測定回数5回の平均値を以てその測定値とする。
【0019】
(5) 結晶化度χc
n−ヘプタンと四塩化炭素よりなる密度勾配管を作成し、30℃±0.1℃に調温された密度勾配管中に充分に脱泡した試料を入れ、5時間放置後の密度勾配管中の試料位置を、密度勾配管の目盛りで読み取った値を、標準ガラスフロートによる密度勾配管目盛り〜比重キャリブレーショングラフから比重値に換算し、測定値を小数点以下4桁まで読む。測定回数5回の平均値を以て比重値の測定値とし、以下の数式に代入し結晶化度χc を求める。
χc (%)=dk×(d−da)/d×(dk−da)〕×100
d;試料の比重
dk;PET完全結晶の比重 dk=1.455
da;PET完全非晶の比重 da=1.331
【0020】
(実施例)
〔η〕が0.64、Tgが71℃、Tmが256℃のポリエチレンテレフタレートセミダルレジンを通常の溶融紡糸装置を用い、紡糸温度295℃、紡糸引取速度2600m/分で45デニール5フィラメントのポリエステルマルチフィラメント未延伸糸を得た。尚、紡糸ノズルは丸断面、三角断面、八角断面のものを使用した。該ポリエステルマルチフィラメント未延伸糸を延撚機を使用し、延伸倍率1.5倍、延伸速度600m/分の条件で熱処理温度を種々変更し、表1に示す物性のポリエステルマルチフィラメント30デニール5フィラメント通常延伸糸を得た。また該ポリエステルマルチフィラメント丸断面未延伸糸を三菱重工業社製LS−6型仮撚装置を用い延伸倍率1.5倍、延伸速度100m/分、仮撚ヒーター(第1ヒーター)温度185℃、仮撚施撚撚数4000回/mの条件で表1中の30デニール5フィラメント仮撚加工糸を得た。(サンプルNo.1〜7)。
【0021】
〔η〕が0.64、Tgが71℃、Tmが256℃のポリエチレンテレフタレートセミダルレジンを通常の溶融紡糸装置を用い、紡糸温度295℃、紡糸引取速度2600m/minで36デニール5フィラメントのポリエステルマルチフイラメント丸断面未延伸糸を得た。該未延伸を延伸糸を延撚機を使用し、延伸倍率1.2倍、延伸速度600m/minで下記に示す物性のポリエステルマルチフイラメント30デニール5フィラメント通常延伸糸を得た(サンプルNo.8)。
【0022】
〔η〕が0.64、Tgが71℃、Tmが256℃のポリエチレンテレフタレートセミダルレジンを通常の溶融紡糸装置を用い、紡糸温度295℃、紡糸引取速度2600m/minで45デニール5フィラメントのポリエステルマルチフイラメント丸断面未延伸糸を得た。該未延伸糸を延撚機を使用し、延伸倍率1.5倍、延伸速度600m/min、熱処理温度200℃で下記に示す物性のポリエステルマルチフイラメント30デニール5フィラメント通常延伸糸を得た(サンプルNo.9)。
【0023】
〔η〕が0.64、Tgが71℃、Tmが256℃のポリエチレンテレフタレートセミダルレジンを通常の溶融紡糸装置を用い、紡糸温度295℃、紡糸引取速度2600m/minで45デニール5フィラメントのポリエステルマルチフイラメント丸断面未延伸糸を得た。該未延伸糸を延撚機を使用し、延伸倍率1.5倍、延伸速度600m/min、熱処理温度80℃で下記に示す物性のポリエステルマルチフイラメント30デニール5フィラメント通常延伸糸を得た(サンプルNo.10)。
表1に上記サンプルの諸物性を示す。
【0024】
【表1】

Figure 0003578240
【0025】
上記ポリエステルマルチフィラメント延伸糸、仮撚加工糸を搦み糸として使用し、津田駒工業社製ウォータージェットルームによってポリエステルサテン織物を織成した。経糸は50デニール36フィラメントのポリエステルマルチフィラメントS撚300回/m、緯糸には75デニール72フィラメントのポリエステルマルチフィラメントS、Z撚各2500回/mがS撚、Z撚が2本交互の構成となるように織上密度が経270本/インチ、緯93本/インチに製織した。該ポリエステルサテン織物をそれぞれ通常の染色加工工程を通し、仕上密度として経317本/インチ、緯106本/インチに仕上げた。外観、風合いに関しては何れも光沢感に富む滑らかな表面タッチを有する織物となった。それぞれの織物の耳部の状態は以下の表2に示す通りであった。
【0026】
【表2】
Figure 0003578240
【0027】
