JP3577259B2 - Differential ring oscillator circuit and multi-phase clock oscillator using the same - Google Patents

Differential ring oscillator circuit and multi-phase clock oscillator using the same Download PDF

Info

Publication number
JP3577259B2
JP3577259B2 JP2000153861A JP2000153861A JP3577259B2 JP 3577259 B2 JP3577259 B2 JP 3577259B2 JP 2000153861 A JP2000153861 A JP 2000153861A JP 2000153861 A JP2000153861 A JP 2000153861A JP 3577259 B2 JP3577259 B2 JP 3577259B2
Authority
JP
Japan
Prior art keywords
differential
amplifier circuit
differential amplifier
delay
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000153861A
Other languages
Japanese (ja)
Other versions
JP2001332698A (en
Inventor
淳一 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THine Electronics Inc
Original Assignee
THine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THine Electronics Inc filed Critical THine Electronics Inc
Priority to JP2000153861A priority Critical patent/JP3577259B2/en
Publication of JP2001332698A publication Critical patent/JP2001332698A/en
Application granted granted Critical
Publication of JP3577259B2 publication Critical patent/JP3577259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/03Astable circuits
    • H03K3/0315Ring oscillators
    • H03K3/0322Ring oscillators with differential cells

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多相クロック信号を発生するための差動リング発振回路及び多相クロック発振器に関するものである。
【0002】
【従来の技術】
最近、装置間の信号伝送には高速の小振幅シリアル信号を使うようになっている。これはディジタル信号をパラレルに転送するのに対し、僅かなケーブル数で済むのに加えてディジタル信号の転送で発生するEMIを抑制することが近年より重要になってきていることによる。このような、高速のシリアル通信を実現する際には、装置内部でのパラレル−シリアル変換の為にベースクロックと等しく位相がずれた多相の副クロックの発生が必須である。多段の遅延差動反転増幅回路をリング状に接続した電圧または電流制御差動リング発振回路は、等位相の多相副クロックを多段のリング発振回路から容易に引き出すことが出来る為、この応用に最適な回路であるが、高速のリング発振回路から正確に同じく位相がずれた副クロックを発生させる為には、各段の遅延差動反転増幅回路の負荷と副クロック配線の寄生容量を均等にする必要がある。
【0003】
従来は、各段の遅延差動反転増幅回路の負荷を均等にする為に、電圧または電流制御差動リング発振回路を構成するN段の遅延差動反転増幅回路を半導体基板上に2列配置し、それぞれの列において連続する遅延差動反転増幅回路が隣り合うように配置していた。このように配置することで差動リング発振回路を構成するN段の遅延差動反転増幅回路の出力と入力との間の配線における遅延を最小にして、高周波で発振可能な差動リング発振回路実現することができる。
【0004】
しかしながら、高速のシリアル通信を実現する為に必要とされる間隔の位相差を有する相クロック信号を出力する差動リング発振回路においては、一般に、1つおきの遅延差動反転増幅回路の出力から多相クロック信号を引き出すので、2列配置された遅延差動反転増幅回路のそれぞれの列から信号を引き出すことが必要である。そのため、従来の配置及び配線によれば、一方の列については多相クロック信号の配線引き回しがくなり、多相クロック信号線の寄生容量を均等に揃えることが困難となっていた。またこの多相クロック信号配線の引き回しは、差動リング発振回路の周囲における比較的広範囲な領域で行わなく てはならないため、半導体基板面積が大きくなってしまうう問題があった。
【0005】
【発明が解決しようとする課題】
そこで、上記の点に鑑み、本発明は、高周波で発振可能なリング発振回路から多相クロック信号配線を引き出す場合において、多相クロック信号配線の寄生容量の不均等に起因するクロック位相精度の劣化や基板面積の増加を抑えた差動リング発振回路及び多相クロック発振器を実現することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る差動リング発振回路は、リング発振回路を構成する複数段の増幅回路を、回路上では隣合う前段と後段の増幅回路を半導体基板上では隣合わないように、それぞれを2列に互い違いに半導体基板上に配置することを特徴とし、さらに、本発明に係る多相クロック発振器は、多相クロック信号が引き出される増幅回路の全てを、どちらか一方の列に配置することを特徴とする。
【0007】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細説明する。
【0008】
図1は、この発明の実施形態に係る多相クロック発振器に含まれている電圧制御差動リング発振回路の回路図であり、N=8段の電圧制御差動リング発振回路の例を示している。
【0009】
図1に示す電圧制御差動リング発振回路において、101a−101hは遅延差動反転増幅回路であり102は遅延時間の制御電圧の外部入力端子であり、103は遅延時間の制御電圧源である。
【0010】
それぞれの遅延差動反転増幅回路101a−101hは、差動入力端子対111と差動出力端子対112を持っており、8個の遅延差動反転増幅回路101a−101hの内、1番目の遅延差動反転増幅回路101aの差動出力端子112を2番目の遅延差動反転増幅回路101bの差動入力端子111へ接続し、2番目の遅延差動反転増幅回路101bの差動出力端子112を3番目の遅延差動反転増幅回路101cの差動入力端子111へと順番に接続していき、最後に8番目の遅延差動反転増幅回路101hの差動出力端子112を1番目の遅延差動反転増幅回路101aの差動入力端子111へ交差接続している。
【0011】
このように接続することで、各段の遅延差動反転増幅回路101a−101hはその差動出力端子対112に便宜上付けられたΦ1からΦ16までの名前のクロックを持つ電圧制御差動リング発振回路を構成することができる。
【0012】
図2には、図1に示された8段の電圧制御差動リング発振回路から得られるΦ1からΦ16まで名前を付けられたクロックの電圧波形が示されている。尚、図2においては、横軸が時間、縦軸が電圧を示している。
【0013】
図1に示す、電圧制御差動リング発振回路において、101a−101hは遅延差動反転増幅回路であるので、図2に示されているように、各段の信号は外部からの制御電圧103で決まる単位遅延時間201だけ遅れてそれぞれ反転出力される。この場合電圧制御差動リング発振回路の発振周波数の逆数であるサイクル時間202は、
clock = tdelay×2×N = 16×tdelay
となる。
【0014】
前記式から明らかなように、電圧制御差動リング発振回路のサイクル時間の最小値は、各段の単位遅延時間201と段数で決まる。遅延時間が最小になる制御電圧を加えた場合に高い発振周波数を得る為には必要最小限の遅延差動反転増幅回路の段数を選択することに加えて、各段を接続する配線の寄生容量をなるべく小さくし、単位遅延時間201を出来るだけ小さくするような設計が求められる。
【0015】
従来、図1に示されたような電圧制御差動リング発振回路を半導体基板上に形成する際には、図1に示された回路図と同じように、全体を2列配置し両端を除き各段の遅延差動増幅回路が隣り合うように配置することで、各段を結ぶ配線の長さ最小にして、遅延差動反転増幅回路の負荷である配線容量を均等に且つ最小にする設計が行なわれている。
【0016】
一方、高速のシリアル通信を実現する為には、等間隔で位相がずれた多相クロック信号が必要である。多相クロック信号の相数は、シリアル数で決定され、一般に4〜10相の多相クロック信号が必要とされる。図2には本実施形態における電圧制御差動リング発振回路の各段の出力波形が示されている。図に示された、Φ1からΦ16までの名前を付けられたクロックの内、高速のシリアル通信を実現する為に必要なクロックを選択する方法に関して説明する。
【0017】
本実施形態ではN=8相のクロックを選択する為にN=8段の構成を取っている。一般にM相のクロックに対してn・M段の構成(ただしnは正の整数)が可能であるが、前述したように、電圧制御差動リング発振回路のサイクル時間の最小値は、各段の単位遅延時間201と段数で決まるので、シリアル通信で必要とされる高い発振周波数を得る為に必要最小限の段数であるn=1が一般に選択されているが、n1の場合でも本願の効果は有効である。
【0018】
間隔で位相がずれた多相クロック信号が必要であるので、サイクル時間202を8で割った時間だけ位相時間がずれたクロックを選択することになる。その結果Φ1、Φ3、Φ5、...、Φ15の奇数番目のクロックを多相クロック信号として選択する方法と、Φ2、Φ4、Φ6、...、Φ16の偶数番目のクロックを選択する方法の二通りの方法の内のどちらかを選択することになるが、以下本実施形態においては、Φ1、Φ3、Φ5、...、Φ15の奇数番目のクロックを多相クロック信号として選択する例に関して説明する。もちろん偶数番目のクロックを選択した場合でも本実施形態と同様の効果を得ることが出来る。
【0019】
図3は、8相の多相クロック信号を出力する増幅回路を備えた電圧制御差動リング発振回路を含む多相クロック発振器の例を示す。図1に示された電圧制御差動リング発振回路に加えて、選択されたΦ1、Φ3、Φ5、...、Φ15の奇数番目のクロックを多相クロック信号として出力する為に必要な増幅回路301a−301hが付加されている。
【0020】
前述したように、電圧制御差動リング発振回路の各段を接続する配線の寄生容量をなるべく小さくしなければならない。従って、図3の回路を半導体基板上に配置する際には、多相クロック信号の増幅回路301a−301hまでの引出し線302がなるべく短くなるように全体を配置することが求められる。
【0021】
従来例の半導体基板上の配置を図4に示す。図4においては、電圧制御差動リング発振回路を全体に2列配置し両端を除き各段の遅延差動増幅回路が隣り合うように配置している。次に従来例の問題点に関して説明する。
【0022】