上記実施例1、参考例1は何れも耳ホツレやスリップの問題はなく、強固に緯糸を保持しており、強度的にも優れた耳を形成していた。対して比較例1については丸断面糸使いであり実施例1、参考例1と比較しやや緯糸と点接触で接している為に若干ながら緯糸保持力が不足していると感じられた。また比較例2については比較例1と比べ熱収縮性に乏しい為、比較例1と比べて更に緯糸保持力が不足していると感じられた。
【0028】
比較例3、4については三角断面糸であり糸条自体マイグレートし難い為、経糸との接触が更に困難なものとなり非常にスリッピーなものとなっている。その為比較例1、2と比較してみてもかなりの程度、緯糸保持力が不足していると思われた。比較例5に関しては仮撚加工糸であり仮撚の施撚効果によって断面が歪んでおり不均一な多角断面糸となっているが、仮撚時の熱処理によって熱収縮能が低下している為、実施例1、参考例1と比較して緯糸保持力が低下しており、従来では普通の程度であるが実施例1、参考例1の方が更に強固に緯糸を保持しており、耳ホツレやスリップの問題のない、強度的にも優れた耳を形成するものであった。
【0029】
比較例6に関しては搦み糸としての強度が弱すぎ、若干の引張でも搦み糸が破断に至ってしまい、結果耳糸のスリップが抑制されず、品位のよい耳を形成させることが出来なかった。また製織時に於いても搦み糸の破断が生じ、製織性に支障を来すなどの問題が生じた。
比較例7については搦み糸の熱収縮性が地組織を形成する糸条に比べ低過ぎる為、経糸及び緯糸を充分に保持することが出来ず、耳ホツレ及びスリップがいたる部分で生じており品位的みて、全く商品価値のないものとなってしまった。
比較例8については搦み糸の熱収縮性が地組織を形成する糸条に比べ高過ぎる為、経糸及び緯糸を強固に保持することが可能となった耳端のパッカリングが生じてしまい織物をテンターに掛ける際、耳部分のパッカリング(波うち)により緯方向に均一に張力を掛けることが出来ず、作業性に支障を来してしまい好ましいものではなかった。
【0030】
【発明の効果】
本発明は以上の如く構成されており、従来より使用されてきたポリエステルマルチフィラメント仮撚加工糸と比較し強度的に改善された、優れた布帛の耳を与えるものである。更に該仮撚加工糸は嵩高であり耳用経糸パッケージ或いはボビンには少量しか巻くことが出来なかったが本発明糸はマルチフィラメント通常延伸糸を用いている為に前記仮撚加工糸と比べ多量に巻けるようになり作業性、コスト面で大幅に改善されるものとなる。また多角断面糸である為に緯糸と面接触に近い型で接触することが出来、緯糸保持力が向上し、耳ホツレやスリップの生じ難い、強度的に優れた布帛の耳を与えることが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tangled yarn for a shuttleless loom, and more particularly to a tangled yarn for a shuttleless loom composed of a polyester-based multifilament yarn.
[0002]
[Prior art]
Unlike shuttle looms, such as shuttle looms, shuttleless looms do not reciprocate in weft insertion, so that the ears of the fabric tend to slack more easily than the central part, which is one of the important problems in quality. In the shuttleless loom, various ear tissues, ear thread tension adjusting mechanisms, and the like have been devised in order to solve the above conventional problems. The main types of ear formation are gripper looms and some rapier looms that use a tack-in device, water jet looms and air jet looms that use a reno device and some rapier looms, and those that use welding methods. No.
In particular, water jet looms and air jet looms, which are frequently used for polyester and polyamide multifilament fabrics, form ears in a tangled structure using a Leno device. Various types of applied garment ear weave devices have been proposed. The reno tissue is classified into a tangled tissue and a twisted tissue by the tangled ear weave device. The ear warp is formed from an ear thread package provided on the side opposite to the nozzle of the loom in the knitting structure forming device and forms an ear around the weft, while one torsion structure forming device is wound with a torsion yarn (ear warp). Each of the bobbins weaves the weft while twisting the ear warp according to the rotation of the opening shaft to form an ear. Conventionally, a 30-denier class polyester multifilament false twisted yarn which has been widely used as an ear warp as a garment fabric is used. However, since the ear warp has crimp, it is an ear warp package. Alternatively, it is too bulky to be wound on a bobbin and cannot be wound in a large amount, but also has a low strength at break and a low elongation at break due to false twisting, and further improvement in workability and physical properties is required.
[0003]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and relates to a garment yarn for a shuttleless loom that does not hinder ears during each processing step of fabric dyeing and other post-processing. To provide a weft holding force by contacting with a weft in a form close to surface contact by using a polygonal cross section yarn, and by extension, to provide a garment yarn for shuttleless looms that can provide a fabric ear with excellent strength. The task is to
[0004]
[Means for Solving the Problems]
The present invention has the following configurations. A drawn yarn of a polyester filament, which is a yarn having a polygonal cross section having a fiber cross section of 4 to 10 leaves and which satisfies the following formula:
Breaking strength; DT ≧ 3.0 g / d
160 ° C dry heat shrinkage; 18 % ≦ SHD ≦ 25%
Boiling water shrinkage: 16 % ≦ SHW ≦ 20%
[0005]
The fiber used for the tangled yarn for shuttleless looms of the present invention is preferably polyester, and particularly preferably contains 85% by weight or more of ethylene terephthalate units. If the ethylene terephthalate unit content is less than 85% by weight, embrittlement is remarkable due to the alkali weight reduction in the dyeing process after weaving into a fabric structure, leading to processing problems due to ear fraying and insufficient strength of the ears. It is not preferable. In the case of a polyester fabric, it is desirable that the weight fraction of ethylene terephthalate units is equal to or greater than that of the polyester fibers constituting the ground tissue and the ear tissue.
[0006]
Further, it is desirable that the polyester used for the tangled yarn for shuttleless looms of the present invention has an intrinsic viscosity number [η] of 0.50 or more and 0.90 or less. If the limiting viscosity number [η] is less than 0.50, the embrittlement of the fabric due to the alkali weight reduction cannot be suppressed, and the ear strength is undesirably reduced. Further, the polyester having a high polymerization degree whose intrinsic viscosity number [η] is significantly more than 0.90 is widely used for industrial materials such as polyester tire cords, has excellent strength, and has very little embrittlement due to alkali weight reduction processing. Although it can be obtained, it is not practical because it has too high performance and is expensive in the use of clothing fabrics. When the intrinsic viscosity number [η] is a polyester fiber, the intrinsic viscosity number [η] is desirably equal to or larger than the polyester fiber constituting the ground tissue and the ear tissue.