図4では、図3の回路図と同じように、全体を2列配置し両端を除き各段の遅延差動増幅回路が隣り合うように配置している。さらに、多相クロック信号の増幅回路301a−301hまでの引出し線302がなるべく短くなるように遅延差動増幅回路101a−101hの脇に多相クロック信号の増幅回路301a−301hを配置している。以上の配慮をすることで、各段を結ぶ配線に関わる配線寄生を均等に且つ最小にしているのだが、一方、多相クロック信号自体は電圧制御差動リング発振回路の上下に別々に出力される為に、その配線である401aと402bの間には大きな寄生容量の差が生じることになる。
【0023】
多相クロック信号の位相が正確に等間隔であることが高速シリアル通信においては非常に重要であることから、多相クロック信号配線の半導体基板上での引き回しに関しても細心の注意を払う必要がある。つまり、それぞれの多相クロック信号の電磁/容量結合が、多相クロック信号間でそれぞれ均等になるよう常に注意を払わねばならない。一般に、多相クロック信号配線と電磁/容量結合するような別の信号線を走らせたり、半導体活性素子を配線下に配置することはない。従って、図4のように、多相クロック信号線を電圧制御差動リング発振回路の周りの比較的広範囲な領域に引き回すことは、大きな半導体基板面積を必要とすると言う別の問題引き起こすことになる。
【0024】
図5は、上記問題点を克服する為に考案された、本願の実施形態に係る多相クロック発振器の半導体基板での配置の例を示す。
【0025】
図5では、図3の回路図と同じように全体を2列配置しているが、遅延差動増幅回路の各段が隣り合うことはなく、段毎に配置列を交換している。こうすることで、多相クロック信号の増幅回路301a−301hまでの引出し線302常に列の一方の遅延差動増幅回路の出力から引き出せば良くなり、多相クロック信号の全てを電圧制御差動リング発振回路の一方からのみ出力させることが可能で、その引き回し線である401の寄生容量の差を容易に均等にすることが可能である。
【0026】
従来例との比較の為に、図6のaには本願の電圧制御差動リング発振回路に各段の配置を示し、図6のbには従来例の電圧制御差動リング発振回路の各段の配置を並べて示している。
【0027】
従来例と比較して、各段を接続する配線長が長くなっているが、それは従来例の場合の両端の遅延差動反転増幅回路間の配線と同程度のものであり、従来例の配置を使った電圧制御差動リング発振回路の高周波特性に対して本願の配置によりその特性が劣ることはない。
【0028】
図7N=10段の電圧制御差動リング発振回路の例を示している。
【0029】
図8電圧制御差動リング発振回路100を構成している遅延差動反転増幅回路の一例を示している。ここで801、802は電圧可変抵抗器、803、804はMOSトランジスタ、805は低電流源である。806、807はそれぞれ第1、第2の差動入力端子であり、808、809はそれぞれ第1、第2の差動出力端子である。810は遅延時間制御電圧入力端子である。本例はMOSトランジスタを用いた遅延差動反転増幅回路であるが、本例以外の半導体集積素子を用いた遅延差動反転増幅回路に対しても本発明は有効かつ実現可能である。
【0030】
なお、以上の実施形態においては、電圧制御された遅延差動反転増幅回路を使った電圧制御差動リング発振回路に関して説明されているが、本発明は、電流制御された遅延差動反転増幅回路を使った電流制御差動リング発振回路においても有効且つ実現可能なものであり、電圧制御差動リング発振回路に限定されることなく、特許請求の範囲に記載される範囲内で自由に変形・変更可能である。
【0031】
【発明の効果】
本発明によれば、高速のシリアル通信を実現する為に必要な等間隔の多相クロック信号を、半導体基板上に形成された2列の遅延差動反転増幅回路の内、一方の列のみから引き出すことが可能になるので、多相クロック信号配線の寄生容量の不均等を押えることが出来る。また、従来例と同様に各段の配線遅延を小さく保ったままに出来るので、高周波数で発振可能な電圧または電流制御差動リング発振回路及び多相クロック発振器を実現できる。
【図面の簡単な説明】
【図1】本発明に係る多相クロック発振器に含まれている電圧制御差動リング発振回路を示す回路図である。
【図2】図1に示す電圧制御差動リング発振回路の出力波形を示す図である。
【図3】本発明に係る多相クロック発振器に含まれている電圧制御差動リング発振回路と増幅回路を示す回路図である。
【図4】従来方式に基づく図3の回路の配置例を示す図である。
【図5】本発明に基づく図3の回路の配置例を示す図である。
【図6】本発明と従来例との比較を示す図である。
【図7】N=10段の場合の本発明の実施形態を示す図である。
【図8】本発明の実施形態において用いる遅延差動反転増幅回路の一例を示す回路図である。
【符号の説明】
100 電圧制御差動リング発振回路
101 遅延差動増幅回路
102 遅延時間の制御電圧の入力端子
103 制御電圧源
111 遅延差動増幅回路の入力端子対
112 遅延差動増幅回路の出力端子対
201 遅延差動増幅回路の単位遅延時間
202 電圧制御差動リング発振回路のサイクル時間
301 多相クロック信号用増幅回路
302 多相クロック信号引出し線
401 多相クロック信号配線
801 電圧可変抵抗器
802 電圧可変抵抗器
803 第1のMOSトランジスタ
804 第2のMOSトランジスタ
805 低電流源
806 第1の差動入力端子
807 第2の差動入力端子
808 第1の差動出力端子
809 第2の差動出力端子
810 遅延時間の制御電圧の入力端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a differential ring oscillation circuit for generating a multi-phase clock signal and a multi-phase clock oscillator.
[0002]
[Prior art]
Recently, high-speed small-amplitude serial signals have been used for signal transmission between devices. This is because digital signals are transferred in parallel, whereas a small number of cables are required, and suppression of EMI generated by digital signal transfer has become more important in recent years. When realizing such high-speed serial communication, it is necessary to generate a multi-phase sub-clock having the same phase shift as the base clock for parallel-serial conversion inside the device. A voltage or current control differential ring oscillator circuit in which a multi-stage delayed differential inverting amplifier circuit is connected in a ring shape can easily derive an equal-phase multi-phase sub-clock from the multi-stage ring oscillator circuit. Although it is an optimal circuit, in order to generate a sub-clock with the same phase shift from the high-speed ring oscillator, the load of the delay differential inverting amplifier circuit of each stage and the parasitic capacitance of the sub-clock wiring must be equal. There is a need to.
[0003]
Conventionally, in order to balance the load of the delay differential inverting amplifier circuit of each stage, voltage or current controlled differential ring 2 rows of delay differential inverting amplifier circuit of N stages on a semiconductor substrate constituting the oscillation circuit placed in the delay differential inverting amplifier circuit successive was placed next to each other in each column. With this arrangement, by the delay in wiring between the input and output of the delay differential inverting amplifier circuit of N stages constituting the differential ring oscillator circuit to a minimum, it can oscillate difference in high-frequency it is possible to realize the dynamic ring oscillator circuit.
[0004]
However, in the differential ring oscillator circuit that outputs multi Ike lock signal having a phase difference of such spacing required to achieve a high-speed serial communication is generally every other delay differential inverting amplifier circuit since the output elicit a multi-phase clock signal, Ru required der is Succoth pull out the respective signals from the row of arranged delay differential inverting amplifier circuit in two rows. Therefore, according to the conventional arrangement and wiring, wire routing of multi-phase clock signals result in longer, it has been difficult to align uniformly the parasitic capacitance of the multiphase clock signal distribution lines for one row. Also, wiring of the multi-phase clock signal wirings, because that must be performed at a relatively wide region around the differential ring oscillator circuit, the area of the semiconductor substrate has a problem that it has the increased.