[0007]
Furthermore, the polyester filament used in the ligature yarn for shuttleless looms of the present invention must have a polygonal cross section having a fiber cross section of 4 to 10 leaves, more preferably a polygon cross section of 6 to 10 leaves. When the fiber cross section is less than 4 leaves, that is, a yarn with 3 leaves cross section, it is difficult to obtain a fine packing structure by the migration effect of the filament, it is not possible to expect the holding power of the weft and it is not possible to form an ear excellent in strength. Also, when the number of leaves is 11 leaves, the shape becomes as close as possible to a round cross-section yarn, and it becomes easy to obtain a finely packed structure by the migration effect of the filament. However, since it comes into contact with the weft in a type very close to point contact, a strong weft holding force can be obtained. This may cause problems such as slippage. The conventionally used false twisted yarn has a fiber cross section that is distorted due to false twisting and has a polygonal cross section, and it is thought that it also plays a role and holds the weft firmly, but it is used as a tangled yarn In this case, since the false twisting process cannot be omitted, the cost increases. Therefore, when spinning, it is desirable to adopt a modified spinneret capable of directly obtaining a polygonal cross-section yarn, and it is very preferable to obtain a polygonal cross-section yarn stably and at low cost. As a result of intensive studies by the inventors, a polygonal cross section of 4 leaves or more and 10 or less leaves, and more preferably a polygonal cross section of 6 leaves or more and 10 or less leaves can be brought into contact with a weft in a form close to surface contact. It has been found that it becomes possible to obtain sufficient weft holding power, and thus to provide an ear excellent in strength.
[0008]
There is no particular limitation on the total denier of the polyester filament used for the garment yarn for shuttleless loom of the present invention, and the constituent single yarn denier, but when it is used for general clothing cloth, the total denier is from 10 denier to 100 denier. The denier and the constituent single yarn denier may be appropriately combined and used in the range of 1 denier to 10 denier. The number of fibers is not limited to a multifilament, and naturally includes a monofilament having one constituent fiber.
[0009]
The polyester filament yarn used for the tangling yarn for shuttleless looms of the present invention can be obtained by a generally used melt spinning method. Regarding the stretching treatment for imparting appropriate strength and elongation to the filament yarn, a separate process from the spinning process, that is, a method of stretching using a twisting machine, or a spin draw method of performing a stretching process in the same process as the spinning process Either method may be used. In spinning and drawing, it is desirable to perform oiling in order to prevent static electricity and improve handling.
In addition, the arbor yarn for shuttleless loom of the present invention may be given an appropriate number of twists using a twisting machine before being subjected to weaving, but the twisting labor cost is extra, and an excellent effect cannot be expected, Unwinding twist given to the yarn when unwinding from the raw filament package is sufficient, and a special twisting step is not particularly required.
[0010]
Further, it is preferable that the crystallinity Δc of the polyester filament yarn used for the tangled yarn for shuttleless looms of the present invention is in the range of 15% or more and 30% or less. When the degree of crystallinity Δc is less than 15%, the degree of crystallinity is too small to prevent a decrease in physical properties due to embrittlement in the alkali weight reduction processing step, which is not a practically preferable range.
When the crystallinity Δc is in a range exceeding 30%, the practical strength is sufficient, and embrittlement due to alkali weight reduction processing can be suppressed, but the shrinkage performance is poor and the weft can be firmly held. Can not. By using a crystallinity Δc of 15% or more and 30% or less, more preferably 20% or more and 25% or less, a sufficient weft holding force can be obtained, and an ear excellent in strength can be provided. It becomes possible.
[0011]
Further, the breaking strength needs to be in the range of 3.0 g / d or more and 7.0 g / d or less, and more preferably in the range of 4.0 g / d or more and 6.0 g / d or less. The breaking strength can be variously set depending on the stretching ratio at the time of spinning and drawing, heat treatment, and the like. If the breaking strength DT is less than 3.0 g / d, physical properties sufficient to hold the weft are satisfied. Not only that, the tear strength of the finished fabric ears is too weak to be practically satisfactory. In addition, if it is in a range exceeding 7.0 g / d 2, physical properties enough to hold the weft can be satisfied, and the tear strength of the fabric ears can be practically sufficient. By having a value larger than the breaking strength, that is, having excessive performance, the strength balance between the ground tissue and the ear tissue is remarkably disrupted, which is not desirable in terms of performance. When limited to general clothing use, 7.0 g / d. Hereafter, it is more desirable to keep it at about 6.0 g / d or less.