[0005]
[Problems to be solved by the invention]
Therefore, in view of the above, the present invention provides a method of extracting a multi-phase clock signal line from a ring oscillation circuit capable of oscillating at a high frequency, thereby deteriorating clock phase accuracy due to uneven parasitic capacitance of the multi-phase clock signal line. It is an object to realize a differential ring oscillation circuit and a multi-phase clock oscillator in which an increase in the substrate area is suppressed.
[0006]
[Means for Solving the Problems]
In the differential ring oscillation circuit according to the present invention, a plurality of stages of amplifier circuits constituting the ring oscillation circuit are arranged in two rows so that adjacent front and rear amplification circuits on the circuit are not adjacent on the semiconductor substrate. Further, the multi-phase clock oscillator according to the present invention is characterized in that all of the amplifier circuits from which the multi-phase clock signal is extracted are arranged in one of the columns. And
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0008]
FIG. 1 is a circuit diagram of a voltage-controlled differential ring oscillation circuit included in a multiphase clock oscillator according to an embodiment of the present invention, and shows an example of a voltage-controlled differential ring oscillation circuit with N = 8 stages. I have.
[0009]
In shown to voltage control differential ring oscillator circuit in FIG. 1, 101a-101h is the delay differential inverting amplifier circuit, 102 is an external input terminal of the control voltage of the delay time, 103 a control voltage source of the delay time It is.
[0010]
Each of the delayed differential inverting amplifier circuits 101a-101h has a differential input terminal pair 111 and a differential output terminal pair 112 , and the first delay differential inverting amplifier circuit 101a-101h has the first delay. The differential output terminal 112 of the differential inverting amplifier circuit 101a is connected to the differential input terminal 111 of the second delayed differential inverting amplifier circuit 101b, and the differential output terminal 112 of the second delayed differential inverting amplifier circuit 101b is connected. The differential output terminal 112 of the eighth delayed differential inverting amplifier circuit 101h is connected to the differential input terminal 111 of the third delayed differential inverting amplifier circuit 101c in order. It is cross-connected to the differential input terminal 111 of the inverting amplifier circuit 101a.
[0011]
By connecting in this manner, the delay differential inverting amplifier circuits 101a to 101h at each stage are provided with voltage controlled differential ring oscillator circuits having clocks from Φ1 to Φ16 attached to the differential output terminal pair 112 for convenience. Can be configured.
[0012]
Figure 2 shows the clock voltage waveform named from Φ1 obtained from the voltage controlled differential ring oscillator circuit 8 stages shown in Figure 1 to .phi.16. In FIG. 2, the horizontal axis represents time, and the vertical axis represents voltage.
[0013]
In the voltage-controlled differential ring oscillation circuit shown in FIG. 1 , 101a to 101h are delay differential inverting amplifier circuits . Therefore, as shown in FIG. The output is inverted with a delay of the determined unit delay time 201. In this case, the cycle time 202, which is the reciprocal of the oscillation frequency of the voltage-controlled differential ring oscillation circuit, is:
t clock = t delay × 2 × N = 16 × t delay
It becomes.
[0014]
As is apparent from the above equation, the minimum value of the cycle time of the voltage controlled differential ring oscillator is determined by the unit delay time 201 of each stage and the number of stages. In order to obtain a high oscillation frequency when a control voltage that minimizes the delay time is applied, in addition to selecting the minimum number of stages of the delay differential inverting amplifier circuit required, in addition to the parasitic capacitance of the wiring connecting each stage Is required to be as small as possible and the unit delay time 201 is made as small as possible.
[0015]
Conventionally, when forming the voltage controlled differential ring oscillator circuit as shown in Figure 1 on a semiconductor substrate, like the circuit diagram shown in FIG. 1, except for the ends to place the entire two rows By arranging the delay differential amplifier circuits of each stage so as to be adjacent to each other, the length of the wiring connecting the stages is minimized, and the wiring capacitance as the load of the delay differential inverting amplifier circuit is evenly and minimized. Is designed.
[0016]