[0012]
The elongation at break is preferably in the range of 10% to 45%. The breaking elongation can be variously set in the same manner as the breaking strength, such as spinning, stretching ratio during stretching, heat treatment, etc., but if the breaking elongation is less than 10%, problems such as yarn breakage during weaving are expected. In addition, the physical properties of the ears of the finished fabric are not practically satisfactory. If the elongation at break exceeds the range of 45%, the yarn is stretched in a ragged manner due to the application of tension during weaving, and the weft cannot be held with sufficient strength. It is not desirable because it causes various troubles.
[0013]
Further, the dry heat shrinkage SHD at 160 ° C. needs to be in the range of 6% or more and 25% or less, more preferably 10% or more and 20% or less. The dry heat shrinkage at 160 ° C. can be appropriately set by heat treatment at the time of spinning or drawing, but if it is less than 6%, shrinkage of the yarn by dry heat treatment and wet heat treatment in the dyeing process is also possible. Is extremely light, and a sufficient weft holding force can be obtained. As a result, various problems such as ear fraying and slipping are likely to occur. When the dry heat shrinkage SHD at 160 ° C. is in a range exceeding 25%, the holding power of the weft can be sufficient. However, when the heat shrinkage of only the entangled yarn constituting the ear portion becomes too large, the ear of the fabric becomes too thick. There is a possibility that the quality of the ear may be impaired such as extreme undulation of the end, so that it is not preferable.
[0014]
Further, the boiling water shrinkage SHW must be in the range of 5% or more and 20% or less, more preferably in the range of 7% or more and 20% or less. The boiling water shrinkage can also be appropriately set by heat treatment at the time of spinning and drawing, but if it is less than 7%, shrinkage of the yarn by dry heat treatment or wet heat treatment in the dyeing process is not affected. It becomes extremely light, and a sufficient weft holding force can be obtained. As a result, various problems such as ear fraying and slipping tend to occur. When the boiling water shrinkage SHW exceeds 20%, the holding power of the weft may be sufficient. However, when the heat shrinkage of only the entangled yarn constituting the ear part is too large, the ear end of the fabric may be extremely large. It is not preferable because ear quality may be impaired such as undulation.
[0015]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. Of course, the present invention is not limited to the following examples. In addition, each physical property value in the text and the examples is based on the following measurement methods.
(1) Intrinsic viscosity [η]
Using an equal weight mixture of phenol and tetrachloroethane as a solvent, the viscosity number ηsp / c was determined using an Ubbelohde viscometer at a constant temperature of 20 ° C. ± 0.5 ° C., and ηsp / c was plotted against the solvent concentration c. [η] is obtained by extrapolating ηsp / c to c → 0.
[0016]
(2) 160 ° C dry heat shrinkage SHD
A 1/30 g / d load is applied to the sample, and its length L1 (mm) is measured. Next, the load is removed, and the sample is placed in a dryer and dried at 160 ° C. for 30 minutes. After drying, the sample is cooled and a load of 1/30 g / d is applied again to the sample, and its length L2 (mm) is measured. The above L1 and L2 are substituted into the following equation to calculate the dry heat shrinkage SHD at 160 ° C. The measured value is taken as the average value of five measurements.
SHD (%) = { (L1-L2) / L1 } × 100
[0017]
(3) Shrinkage of boiling water SHW
Using a measuring instrument with a frame circumference of 1.125 m, a load of 0.1 g / d was applied, and the sample was rewound at a speed of 120 times / min. And skein length L3 (mm) is measured. Subsequently, the weight is removed, and the body is immersed in boiling water (100 ° C.) for 30 minutes in such a manner that shrinkage is not substantially hindered, taken out, wiped off with a blotter or a cotton cloth, and air-dried in a horizontal state. After air-drying, the weight is applied again and the skein length L4 (mm) is measured. The above L3 and L4 are substituted into the following equation, and the boiling water shrinkage SHW is measured. In addition, it is set as the measured value with the average value of the number of times of measurement 5 times.