On the other hand, in order to realize high-speed serial communication, a multi-phase clock signal whose phases are shifted at equal intervals is required. The number of phases of the multiphase clock signal is determined by the serial number, the multi-phase clock signals generally 4-10 phase is required. Figure 2 is an output waveform of each stage of the put that voltage control differential ring oscillator circuit in this embodiment. Shown in the figure, among the clocks named from Φ1 to .phi.16, it will be described a method of selecting a clock necessary for high-speed serial communication.
[0017]
In this embodiment, in order to select the clock of N = 8 phase, taking a configuration of N = 8 stages. In general, an n-M stage configuration (where n is a positive integer) is possible for an M-phase clock, but as described above, the minimum value of the cycle time of the voltage-controlled differential ring oscillator circuit is since determined by the unit delay time 201 and number of stages, but n = 1 is a minimum necessary number of stages are generally selected to obtain a high oscillation frequency required by the serial communication, n> for 1 However, the effect of the present application is effective.
[0018]
Since equal intervals are required multi-phase clock signals whose phases are shifted, it will select the clock shift by the phase time period divided by the cycle time 202 at 8. As a result, Φ1, Φ 3, Φ 5 ,. . . , A method of selecting a multi-phase clock signal to odd-numbered clocks Φ 15, Φ2, Φ 4, Φ 6 ,. . . , Becomes to select either of the two ways of how to select the even-numbered clock [Phi 16, in the following the present embodiment, Φ1, Φ 3, Φ 5 ,. . . , Φ 15 will be described as a multi-phase clock signal . Of course, even if you select the even-numbered clock, it is possible to obtain the same effect as this embodiment.
[0019]
FIG. 3 shows an example of a multi-phase clock oscillator including a voltage-controlled differential ring oscillation circuit including an amplifier circuit for outputting an 8-phase multi-phase clock signal. In addition to the voltage controlled differential ring oscillator circuit shown in FIG. 1, selected Φ1, Φ3, Φ5,. . . , .PHI.15 are added as amplification circuits 301a to 301h necessary to output the odd-numbered clocks as multiphase clock signals.
[0020]
As described above, the parasitic capacitance of the wiring connecting each stage of the voltage controlled differential ring oscillation circuit must be as small as possible. Therefore, when arranging the circuit of FIG. 3 on a semiconductor substrate, it is required to arrange the whole circuit so that the lead line 302 to the amplifier circuits 301a to 301h of the multiphase clock signal is as short as possible.
[0021]
FIG. 4 shows a conventional arrangement on a semiconductor substrate. In Figure 4, disposed in two rows a voltage controlled differential ring oscillator circuit in the whole, the delay differential amplifier circuits of each stage, except the ends are arranged so as to be adjacent. Next , problems of the conventional example will be described.
[0022]
In Figure 4, like the circuit diagram of FIG. 3, arranged overall in two rows, the delay differential amplifier circuits of each stage, except the ends are arranged so as to be adjacent. In addition, as lead lines 302 to the amplifier circuit 301a-301h of the multi-phase clock signal is as short as possible, are arranged amplifying circuit 301a-301h of the multiphase clock signal on the side of the delay differential amplifier circuits 101a-101h . By taking the above into consideration, the wiring parasitics related to the wiring connecting each stage are evenly and minimized, but the polyphase clock signal itself is output separately above and below the voltage controlled differential ring oscillator. Therefore, a large parasitic capacitance difference occurs between the wirings 401a and 402b.
[0023]
Since it phases of the multiphase clock signal is equal intervals accurately is very important in high-speed serial communication, it is necessary to pay close attention with regard routed on a semiconductor substrate of a multi-phase clock signal wirings . In other words, electromagnetic / capacitive coupling of the respective multiphase clock signals, must always pay attention so as to be equal, respectively between the multiphase clock signals. In general, there is no need to run another signal line which is electromagnetically / capacitively coupled to the multi-phase clock signal wiring, or to arrange a semiconductor active element below the wiring. Therefore, as shown in FIG. 4, the routing of the multi-phase clock signal line to a relatively wide area around the voltage-controlled differential ring oscillation circuit causes another problem that a large semiconductor substrate area is required. .
[0024]
FIG. 5 shows an example of an arrangement on a semiconductor substrate of the multi-phase clock oscillator according to the embodiment of the present invention, which has been devised to overcome the above problem.
[0025]