SHW (%) = {(L3-L4) / L3} × 100
[0018]
(4) Breaking strength DT, breaking elongation DE
Using Orientec Tensilon, stress-strain of yarn under conditions of sample length (gauge length) 200 mm, elongation speed 100% / min, recording speed (chart speed) 500 mm / min, initial load 1/30 g / d A curve is created, and the breaking strength DT (g / d) and the breaking elongation DE (%) are calculated from the breaking point of the yarn. In addition, it is set as the measured value with the average value of the number of times of measurement 5 times.
[0019]
(5) Crystallinity χc
A density gradient tube made of n-heptane and carbon tetrachloride was prepared, a sufficiently defoamed sample was placed in a density gradient tube adjusted to 30 ° C. ± 0.1 ° C., and the density gradient tube was allowed to stand for 5 hours. The value obtained by reading the sample position in the scale on the density gradient tube is converted into a specific gravity value from a density gradient tube scale using a standard glass float to a specific gravity calibration graph, and the measured value is read to four decimal places. The average value of the five measurements is used as the measured value of the specific gravity value, and the measured value is substituted into the following equation to determine the crystallinity χc.
χc (%) = [ dk × (d-da) / d × (dk-da) ] × 100
d; specific gravity of sample dk; specific gravity of PET perfect crystal dk = 1.455
da; specific gravity of PET completely amorphous da = 1.331
[0020]
(Example)
Polyethylene terephthalate semi-dal resin having [η] of 0.64, Tg of 71 ° C. and Tm of 256 ° C. using a usual melt spinning apparatus at a spinning temperature of 295 ° C. and a spinning take-off speed of 2600 m / min. A multifilament undrawn yarn was obtained. The spinning nozzle used had a round, triangular or octagonal cross section. The polyester multifilament undrawn yarn was subjected to a heat treatment temperature of 1.5 times and a drawing speed of 600 m / min by using an elongating machine, and the heat treatment temperature was variously changed. Usually, a drawn yarn was obtained. The polyester multifilament round cross-section undrawn yarn was drawn using a LS-6 type false twist device manufactured by Mitsubishi Heavy Industries, Ltd. at a draw ratio of 1.5 times, at a drawing speed of 100 m / min, at a false twist heater (first heater) temperature of 185 ° C. Twisting 30 denier 5-filament false twisted yarns in Table 1 were obtained under the conditions of 4000 twists / m. (Sample Nos. 1 to 7).
[0021]
[Η] of 0.64, Tg of 71 ° C., Tm of 256 ° C. Polyester terephthalate semi-dal resin is a 36-denier 5-filament polyester at a spinning temperature of 295 ° C. and a spinning take-off speed of 2600 m / min using a usual melt spinning apparatus. An undrawn yarn having a multifilament round cross section was obtained. The unstretched drawn yarn was drawn using a twisting machine at a draw ratio of 1.2 times and a drawing speed of 600 m / min to obtain a polyester multifilament 30 denier 5-filament ordinary drawn yarn having the following physical properties (Sample No. 8). ).
[0022]
Polyethylene terephthalate semi-dal resin having [η] of 0.64, Tg of 71 ° C., and Tm of 256 ° C., using a usual melt spinning apparatus, at a spinning temperature of 295 ° C. and a spinning take-off speed of 2600 m / min. An undrawn yarn having a multifilament round cross section was obtained. The undrawn yarn was drawn using a twisting machine at a draw ratio of 1.5 times, a drawing speed of 600 m / min, and a heat treatment temperature of 200 ° C. to obtain a polyester multifilament 30 denier 5-filament ordinary drawn yarn having the following physical properties (sample). No. 9).
[0023]
Polyethylene terephthalate semi-dal resin having [η] of 0.64, Tg of 71 ° C., and Tm of 256 ° C., using a usual melt spinning apparatus, at a spinning temperature of 295 ° C. and a spinning take-off speed of 2600 m / min. An undrawn yarn having a multifilament round cross section was obtained. Using an untwisted yarn, a draw ratio of 1.5 times, a drawing speed of 600 m / min, a heat treatment temperature of 80 ° C., and a polyester multifilament 30 denier 5 filament ordinary drawn yarn having the following physical properties were obtained using a twisting machine (sample). No. 10).
Table 1 shows the physical properties of the sample.
[0024]
[Table 1]
Figure 0003578240
[0025]
A polyester satin fabric was woven by a water jet loom manufactured by Tsudakoma Kogyo Co., Ltd., using the above-mentioned drawn polyester multifilament yarn and false twisted yarn as entangled yarn. The warp yarn is a 50-denier 36 filament polyester multifilament S twist 300 turns / m, and the weft yarn is a 75 denier 72 filament polyester multifilament S, Z twist 2500 turns / m each S twist and two Z twist alternately. The woven fabric was woven to a warp density of 270 yarns / inch and a weft of 93 yarns / inch. Each of the polyester satin woven fabrics was subjected to a usual dyeing process, and finished to a warp of 317 yarns / inch and a weft of 106 yarns / inch. Regarding the appearance and the texture, the woven fabric had a glossy and smooth surface touch. The condition of the ears of each fabric was as shown in Table 2 below.
[0026]
[Table 2]
Figure 0003578240
[0027]
In each of Example 1 and Reference Example 1 , there was no problem of ear fray or slip, and the weft was firmly held and formed an ear excellent in strength. On the other hand, in Comparative Example 1, a round cross-section yarn was used, and compared to Example 1 and Reference Example 1 , it was felt that the weft holding force was slightly insufficient because it was slightly in contact with the weft. Further, since the heat shrinkability of Comparative Example 2 was poorer than that of Comparative Example 1, it was felt that the weft holding force was further insufficient as compared with Comparative Example 1.
[0028]
Comparative Examples 3 and 4 are triangular cross-section yarns, and since the yarns themselves are hard to migrate, the contact with the warp becomes more difficult and the yarns are very slippery. Therefore, even when compared with Comparative Examples 1 and 2, it was considered that the weft holding force was insufficient to a considerable extent. Comparative Example 5 is a false twisted yarn, and its cross section is distorted due to the twisting effect of the false twist, resulting in a non-uniform polygonal cross section yarn. The weft holding force is lower than that of Example 1 and Reference Example 1 , which is a normal level in the related art, but Example 1 and Reference Example 1 hold the weft more firmly. It formed an ear which was excellent in strength and free from the problem of fraying and slipping.
[0029]
Regarding Comparative Example 6, the strength of the tangled yarn was too weak, and even a slight tension caused the tangled yarn to break, and as a result, the slip of the ear yarn was not suppressed, and a high-quality ear could not be formed. . In addition, even during weaving, tangling yarns break, causing problems such as impairing weaving.
In Comparative Example 7, the heat shrinkage of the tangled yarn was too low as compared with the yarn forming the ground structure, so that the warp and the weft could not be sufficiently held, and ear frays and slips occurred in all parts. In terms of quality, it has no commercial value at all.
In Comparative Example 8, the heat shrinkability of the tangled yarn was too high as compared with the yarn forming the ground structure, so that the puckering of the ear end, which enabled the warp and the weft to be held firmly, was produced. When a tent is put on a tenter, the tension cannot be applied uniformly in the weft direction due to puckering of the ears (undulation), which impairs the workability and is not preferable.
[0030]
【The invention's effect】
The present invention is configured as described above, and provides an excellent fabric ear having improved strength as compared with a conventionally used polyester multifilament false twisted yarn. Furthermore, the false twisted yarn was bulky and could be wound only in a small amount on the ear warp package or bobbin, but the yarn of the present invention uses a multifilament ordinary drawn yarn, so that the yarn of the false twisted yarn is larger than the false twisted yarn. It is possible to greatly improve workability and cost. In addition, since it is a polygonal cross-section yarn, it can make contact with the weft in a form close to surface contact, improving weft holding power, hardly causing ear frays and slipping, and giving a fabric edge excellent in strength. It becomes.