In FIG. 5 , as in the circuit diagram of FIG. 3 , the whole is arranged in two columns , but the stages of the differential differential amplifier circuit are not adjacent to each other, and the arrangement columns are exchanged for each stage. In this way, the lead line 302 to the amplifier circuit 301a-301h of the multiphase clock signals always well if pulled out from the output of one of the delay differential amplifier circuit of a column, the voltage control transistor all multi-phase clock signal It is possible to output from only one of the ring oscillation circuits, and it is possible to easily equalize the difference in the parasitic capacitance of the routing line 401.
[0026]
For comparison with the conventional example, FIG. 6A shows the arrangement of each stage in the voltage-controlled differential ring oscillation circuit of the present application, and FIG. The arrangement of the columns is shown side by side.
[0027]
Compared with the conventional example, the wiring length connecting each stage is longer, but it is almost the same as the wiring between the delay differential inverting amplifier circuits at both ends in the conventional example. The arrangement of the present invention does not degrade the high-frequency characteristics of the voltage-controlled differential ring oscillation circuit using the circuit.
[0028]
Figure 7 shows an example of a voltage-controlled differential ring oscillator circuit N = 10 stages.
[0029]
FIG. 8 shows an example of the delayed differential inverting amplifier circuit constituting the voltage controlled differential ring oscillator circuit 100. Here , 801 and 802 are voltage variable resistors, 803 and 804 are MOS transistors, and 805 is a low current source. 806 and 807 are first and second differential input terminals, respectively, and 808 and 809 are first and second differential output terminals, respectively. 810 is a delay time control voltage input terminal. Although the present example is a delayed differential inverting amplifier circuit using MOS transistors, the present invention is effective and feasible for a delayed differential inverting amplifier circuit using a semiconductor integrated device other than this example.
[0030]
In the above embodiments, the voltage-controlled differential ring oscillator circuit using the voltage-controlled delayed differential inverting amplifier circuit has been described. However, the present invention relates to a current-controlled delayed differential inverting amplifier circuit. is intended also feasible effective and the current control transistor ring oscillator circuit using a voltage control differential ring oscillator circuit without being limited to, freely within the range described in the claims Deformable and changeable.
[0031]
【The invention's effect】
According to the present invention, a multi-phase clock signal at equal intervals necessary for realizing high-speed serial communication is transmitted from only one of the two columns of the delay differential inversion amplifier circuits formed on the semiconductor substrate. Since it is possible to draw out, it is possible to suppress the unevenness of the parasitic capacitance of the multi-phase clock signal wiring. Further, since the wiring delay of each stage can be kept small as in the conventional example, a voltage or current control differential ring oscillation circuit and a multiphase clock oscillator capable of oscillating at a high frequency can be realized.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a voltage-controlled differential ring oscillation circuit included in a multi-phase clock oscillator according to the present invention.
FIG. 2 is a diagram showing an output waveform of the voltage controlled differential ring oscillation circuit shown in FIG.
FIG. 3 is a circuit diagram showing a voltage-controlled differential ring oscillator and an amplifier included in the multi-phase clock oscillator according to the present invention.
FIG. 4 is a diagram showing an example of arrangement of the circuit of FIG. 3 based on a conventional method.
FIG. 5 is a diagram showing an example of arrangement of the circuit of FIG. 3 according to the present invention.
FIG. 6 is a diagram showing a comparison between the present invention and a conventional example.
FIG. 7 is a diagram showing an embodiment of the present invention when N = 10 stages.
FIG. 8 is a circuit diagram showing an example of a delayed differential inverting amplifier circuit used in an embodiment of the present invention.
[Explanation of symbols]
100 voltage controlled differential ring oscillator circuit 101 output terminal pair of the input terminal pair 112 delay difference Dozo width circuit input terminal 103 a control voltage source 111 delay difference Dozo width circuit of the control voltage of the delay difference Dozo width circuit 102 delay 201 delay difference Dozo width circuit cycle time 301 multiphase clock signal amplifier circuit of the unit delay time 202 the voltage controlled differential ring oscillator circuit 302 multiphase clock signal lead lines 401 multiphase clock signal wiring 801 voltage variable resistor 802 voltage Variable resistor 803 First MOS transistor 804 Second MOS transistor 805 Low current source 806 First differential input terminal 807 Second differential input terminal 808 First differential output terminal 809 Second differential output Terminal 810 Input terminal for control voltage of delay time

Claims (4)

リング状に接続されて発振動作を行うN段の遅延差動増幅回路をする差動リング発振回路であって(Nは4以上の整数)、前記N段の遅延差動増幅回路の各々が、差動信号を入力する1組の差動信号入力端子と、差動信号を出力する1組の差動信号出力端子とを有し、前記N段の遅延差動増幅回路が半導体基板内の所定の方向に平行である第1の列及び第2の列に分けて配置されており、前記第2の列に配置された各々の遅延差動増幅回路が、前記第1の列に配置されたそれぞれ1つの遅延差動増幅回路の差動信号出力端子に接続された差動信号入力端子と前記第1の列に配置されたそれぞれ他の1つの遅延差動増幅回路の差動信号入力端子に接続された差動信号出力端子とを有する前記差動リング発振回路と、
複数の増幅回路であって、前記第1の列に配置された遅延差動増幅回路の差動信号出力端子にそれぞれ接続され、前記第1の列に配置された遅延差動増幅回路側から前記複数の増幅回路に複数の引出し線がそれぞれ配設されてなる、前記複数の増幅回路と、
を具備する多相クロック発振器。
A differential ring oscillator circuit that have a delayed differential amplifier circuit of N stages performing an oscillation operation are connected in a ring shape (N is an integer of 4 or more), each of the delay differential amplifier circuit of the N-stage , A set of differential signal input terminals for inputting differential signals, and a set of differential signal output terminals for outputting differential signals , wherein the N-stage delayed differential amplifier circuit is provided in a semiconductor substrate. divided into the first row and the second row is parallel to the predetermined direction are arranged, the delay differential amplifier circuits each disposed in the second row, arranged in the first column is a differential signal input terminal connected to the differential signal output terminals of Taso respectively one delay differential amplifier circuit, the first are arranged in columns of one of the other delay differential amplifier circuit Having a differential signal output terminal connected to a differential signal input terminal , the differential ring oscillator circuit,
A plurality of amplifier circuits, each connected to a differential signal output terminal of a delay differential amplifier circuit arranged in the first column, and the delay differential amplifier circuit arranged in the first column, A plurality of outgoing lines respectively arranged in a plurality of amplifying circuits, the plurality of amplifying circuits,
A multi-phase clock oscillator comprising:
リング状に接続されて発振動作を行うN段の遅延差動増幅回路を具備する差動リング発振回路であって(N/2以上の偶数)、
前記N段の遅延差動増幅回路の各々が、差動信号を入力する1組の差動信号入力端子と、差動信号を出力する1組の差動信号出力端子とを有し、
前記N段の遅延差動増幅回路が半導体基板内の所定の方向に平行である第1の列及び第2の列に分けて配置されており、
m=1、・・・、(N/2−1)について、
mが奇数のときに、前記第1の列に配置された第1群の遅延差動増幅回路の内の第m番目の遅延差動増幅回路の差動信号出力端子が、前記第2の列に配置された第2群の遅延差動増幅回路の内の第(m+1)番目の遅延差動増幅回路の差動信号入力端子に接続されると共に、前記第1群の遅延差動増幅回路の内の第(m+1)番目の遅延差動増幅回路の差動信号出力端子が、前記第2群の遅延差動増幅回路の内の第m番目の遅延差動増幅回路の差動信号入力端子に接続されており、
mが偶数のときに、前記第2群の遅延差動増幅回路の内の第m番目の遅延差動増幅回路の差動信号出力端子が、前記第1群の遅延差動増幅回路の内の第(m+1)番目の遅延差動増幅回路の差動信号入力端子に接続されると共に、前記第2群の遅延差動増幅回路の内の第(m+1)番目の遅延差動増幅回路の差動信号出力端子が、前記第1群の遅延差動増幅回路の内の第m番目の遅延差動増幅回路の差動信号入力端子に接続されており、
前記第2群の遅延差動増幅回路の内の第N/2番目の遅延差動増幅回路の差動信号出力端子が、前記第1群の遅延差動増幅回路の内の第N/2番目の遅延差動増幅回路の差動信号入力端子に接続されており、
前記第2群の遅延差動増幅回路の内の第1番目の遅延差動増幅回路の差動信号出力端子が、前記第1群の遅延差動増幅回路の内の第1番目の遅延差動増幅回路の差動信号入力端子に接続されてなる、
差動リング発振回路。
A differential ring oscillation circuit including an N-stage delayed differential amplifier circuit connected in a ring shape and performing an oscillation operation (where N / 2 is an even number of 2 or more),
Each of the N-stage delayed differential amplifier circuits has a set of differential signal input terminals for inputting a differential signal, and a set of differential signal output terminals for outputting a differential signal ,
The N-stage delayed differential amplifier circuits are arranged in a first column and a second column parallel to a predetermined direction in the semiconductor substrate;
For m = 1,..., (N / 2-1),
When m is an odd number, the differential signal output terminal of the m-th delayed differential amplifier circuit of the first group of delayed differential amplifier circuits arranged in the first column is connected to the second column. the of the delay differential amplifier circuit arranged second groups (m + 1) th delay differential while being connected to the differential signal input terminal of the amplifier circuit, the first group of delay differential amplifier circuit (m + 1) -th delayed differential differential signal output terminal of the amplifier circuit, the differential signal input terminal of the m-th delay differential amplifier circuit of the delay differential amplifier circuit of the second group of the It is connected to,
When m is an even number, the differential signal output terminal of the m-th delayed differential amplifier circuit of the second group of differential differential amplifier circuits is connected to the differential signal output terminal of the first group of delayed differential amplifier circuits. (m + 1) -th while being connected to the differential signal input terminal of the delay differential amplifier circuit, the difference between the (m + 1) -th delayed differential amplifier circuit of the delay differential amplifier circuit of the second group Doshingo output terminals are connected to differential signal input terminals of the m-th delay differential amplifier circuit of the delay differential amplifier circuit of the first group,
The differential signal output terminal of the N / 2th delay differential amplifier circuit of the second group of delay differential amplifier circuits is connected to the N / 2th delay differential amplifier circuit of the first group of delay differential amplifier circuits. against the differential signal input terminal of the delay differential amplifier circuit are continued,
A differential signal output terminal of a first delay differential amplifier circuit of the second group of differential differential amplifier circuits is connected to a first delay differential amplifier circuit of the first group of differential differential amplifier circuits. is connected to the differential signal input terminal of the amplifier circuit comprising,
Differential ring oscillation circuit.
リング状に接続されて発振動作を行うN段の遅延差動増幅回路を具備する差動リング発振回路であって(N/2以上の奇数)、
前記N段の遅延差動増幅回路の各々が、差動信号を入力する1組の差動信号入力端子と、差動信号を出力する1組の差動信号出力端子とを有し、
前記N段の遅延差動増幅回路が半導体基板内の所定の方向に平行である第1の列及び第2の列に分けて配置されており、
m=1、・・・、(N/2−1)について、
mが奇数のときに、前記第1の列に配置された第1群の遅延差動増幅回路の内の第m番目の遅延差動増幅回路の差動信号出力端子が、前記第2の列に配置された第2群の遅延差動増幅回路の内の第(m+1)番目の遅延差動増幅回路の差動信号入力端子に接続されると共に、前記第1群の遅延差動増幅回路の内の第(m+1)番目の遅延差動増幅回路の 動信号出力端子が、前記第2群の遅延差動増幅回路の内の第m番目の遅延差動増幅回路の差動信号入力端子に接続されており、
mが偶数のときに、前記第2群の遅延差動増幅回路の内の第m番目の遅延差動増幅回路の差動信号出力端子が、前記第1群の遅延差動増幅回路の内の第(m+1)番目の遅延差動増幅回路の差動信号入力端子に接続されると共に、前記第2群の遅延差動増幅回路の内の第(m+1)番目の遅延差動増幅回路の差動信号出力端子が、前記第1群の遅延差動増幅回路の内の第m番目の遅延差動増幅回路の差動信号入力端子に接続されており、
前記第1群の遅延差動増幅回路の内の第N/2番目の遅延差動増幅回路の差動信号出力端子が、前記第2群の遅延差動増幅回路の内の第N/2番目の遅延差動増幅回路の差動信号入力端子に接続されており、
前記第2群の遅延差動増幅回路の内の第1番目の遅延差動増幅回路の差動信号出力端子が、前記第1群の遅延差動増幅回路の内の第1番目の遅延差動増幅回路の差動信号入力端子に接続されてなる、
差動リング発振回路。
A differential ring oscillation circuit including an N-stage delay differential amplifier circuit connected in a ring shape and performing an oscillation operation (where N / 2 is an odd number of 3 or more),
Each of the N-stage delayed differential amplifier circuits has a set of differential signal input terminals for inputting a differential signal, and a set of differential signal output terminals for outputting a differential signal ,
The N-stage delayed differential amplifier circuits are arranged in a first column and a second column parallel to a predetermined direction in the semiconductor substrate;
For m = 1,..., (N / 2-1),
When m is an odd number, the differential signal output terminal of the m-th delayed differential amplifier circuit of the first group of delayed differential amplifier circuits arranged in the first column is connected to the second column. the of the delay differential amplifier circuit arranged second groups (m + 1) th delay differential while being connected to the differential signal input terminal of the amplifier circuit, the first group of delay differential amplifier circuit (m + 1) -th delayed differential difference Doshingo output terminal of the amplifier circuit, the differential signal input terminal of the m-th delay differential amplifier circuit of the delay differential amplifier circuit of the second group of the It is connected to,
When m is an even number, the differential signal output terminal of the m-th delayed differential amplifier circuit of the second group of differential differential amplifier circuits is connected to the differential signal output terminal of the first group of delayed differential amplifier circuits. (m + 1) -th while being connected to the differential signal input terminal of the delay differential amplifier circuit, the difference between the (m + 1) -th delayed differential amplifier circuit of the delay differential amplifier circuit of the second group Doshingo output terminals are connected to differential signal input terminals of the m-th delay differential amplifier circuit of the delay differential amplifier circuit of the first group,
The differential signal output terminal of the N / 2th delay differential amplifier circuit of the first group of delay differential amplifier circuits is connected to the N / 2th delay differential amplifier circuit of the second group of delay differential amplifier circuits. against the differential signal input terminal of the delay differential amplifier circuit are continued,
A differential signal output terminal of a first delay differential amplifier circuit of the second group of differential differential amplifier circuits is connected to a first delay differential amplifier circuit of the first group of differential differential amplifier circuits. is connected to the differential signal input terminal of the amplifier circuit comprising,
Differential ring oscillation circuit.
請求項2又は3記載の差動リング発振回路と、複数の増幅回路とを具備する多相クロック発振器であって、
前記複数の増幅回路が、前記第1の列に配置された第1群の遅延差動増幅回路の差動信号出力端子にそれぞれ接続され、前記第1の列に配置された第1群の遅延差動増幅回路側から前記複数の増幅回路に複数の引出し線がそれぞれ配設されてなる、
多相クロック発振器。
A multi-phase clock oscillator comprising the differential ring oscillator circuit according to claim 2 and a plurality of amplifier circuits,
The plurality of amplifier circuits are connected to differential signal output terminals of a first group of delay differential amplifier circuits arranged in the first column, respectively, and a first group of delay circuits arranged in the first column. A plurality of lead lines are respectively provided from the differential amplifier circuit side to the plurality of amplifier circuits,
Polyphase clock oscillator.
JP2000153861A 2000-05-24 2000-05-24 Differential ring oscillator circuit and multi-phase clock oscillator using the same Expired - Lifetime JP3577259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153861A JP3577259B2 (en) 2000-05-24 2000-05-24 Differential ring oscillator circuit and multi-phase clock oscillator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153861A JP3577259B2 (en) 2000-05-24 2000-05-24 Differential ring oscillator circuit and multi-phase clock oscillator using the same

Publications (2)

Publication Number Publication Date
JP2001332698A JP2001332698A (en) 2001-11-30
JP3577259B2 true JP3577259B2 (en) 2004-10-13

Family

ID=18659043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153861A Expired - Lifetime JP3577259B2 (en) 2000-05-24 2000-05-24 Differential ring oscillator circuit and multi-phase clock oscillator using the same

Country Status (1)

Country Link
JP (1) JP3577259B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849614B2 (en) * 2002-08-27 2006-11-22 ソニー株式会社 Oscillator
JP4623679B2 (en) * 2005-05-27 2011-02-02 パナソニック株式会社 Coupled ring oscillator
WO2007063965A1 (en) 2005-12-02 2007-06-07 Matsushita Electric Industrial Co., Ltd. Multi-phase oscillator

Also Published As

Publication number Publication date
JP2001332698A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
JP3886079B2 (en) Ring oscillator using delay interpolating mixer cell
KR20060047261A (en) Cross coupled voltage controlled oscillator
JP2007082158A (en) Clock-signal generating and distributing apparatus
JP3615692B2 (en) Multiphase clock oscillator
JP6881514B2 (en) Semiconductor integrated circuit and clock supply method for semiconductor integrated circuit
KR20010053231A (en) Clock generation circuit, serial/parallel converter and parallel/serial converter, and semiconductor device
JP3577259B2 (en) Differential ring oscillator circuit and multi-phase clock oscillator using the same
EP1240714A2 (en) Oscillator having multi-phase complementary outputs
TW200945779A (en) Dual supply inverter andring oscillator
KR100620311B1 (en) Semiconductor integrated circuit
US20190229677A1 (en) Semiconductor Device and Method
US7701276B2 (en) Multi-phase negative delay pulse generator
JP3757861B2 (en) Oscillator circuit and layout method thereof
JP5711576B2 (en) Oscillator and semiconductor device having oscillator
EP2779460B1 (en) Fine timing adjustment method
TW522549B (en) Semiconductor integrated circuit
CN210041780U (en) Jitter-free ring oscillator
JP2013017119A (en) Oscillator
JP2015154110A (en) oscillator
JP2002132377A (en) Clock signal distributor circuit and distribution signal method
KR100808076B1 (en) Clock distribution circuit
JP2007081656A (en) Periodic pulse generation circuit
JPS5918689Y2 (en) Charge-coupled device with built-in clock driver
JP2003133923A (en) Clock buffer circuit, and multiplexer using the same
JPH0444107A (en) Clock supply circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040709

R150 Certificate of patent or registration of utility model

Ref document number: 3577259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term