Claims (3)

ポリエステルフィラメントの延伸糸であって、繊維断面が4〜10葉の多角断面糸であり、且つ下記式を満足することを特徴とする無杼織機用搦み糸。
破断強力;DT≧3.0g/d
160℃乾熱収縮率;18%≦SHD≦25%
沸水収縮率;16%≦SHW≦20%
A drawn yarn of a polyester filament, which is a polygonal cross-section yarn having a fiber cross section of 4 to 10 leaves and satisfies the following formula:
Breaking strength; DT ≧ 3.0 g / d
160 ° C dry heat shrinkage; 18 % ≦ SHD ≦ 25%
Boiling water shrinkage: 16 % ≦ SHW ≦ 20%
エチレンテレフタレート単位を85重量%以上含有する極限粘度[η]が0.50〜0.90で破断伸度(DE)が10〜45%であることを特徴とする請求項1記載の無杼織機用搦み糸。The shuttleless loom according to claim 1, wherein the intrinsic viscosity [η] containing 85% by weight or more of ethylene terephthalate units is 0.50 to 0.90 and the elongation at break (DE) is 10 to 45%. Yogaramimi thread. 密度勾配管法による結晶化度χc が下記範囲内にあることを特徴とする請求項1記載の無杼織機用搦み糸。
結晶化度;15%≦χc ≦30%
2. The entanglement yarn for a shuttleless loom according to claim 1, wherein the crystallinity χc determined by a density gradient tube method is in the following range.
Crystallinity: 15% ≦ Δc ≦ 30%
JP09259696A 1996-04-15 1996-04-15 Karamimi yarn for shuttleless loom Expired - Fee Related JP3578240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09259696A JP3578240B2 (en) 1996-04-15 1996-04-15 Karamimi yarn for shuttleless loom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09259696A JP3578240B2 (en) 1996-04-15 1996-04-15 Karamimi yarn for shuttleless loom

Publications (2)

Publication Number Publication Date
JPH09279428A JPH09279428A (en) 1997-10-28
JP3578240B2 true JP3578240B2 (en) 2004-10-20

Family

ID=14058841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09259696A Expired - Fee Related JP3578240B2 (en) 1996-04-15 1996-04-15 Karamimi yarn for shuttleless loom

Country Status (1)

Country Link
JP (1) JP3578240B2 (en)

Also Published As

Publication number Publication date
JPH09279428A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
CA1036437A (en) Product and process for making a wrapped yarn
US5930989A (en) False twisted yarn
US4209559A (en) Linear crystalline terephthalate polyester yarn and textile goods made therefrom
US6715276B2 (en) False twist yarns and production method and production device therefor
JP3578240B2 (en) Karamimi yarn for shuttleless loom
JP4123646B2 (en) Polyester fiber yarn and fabric
JP5095556B2 (en) Latent crimped monofilament yarns and fabrics
JP3329406B2 (en) Polyester filament mixed yarn and method for producing the same
JPH0881854A (en) Manufacture of woven fabric
Behery et al. 33—the structure, tensile properties, and morphology of failure of wrapped yarns
JP2610207B2 (en) Manifest bulky thread
JPS6211085B2 (en)
JP4374704B2 (en) False twisted yarn manufacturing method and false twisted yarn manufacturing device
JPH041097B2 (en)
JP3321302B2 (en) Core-sheath type entangled mixed yarn with loop fluff
JPH022979B2 (en)
JP4217517B2 (en) Woven knitting
KR950004082B1 (en) Polyester multi-filament yarn
JP3572865B2 (en) Latent three-dimensional crimp self-extending yarn, method for producing the same, and composite yarn
TR202020515A2 (en) A Method Providing Dimensional Stability in Carpet Production
JP2003138453A (en) Stretch woven fabric and method for producing the same
JPH04185726A (en) Interlace yarn
JPH0730486B2 (en) Method for producing polyester yarn
JP2004027373A (en) Fibrous structure
JPH1193033A (en) Woven fabric

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees