JP3575561B2 - Ground consolidated material - Google Patents
Ground consolidated material Download PDFInfo
- Publication number
- JP3575561B2 JP3575561B2 JP24747994A JP24747994A JP3575561B2 JP 3575561 B2 JP3575561 B2 JP 3575561B2 JP 24747994 A JP24747994 A JP 24747994A JP 24747994 A JP24747994 A JP 24747994A JP 3575561 B2 JP3575561 B2 JP 3575561B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- cement
- examples
- fine particle
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00732—Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/10—Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
- C04B2111/1025—Alkali-free or very low alkali-content materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
【0001】
【産業上の利用分野】
本発明はスラグ・セメント系の地盤固結材の改良に係り、具体的には水ガラスのアルカリの大部分をイオン交換樹脂で除去して得られた中性〜弱アルカリ性のシリカゾル(以下中性シリカゾルと称する)と、特定の条件範囲にある微粒子スラグ、微粒子セメントを使用することにより、高い固結強度が得られると共に、ゲル化時間が長くてかつゲル化時間の調整が容易で、懸濁型地盤固結材としては浸透性にも優れ、かつ通常の水ガラス系懸濁型よりもアルカリの溶脱が少ないスラグ・セメント系の地盤固結材に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
地盤を固結するための地盤注入用のグラウトが種々知られている。例えば、スラグ系の水ガラスグラウトとして、従来モル比が小さくアルカリ度の高い水ガラスを用いることが知られている。このグラウトは固結強度が大きいがアルカリの溶脱が懸念される。また水ガラスと酸を混合して得られる酸性シリカゾルとセメント系からなるグラウトではゲル化時間が短く、フロック状の沈澱が出来易いため浸透性が悪い。また普通スラグ(ブレーン比表面積3500〜4400 cm2/g)では、上記酸性シリカゾルに対しては中和剤として作用してゲル化時間の促進剤にはなりうるが、強度的にはほとんど効果はなく、中性シリカゾルに対しては反応性をほとんど示さず強度発現もない。中性シリカゾルとポルトランドセメントを1.5 ショットで合流して注入する方法も知られている。しかしこのグラウトはゲル化時間がせいぜい1分以内と短く浸透性が悪い。また中性シリカゾルに多価金属塩またはアルカリ金属塩を加えたグラウトは強度が低いという欠点があった。
この強度の問題を解決するために近年、中性シリカゾルに高炉スラグ粉末75〜90重量部及びポルトランドセメントクリンカー粉末25〜10重量部からなりブレーン比表面積が7000〜8500 cm2/gの範囲内にある混合高炉スラグ粉末のスラリーを加えた注入材も開示されている(特開平6−145662号)。しかしこのグラウトは細粒土への浸透が悪く、土粒子間で目づまりをおこしてしまい、また、ゲル化時間も、長いゲル化時間での調整がむずかしいという欠点を有する。
【0003】
このように懸濁型の地盤注入材として用いられている水ガラス−スラグ系、シリカゾル−セメントまたはスラグ系および中性シリカゾル−セメントまたはスラグ系にはそれぞれの欠点がある。
従って、本発明の目的は、ゲル化時間を長く調整して浸透性に優れ、しかも固結強度を大きくし、かつアルカリの溶脱が少ないシリカゾル−微粒子スラグ・微粒子セメント系の懸濁型地盤固結材を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究の結果、中性シリカゾルと微粒子スラグ、微粒子セメントを主成分とする地盤固結材、あるいはさらにゲル化調整剤を配合した地盤固結材を見出し、本発明を完成するに到った。
即ち、本発明は、水ガラスのアルカリの大部分をイオン交換樹脂で除去して得られたシリカゾルと、微粒子スラグと微粒子セメントを主成分とする地盤固結材であって、微粒子スラグの微粒子セメントの混合物がブレーン比表面積約9000cm2/g以上であり、且つ水硬率が0.9〜2.0、塩基度が1.9〜2.9であることを特徴とする地盤固結材、及びこれらに更にゲル化調整剤を配合してなる地盤固結材を提供するものである。
【0005】
本発明で用いられる中性シリカゾルは、水ガラスをイオン交換樹脂で処理してNa+ イオン等のアルカリをほとんど分離除去し、中性〜弱アルカリ性、好ましくはpHが 8.0〜10.5の弱アルカリ性に調整し、比重が1.16〜1.24で、おおよそSiO2が10〜60重量%、Na2Oが0.01〜4重量%の範囲にあるものである。従って通常の強アルカリの水ガラスを使用した固結材に比べるとアルカリの溶脱が非常に少なくなることが期待できる。
【0006】
本発明において、中性シリカゾルに配合する微粒子スラグや微粒子セメントおよびこれらそれぞれの併用あるいは混合物は、微粒子スラグ、微粒子セメント又はこの両者の混合物の少なくともいずれかがブレーン比表面積約9000 cm2/g以上であることが必要であるが、微粉化を極端に行うと懸濁液中で再凝集を起こすこともあって、それほどの効果は期待できず、また粉砕費用も高価につく。このような点を考慮すれば、ブレーン比表面積は9000〜20000cm2/g程度の範囲のものが好ましい。
また微粒子スラグ、微粒子スラグ・微粒子セメントの併用あるいは微粒子スラグ・微粒子セメントの混合物を使用する場合、これらの水硬率は 0.9〜2.0 、塩基度は 1.9〜2.9 の範囲にあることが望ましい場合が多い。ここで水硬率とは微粒子スラグ・微粒子セメントの CaO/(SiO2+Al2O3+Fe2O3)、塩基度とは(CaO+MgO+Al2O3)/SiO2を表す(尚、CaO, SiO2, Al2O3, Fe2O3, MgOはセメント・スラグ中のそれぞれの含有百分率を示す)。
【0007】
この中性シリカゾル−微粒子スラグ、微粒子セメントの系では一般にゲル化時間が短い(数秒〜2分ぐらい)のでゲル化調整剤によってゲル化時間を遅延せしめて浸透性の向上をはかることができる。この場合、微粒子スラグ、微粒子セメントのブレーン比表面積が約9000 cm2/g近辺を境としてこれ以下でも遅延効果を示すもののゲル化調整剤の添加量を増やしてもせいぜい10分程度までである。これに対して約9000 cm2/g以上に超微粒子化することによりゲル化調整剤の遅延効果が著しく発揮されるようになり、ゲル化時間を60分程度にまで遅延せしめることができ、その間の粘性上昇も少ないことがわかった。しかも地盤固結材の強度は劣化することなく増大することがわかった。
【0008】
本発明に用いられるゲル化調整剤としては、アルカリ金属やアルカリ土類金属の重炭酸塩、炭酸塩、リン酸塩、酸性リン酸塩、ピロリン酸塩等があげられるが、中でも水に易溶性のものが好ましい。これらゲル化調整剤は予め水に混合溶解し、その後に微粒子スラグ、微粒子セメントや中性シリカゾルを添加することもできるし、微粒子スラグや微粒子セメントと同時に水に添加することもできるが、効果を充分発揮させるには、予め水に溶解しておくのが好ましい。
【0009】
本発明に用いられる微粒子セメントとしてはポルトランドセメントや高炉セメント等や、これらのクリンカーの粉砕物でも、これに石膏等を混合したセメントの微粒子でもよい。さらにこれらと微粒子スラグの混合物は混合前にブレーン比表面積が約9000 cm2/g以上となるように粉砕されたものを混合しても、ある程度粉砕されたものを混合し、さらにブレーン比表面積が約9000 cm2/g以上になるまで粉砕したものでもよい。さらに懸濁液状として微粒子状のものを分級して微粒子懸濁液として使用することもできる。
【0010】
本発明の地盤固結材において、中性シリカゾルの配合量は地盤固結材(グラウト)1000g当たり50〜300 gが好ましく、これ以上多くすると溶液型グラウトのホモゲルに近い弾力性を有するゲルとなり、強度上昇はほとんどみられない。また微粒子スラグ、微粒子セメントあるいはこれらの混合物の配合量はグラウト1000g当たり20〜400 gが好ましく、これより少ないと固結材の強度が小さく、これ以上多くなると液の粘性が高くなり、凝固時間も長くすることができなくなる。
また本発明の地盤固結材において、ゲル化調整剤を配合する場合には、その配合量は、ゲル化調整剤の種類、他の成分組成等により一概に規定することは難しいが、一般には全配合液中の10重量%以下が好ましい。
【0011】
【作用】
本発明はブレーン比表面積が約9000 cm2/g以上の微粒子スラグ、微粒子セメントを使用するので土中への浸透性がよく、硬化反応が活性化し、固結物の強度発現が優れ、高強度となる。またゲル化調整剤との反応性も活性化され、ゲル化調整剤としての本来の機能、即ちゲル化時間の遅延効果が著しく発揮されるものと思われる。また本発明においては、シリカゾルとして水ガラスからNa+ イオン等のアルカリの大部分を除去し加熱重合してつくられた中性〜弱アルカリ性のコロイダルシリカを使用するので、硬化時間が長く、しかもフロック状の沈澱を生成することなく均質にして浸透性の向上をより助長するものと思われる。
又、一般にセメント中の遊離しやすい硬分あるいは石膏分は溶液中で懸濁液の分散性を阻害し、粒子を微粒子化してもそれを懸濁液中で電気的に凝集せしめ粘度を上げ浸透性を阻害するが、ブレーン比表面積が約9000 cm2/g以上でゲル化調整剤を使用するとこのような成分による性質が妨げられ、浸透性が向上するものと思われる。
【0012】
【実施例】
以下、本発明を実施例によって具体的に説明するが、これらの実施例は本発明の一例にすぎず、本発明はこれらの実施例に限定されるものではない。
尚、以下の実施例及び比較例に用いた中性シリカゾル、スラグ、セメント、スラグ−セメント混合物及びゲル化調整剤を以下にまとめて示す。
【0013】
(1) 中性シリカゾル
水ガラスを陽イオン交換樹脂で処理することによりアルカリの大部分を除去して得られた、表1に示す組成の中性シリカゾルを使用した。
【0014】
【表1】
【0015】
(2) スラグ
表2に示す2種類のスラグをそれぞれ粉砕度を異にして使用した。
【0016】
【表2】
【0017】
(3) セメント
表3に示す粉砕度を異にしたポルトランドセメントと高炉セメントを使用した。
【0018】
【表3】
【0019】
(4) スラグ−セメント混合物
グラウトの配合にあたり表2のスラグと表3のセメントを予め混合した表4に示す混合物を使用した。
【0020】
【表4】
【0021】
(5) ゲル化調整剤
代表的なゲル化調整剤として炭酸水素ナトリウム(試薬一級:NaHCO3) を使用した。他のゲル化調整剤は添加量の差はあるがゲル化遅延効果を示すものの、重炭酸のアルカリ金属塩又は炭酸のアルカリ金属塩が特に優れた効果が得られた。又、重炭酸のアルカリ金属塩と炭酸のアルカリ金属塩は殆ど同じ効果を示した。
【0022】
実施例1〜6及び比較例1〜4(中性シリカゾル−スラグ系)
表1の中性シリカゾルの水溶液をA液とし、B液として表2のスラグと炭酸水素ナトリウムとの水懸濁液を用い、A液とB液を表5に示す割合で混合し各種の地盤固結材を調製した。得られた地盤固結材について、カップ倒立法によりゲル化時間を測定し、また土質工学会基準「土の一軸圧縮試験方法」により一軸圧縮強度を測定した。結果を表5に示す。
【0023】
【表5】
【0024】
表5において比較例1及び実施例1〜2のスラグは塩基度が1.78、水硬率が0.82と何れも低く、ゲル化時間は極めて長く、固結強度は弱いが、スラグのブレーン比表面積が本発明の範囲内にある実施例1及び2は比較例1に比べてゲル化時間は短縮し、固結強度は上昇している。比較例2及び実施例3〜4のスラグの塩基度、水硬率は共に上記の好ましい範囲にあるが、このうち比較例2はブレーン比表面積が本発明範囲外の粒子で他の実施例3及び4に比べると、ゲル化時間は速くなり、強度は明らかに見劣りする。
実施例4〜6及び比較例2〜4ではゲル化調整剤としての炭酸水素ナトリウムの添加量の効果を試験した。実施例5、4及び6は本発明の微粒子スラグで炭酸水素ナトリウムの添加量を変化させた例である。これに対して比較例3、2及び4はブレーン比表面積が本発明の範囲外の粒子のスラグを使用したもので明らかに実施例5、4及び6ではゲル化調整剤の添加量が多くなるに従いゲル化時間の遅延効果は著しく、これに反して比較例3、2及び4ではゲル化調整剤の添加量が多くなってもゲル化時間の遅延効果は著しくない。さらに実施例5、4及び6ではゲル化調整剤の添加量が多くなるに従い明らかに強度も向上している。
【0025】
実施例7〜10及び比較例5〜8(中性シリカゾル−セメント系)
表1の中性シリカゾルの水溶液をA液とし、B液として表3のセメントと炭酸水素ナトリウムの水懸濁液を用い、A液とB液を表6に示す割合で混合し各種の地盤固結材を調製した。得られた地盤固結材について、実施例1と同様にゲル化時間及び一軸圧縮強度を測定した。結果を表6に示す。
【0026】
【表6】
【0027】
表6において、固結強度は一般に表5のスラグの場合に比べて高い。これに反してゲル化時間は全般に速く、かつ粘性的には高いようである。しかし、ブレーン比表面積が本発明の範囲内にある実施例7及び8は比較的ゲル化時間が長く、固結強度は優れている。炭酸水素ナトリウムはスラグの場合と同様にゲル化時間の遅延と強度増強に効果がみられる。即ち実施例9, 7及び10はブレーン比表面積が本発明の範囲内にある微粒子セメントを使用した例で、比較例7, 5及び8はブレーン比表面積が本発明の範囲外の粒子のセメントを使用した例で、前者の方が明らかにゲル化時間の遅延効果、強度の増強共に優れていることがわかる。
【0028】
実施例11〜18及び比較例9〜10(中性シリカゾル−スラグ・セメント併用系)
表1の中性シリカゾルの水溶液をA液とし、B液として表2のスラグと表3のセメントをそれぞれ併用し、更に炭酸水素ナトリウムを添加した水懸濁液を用い、A液とB液を表7に示す割合で混合し各種の地盤固結材を調製した。得られた地盤固結材について、実施例1と同様にゲル化時間及び一軸圧縮強度を測定した。結果を表7に示す。
【0029】
【表7】
【0030】
表7において、比較例9及び10はスラグ、セメント共にブレーン比表面積が本発明の範囲外の粒子を用いた例で、比較的粘性が高く、強度的にも見劣りがする。実施例11〜14はスラグまたはセメントの一方のみがブレーン比表面積が本発明の範囲内の微粒子であるが、実施例11と13はスラグ・セメント併用の塩基度、水硬率が本発明の好ましい範囲からはずれており、実施例11は固結強度が弱く、実施例13ではゲル化時間が速すぎる。スラグまたはセメントの一方のみのブレーン比表面積が本発明の範囲内にある実施例12及び14、特にスラグ、セメント共ブレーン比表面積が本発明の範囲内にある実施例15及び16ではゲル化時間が長くそのわりに固結強度も優れている。実施例17、16及び18はブレーン比表面積が本発明の範囲内にある配合で炭酸水素ナトリウムの添加量を変化させた場合で、添加量が増えるに従って明らかにゲル化時間は遅延し、固結強度は増強している。
【0031】
実施例19〜24及び比較例11〜12(中性シリカゾル−スラグ・セメント混合物系)
表1の中性シリカゾルの水溶液をA液とし、B液として、表4のスラグ−セメント混合物と炭酸水素ナトリウムの水懸濁液を用い、A液とB液を表8に示す割合で混合し各種の地盤固結材を調製した。得られた地盤固結材について、実施例1と同様にゲル化時間及び一軸圧縮強度を測定した。結果を表8に示す。
【0032】
【表8】
【0033】
表8におけるスラグ・セメント混合物の比率は表7の比較例9〜10及び実施例11〜16が表8の比較例11〜12及び実施例19〜24に全く比適したものである。結果は表7とほとんど対応したものが得られ、スラグ、セメントはそれぞれ別個に併用しても、また予め混合物としたものを配合しても大差のないことを示している。しかし、細かく観察すると30日後強度は誤差範囲で変化はみられないが、表8では表7の場合より7日後強度は若干高いようで、ゲル化時間は相対的に若干短縮しているようである。
【0034】
実施例25〜30及び比較例13〜15(浸透試験)
上記実施例1〜24及び比較例1〜12の結果から中性シリカゾル−微粒子スラグ・微粒子セメント−ゲル化調整剤の系において本発明の条件を満たせば高い固結強度と比較的長いゲル化時間が得られ、また中性シリカゾルの使用で通常の水ガラスの場合に比べて粘性的にも一般に低いことが観察され、従って浸透性にも優れることが期待される。そこで実際に浸透性を確かめるために次のような浸透試験を実施した。結果を表10に示す。
【0035】
<浸透試験>
5φ×100cm のアクリルパイプに90cmの豊浦標準砂の層(上下に5cmずつ細砂の層)をつくり、上記の代表的な実施例及び比較例の配合液を注入圧0.5kgf/cm2で注入し、浸透の程度を測定した。豊浦標準砂の充填は所定量を数回に分けて行い、その都度パイプの側面をハンマーで叩いた。
配合液の調製はミキサー中に炭酸水素ナトリウムを溶解した水溶液とスラグ、セメントを入れて30秒間攪拌後、中性シリカゾルの水溶液を入れ10秒間攪拌することにより行った。
浸透性の評価は、固結材注入1日後に脱型し固結の長さを測定し、表9に示す基準で評価した。
【0036】
【表9】
【0037】
【表10】
【0038】
表10において、実施例25、29及び30はブレーン比表面積が総て本発明の範囲内にある微粒子のスラグまたは微粒子のスラグと微粒子のセメントを使用した例で優れた浸透性を示した。実施例26は微粒子セメントの例で微粒子スラグの実施例25に比べると浸透性は幾分劣っている。実施例27及び28は、スラグ、セメントのいずれか一方のブレーン比表面積が本発明の範囲内である例で浸透性はよいが双方ともブレーン比表面積が本発明の範囲内にある実施例29及び30に比べると幾分劣っている。比較例13のブレーン比表面積が本発明範囲内にない粒子のスラグの場合は浸透性に劣るが、比較例14のブレーン比表面積が本発明の範囲内ではない粒子のセメントに比べると幾分良好である。比較例14のブレーン比表面積が本発明の範囲内ではない粒子のセメント、比較例15のブレーン比表面積が本発明の範囲内ではない粒子のスラグとセメントの併用系では殆ど浸透性はみられなかった。
以上からブレーン比表面積が本発明の範囲内にある地盤固結材は懸濁型としては優れた浸透性を示すことが確認された。
【0039】
【発明の効果】
中性シリカゾルと、上記特定のブレーン比表面積を有する微粒子スラグ、微粒子セメントを配合した本発明の懸濁型地盤固結材、更にゲル化調整剤を配合した本発明の地盤固結材は次のような効果を発揮する。
▲1▼ 比較的長いゲル化時間の調整が可能で、懸濁型としては極めて優れた浸透性を示す。
▲2▼ 溶液型ではみられない高い固結強度が得られる。
▲3▼ 中性シリカゾルは通常の水ガラスのような高アルカリを示さないため、アルカリの溶脱が少ない期待がもてる。[0001]
[Industrial applications]
The present invention relates to the improvement of slag-cement-based ground consolidation materials, and more specifically, to a neutral to weakly alkaline silica sol (hereinafter referred to as neutral) obtained by removing most of the alkali of water glass with an ion exchange resin. By using a fine particle slag and a fine particle cement in a specific condition range, a high consolidation strength can be obtained, and a long gelation time and easy adjustment of the gelation time can be obtained. The present invention relates to a slag-cement-based ground bonding material having excellent permeability as a type ground bonding material and less leaching of alkali than a normal water glass-based suspension type.
[0002]
Problems to be solved by the prior art and the invention
Various grouts for ground injection for consolidating the ground are known. For example, as a slag-based water glass grout, it is conventionally known to use water glass having a small molar ratio and a high alkalinity. Although this grout has a high consolidation strength, there is concern about leaching of alkali. In addition, a grout comprising an acidic silica sol obtained by mixing water glass and an acid and a cement-based grout has a short gelation time, and floc-like precipitation is easily formed, so that the permeability is poor. In the case of ordinary slag (blaine specific surface area: 3500 to 4400 cm 2 / g), the acidic silica sol can act as a neutralizing agent to act as a gelling time accelerator, but has little effect on strength. Moreover, there is almost no reactivity with neutral silica sol, and there is no strength development. There is also known a method in which neutral silica sol and Portland cement are combined at 1.5 shots and injected. However, this grout has a short gelling time of at most 1 minute and has poor permeability. Further, the grout obtained by adding a polyvalent metal salt or an alkali metal salt to a neutral silica sol has a disadvantage that the strength is low.
In order to solve this problem of strength, in recent years, 75 to 90 parts by weight of blast furnace slag powder and 25 to 10 parts by weight of Portland cement clinker powder have been added to neutral silica sol, and the Blaine specific surface area is within the range of 7000 to 8500 cm 2 / g. An injection material to which a slurry of a certain mixed blast furnace slag powder is added is also disclosed (Japanese Patent Application Laid-Open No. 6-145662). However, this grout has the drawback that poor penetration into fine-grained soil causes clogging between soil particles, and that the gelation time is difficult to adjust with a long gelation time.
[0003]
The water glass-slag system, silica sol-cement or slag system and the neutral silica sol-cement or slag system used as a suspension type ground injection material have respective disadvantages.
Accordingly, an object of the present invention is to provide a silica-sol-fine-particle slag / fine-particle cement-based suspension-type ground consolidation having a long gelation time, a high permeability, a high consolidation strength, and a low leaching of alkali. To provide materials.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-described problems, and have found that a ground consolidated material containing neutral silica sol and fine particle slag, a fine particle cement as a main component, or a ground consolidated material further blended with a gelling modifier is used. Heading, the present invention has been completed.
That is, the present invention includes a silica sol obtained most of the alkali water glass is removed with an ion exchange resin, a ground consolidation material mainly composed of fine particles slag and fine cement, particulate slag mixtures of particulate cement is at Blaine specific surface area of about 9000 cm 2 / g or more,且one hydraulic ratio 0.9 to 2.0, the ground basicity characterized in that it is a 1.9 to 2.9 Katayuizai, and further the gel thereto An object of the present invention is to provide a ground consolidating material obtained by blending a conversion modifier.
[0005]
The neutral silica sol used in the present invention is obtained by treating water glass with an ion-exchange resin to substantially separate and remove alkali such as Na + ions, and neutral to weakly alkaline, preferably having a pH of 8.0 to 10.5. It is adjusted to be weakly alkaline, has a specific gravity of 1.16 to 1.24, and has a SiO 2 content of about 10 to 60% by weight and a Na 2 O content of about 0.01 to 4% by weight. Therefore, it can be expected that the leaching of alkali is extremely reduced as compared with a solidified material using ordinary strong alkali water glass.
[0006]
In the present invention, the fine particle slag and the fine particle cement to be mixed with the neutral silica sol and the combined use or the mixture of the fine particle slag and the fine particle slag have a Blaine specific surface area of about 9000 cm 2 / g or more. It is necessary, but if the pulverization is performed extremely, reagglomeration may occur in the suspension, so that such an effect cannot be expected, and the cost of pulverization is high. In consideration of such a point, the brane specific surface area is preferably in the range of about 9000 to 20000 cm 2 / g.
When fine particle slag, fine particle slag / fine particle cement is used in combination, or a mixture of fine particle slag / fine particle cement is used, the hydraulic hardness thereof is in the range of 0.9 to 2.0, and the basicity is in the range of 1.9 to 2.9. Is often desirable. Here, the hydraulic coefficient is CaO / (SiO 2 + Al 2 O 3 + Fe 2 O 3 ) of the fine particle slag / fine particle cement, and the basicity is (CaO + MgO + Al 2 O 3 ) / SiO 2 (note that CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , and MgO indicate the respective content percentages in cement slag).
[0007]
In this system of neutral silica sol-fine particle slag and fine particle cement, the gelation time is generally short (several seconds to about 2 minutes), so that the gelling time can be delayed by the gelling modifier to improve the permeability. In this case, although the retardation effect is exhibited even if the Blaine specific surface area of the fine particle slag and the fine particle cement is about 9000 cm 2 / g or less, the addition time of the gelling modifier is at most about 10 minutes. On the other hand, by making the particles ultrafine to about 9000 cm 2 / g or more, the retarding effect of the gelling regulator becomes remarkable, and the gelling time can be delayed up to about 60 minutes. It was also found that the rise in viscosity was small. Moreover, it was found that the strength of the ground consolidated material increased without deterioration.
[0008]
Examples of the gelling modifier used in the present invention include bicarbonates, carbonates, phosphates, acid phosphates, pyrophosphates, and the like of alkali metals and alkaline earth metals. Are preferred. These gelling modifiers can be mixed and dissolved in water in advance, and then fine particle slag, fine particle cement and neutral silica sol can be added, or they can be added to water at the same time as fine particle slag and fine particle cement. It is preferable to dissolve it in water in advance in order to sufficiently exert the effect.
[0009]
The fine particle cement used in the present invention may be Portland cement, blast furnace cement, or the like, or a crushed product of these clinkers, or fine particles of cement mixed with gypsum or the like. Furthermore, even if the mixture of these and the fine particle slag is mixed before being mixed so that the Blaine specific surface area becomes about 9000 cm 2 / g or more, the partially crushed one is mixed. It may be ground to about 9000 cm 2 / g or more. Furthermore, a fine particle suspension can be classified and used as a fine particle suspension.
[0010]
In the ground consolidation material of the present invention, the compounding amount of the neutral silica sol is preferably 50 to 300 g per 1000 g of the ground consolidation material (grout), and if it is larger than this, the gel becomes a gel having elasticity close to that of a solution type grout homogel, There is almost no increase in strength. Further, the compounding amount of the fine particle slag, the fine particle cement or the mixture thereof is preferably 20 to 400 g per 1000 g of grout. It cannot be longer.
In addition, in the ground consolidation material of the present invention, when a gelling agent is compounded, the amount of the compounding agent is difficult to be specified unconditionally by the type of the gelling agent, other component compositions, etc. It is preferably 10% by weight or less in the total mixed solution.
[0011]
[Action]
The present invention uses fine particle slag and fine particle cement having a Blaine specific surface area of about 9000 cm 2 / g or more, so that it has good permeability into the soil, activates the hardening reaction, exhibits excellent strength of the consolidated matter, and has high strength. It becomes. Further, it is considered that the reactivity with the gelling modifier is also activated, and the original function as the gelling modifier, that is, the effect of delaying the gel time is remarkably exerted. Further, in the present invention, a neutral to weakly alkaline colloidal silica produced by removing most of alkalis such as Na + ions from water glass and heating and polymerizing the silica as a silica sol is used. It is believed that homogenization without forming a sedimentary precipitate further promotes improved permeability.
Generally, hard or gypsum components, which are easily released in cement, hinder the dispersibility of the suspension in the solution, and even if the particles are made fine, they are electrically aggregated in the suspension to increase the viscosity and penetrate. It is considered that the use of a gelling modifier having a Blaine specific surface area of about 9000 cm 2 / g or more hinders properties due to such components and improves permeability.
[0012]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. However, these examples are merely examples of the present invention, and the present invention is not limited to these examples.
The neutral silica sol, slag, cement, slag-cement mixture and gelling modifier used in the following Examples and Comparative Examples are shown below.
[0013]
(1) Neutral silica sol A neutral silica sol having the composition shown in Table 1 obtained by treating water glass with a cation exchange resin to remove most of the alkali was used.
[0014]
[Table 1]
[0015]
(2) Slag Two types of slag shown in Table 2 were used with different grinding degrees.
[0016]
[Table 2]
[0017]
(3) Cement Portland cement and blast furnace cement having different pulverization degrees shown in Table 3 were used.
[0018]
[Table 3]
[0019]
(4) Slag-cement mixture In mixing the grout, the mixture shown in Table 4 was used in which the slag in Table 2 and the cement in Table 3 were premixed.
[0020]
[Table 4]
[0021]
(5) Gelling regulator Sodium hydrogencarbonate (first-class reagent: NaHCO 3 ) was used as a typical gelling regulator. Although other gelling regulators show a gelation retarding effect, although there is a difference in the amount added, an alkali metal salt of bicarbonate or an alkali metal salt of carbonic acid obtained particularly excellent effects. The alkali metal bicarbonate and the alkali metal carbonate showed almost the same effect.
[0022]
Examples 1 to 6 and Comparative Examples 1 to 4 (neutral silica sol-slag system)
An aqueous solution of the neutral silica sol in Table 1 was used as a liquid A, and an aqueous suspension of the slag and sodium hydrogencarbonate in Table 2 was used as a liquid B. The liquid A and the liquid B were mixed at a ratio shown in Table 5 to obtain various types of ground. A consolidated material was prepared. The gelling time of the obtained ground consolidation material was measured by the cup inversion method, and the uniaxial compressive strength was measured by the Japan Society of Soil Engineers standard “Uniaxial compression test method for soil”. Table 5 shows the results.
[0023]
[Table 5]
[0024]
In Table 5, the slags of Comparative Example 1 and Examples 1 and 2 have a low basicity of 1.78 and a hydraulic coefficient of 0.82, all of which have a very long gelation time and a low consolidation strength. Examples 1 and 2 in which the Blaine specific surface area is within the range of the present invention have a shorter gelling time and a higher consolidated strength than Comparative Example 1. The basicity and hydraulic modulus of the slags of Comparative Example 2 and Examples 3 and 4 are both within the above preferred ranges. Among them, Comparative Example 2 is a particle having a Blaine specific surface area outside the range of the present invention. As compared with Examples 4 and 4, the gel time is faster and the strength is clearly inferior.
In Examples 4 to 6 and Comparative Examples 2 to 4, the effect of the amount of sodium bicarbonate added as a gelling modifier was tested. Examples 5, 4 and 6 are examples in which the addition amount of sodium hydrogen carbonate was changed in the fine particle slag of the present invention. On the other hand, Comparative Examples 3, 2 and 4 use slag of particles whose Blaine specific surface area is out of the range of the present invention. Obviously, Examples 5, 4 and 6 increase the amount of the gelling modifier added. Accordingly, the effect of delaying the gelation time is remarkable, whereas in Comparative Examples 3, 2 and 4, the effect of delaying the gelation time is not remarkable even when the amount of the gelling modifier added is large. Further, in Examples 5, 4 and 6, the strength was clearly improved as the amount of the gelling agent added increased.
[0025]
Examples 7 to 10 and Comparative Examples 5 to 8 (neutral silica sol-cement system)
An aqueous solution of the neutral silica sol in Table 1 was used as a liquid A, and the cement in Table 3 and an aqueous suspension of sodium hydrogencarbonate were used as a liquid B. A binder was prepared. The gel time and the uniaxial compressive strength of the obtained ground consolidated material were measured in the same manner as in Example 1. Table 6 shows the results.
[0026]
[Table 6]
[0027]
In Table 6, the consolidation strength is generally higher than the slag of Table 5. In contrast, the gel time generally is fast and appears to be viscous. However, Examples 7 and 8, in which the Blaine specific surface area is within the range of the present invention, have a relatively long gelation time and excellent consolidation strength. Sodium bicarbonate is effective in delaying the gel time and increasing the strength as in the case of slag. That is, Examples 9, 7 and 10 are examples using fine particle cement having a Blaine specific surface area within the range of the present invention, and Comparative Examples 7, 5 and 8 are particles of cement having a Blaine specific surface area outside the range of the present invention. In the examples used, it is clear that the former is clearly superior in both the effect of delaying the gel time and the enhancement of the strength.
[0028]
Examples 11 to 18 and Comparative Examples 9 to 10 (Neutral silica sol-slag / cement combined system)
The aqueous solution of the neutral silica sol in Table 1 was used as the liquid A, the slag in Table 2 was used in combination with the cement in Table 3 as the liquid B, and the aqueous liquid to which sodium hydrogen carbonate was further added was used. Various ground consolidated materials were prepared by mixing at the ratios shown in Table 7. The gel time and the uniaxial compressive strength of the obtained ground consolidated material were measured in the same manner as in Example 1. Table 7 shows the results.
[0029]
[Table 7]
[0030]
In Table 7, Comparative Examples 9 and 10 are examples using particles having a Blaine specific surface area outside the range of the present invention for both slag and cement, and have relatively high viscosity and poor strength. In Examples 11 to 14, only one of slag and cement is fine particles having a Blaine specific surface area within the range of the present invention. It is out of the range, and the consolidation strength of Example 11 is weak, and the gelation time of Example 13 is too fast. In Examples 12 and 14 in which the specific surface area of only one of the slag and cement is within the range of the present invention, in particular, Examples 15 and 16 in which the specific surface area of the slag and cement are within the range of the present invention, the gelation time is high. It has a long and good consolidation strength. Examples 17, 16 and 18 show that the addition amount of sodium bicarbonate was changed in a formulation having a Blaine specific surface area within the range of the present invention. Strength is increasing.
[0031]
Examples 19 to 24 and Comparative Examples 11 to 12 (neutral silica sol-slag / cement mixture system)
The aqueous solution of the neutral silica sol in Table 1 was used as a liquid A, and the slag-cement mixture of Table 4 and an aqueous suspension of sodium hydrogen carbonate were used as the liquid B. Various ground consolidation materials were prepared. The gel time and the uniaxial compressive strength of the obtained ground consolidated material were measured in the same manner as in Example 1. Table 8 shows the results.
[0032]
[Table 8]
[0033]
The ratio of the slag / cement mixture in Table 8 is such that Comparative Examples 9 to 10 and Examples 11 to 16 in Table 7 are quite suitable for Comparative Examples 11 to 12 and Examples 19 to 24 in Table 8. The results almost corresponded to those of Table 7, and show that there is no great difference whether slag and cement are used separately or in combination with each other in advance. However, when closely observed, the strength after 30 days did not change within the error range, but in Table 8, the strength after 7 days seems to be slightly higher than in the case of Table 7, and the gelation time seems to be relatively shortened. is there.
[0034]
Examples 25 to 30 and Comparative Examples 13 to 15 (penetration test)
From the results of the above Examples 1 to 24 and Comparative Examples 1 to 12, if the conditions of the present invention are satisfied in the system of neutral silica sol-fine particle slag / fine particle cement-gelling modifier, high compaction strength and relatively long gelation time It is also observed that the use of a neutral silica sol generally lowers the viscosity as compared with the case of ordinary water glass, and is therefore expected to have excellent permeability. Therefore, the following penetration test was conducted to actually confirm the permeability. Table 10 shows the results.
[0035]
<Permeation test>
A 90 cm Toyoura standard sand layer (up and down 5 cm layers of fine sand) was formed on a 5φ × 100 cm acrylic pipe, and the compounded liquids of the above representative examples and comparative examples were injected at an injection pressure of 0.5 kgf / cm 2 . It was injected and the extent of penetration was measured. The filling of Toyoura standard sand was performed by dividing a predetermined amount into several times, and each time the side of the pipe was hit with a hammer.
The mixture was prepared by adding an aqueous solution in which sodium hydrogen carbonate was dissolved, slag, and cement into a mixer, stirring for 30 seconds, and then adding an aqueous solution of neutral silica sol and stirring for 10 seconds.
One day after the injection of the consolidation material, the mold was released, the length of consolidation was measured, and the permeability was evaluated based on the criteria shown in Table 9.
[0036]
[Table 9]
[0037]
[Table 10]
[0038]
In Table 10, Examples 25, 29, and 30 showed excellent permeability in the case of using fine particle slag or fine particle slag and fine particle cement in which the Blaine specific surface area was all within the range of the present invention. Example 26 is an example of fine particle cement, and has a somewhat lower permeability than that of fine particle slag of Example 25. Examples 27 and 28 are examples in which the specific surface area of either slag or cement is within the range of the present invention, and the permeability is good but both the specific surface areas of the slag and the cement are within the range of the present invention. Somewhat inferior to 30. In the case of the slag of particles in which the Blaine specific surface area of Comparative Example 13 is not within the range of the present invention, the permeability is poor, but it is somewhat better than that of the cement of Comparative Example 14 in which the Blaine specific surface area is not within the range of the present invention. It is. Almost no permeability was observed in the cement of Comparative Example 14 having a particle having a specific surface area not within the range of the present invention, and the slag and cement of Comparative Example 15 having a particle having a specific surface area not within the range of the present invention. Was.
From the above, it was confirmed that the ground consolidated material having a brane specific surface area within the range of the present invention exhibits excellent permeability as a suspension type.
[0039]
【The invention's effect】
Neutral silica sol, the fine particle slag having the specific brane specific surface area, the suspension-type ground consolidation material of the present invention containing fine particle cement, and the ground consolidation material of the present invention further containing a gelling modifier are as follows. It exerts such an effect.
{Circle around (1)} A relatively long gelation time can be adjusted, and the suspension exhibits extremely excellent permeability.
{Circle around (2)} High consolidation strength not found in solution type is obtained.
{Circle around (3)} Since neutral silica sol does not show high alkali like ordinary water glass, it is expected that there is little leaching of alkali.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24747994A JP3575561B2 (en) | 1994-10-13 | 1994-10-13 | Ground consolidated material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24747994A JP3575561B2 (en) | 1994-10-13 | 1994-10-13 | Ground consolidated material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08109378A JPH08109378A (en) | 1996-04-30 |
JP3575561B2 true JP3575561B2 (en) | 2004-10-13 |
Family
ID=17164076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24747994A Expired - Fee Related JP3575561B2 (en) | 1994-10-13 | 1994-10-13 | Ground consolidated material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3575561B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100654094B1 (en) * | 1999-09-21 | 2006-12-05 | 쌍용양회공업(주) | Matrix for the continuous fiber reinforced cement composites using ultra-super fine cement |
JP2007314724A (en) * | 2006-05-29 | 2007-12-06 | Raito Kogyo Co Ltd | Material for soil improvement |
JP5354708B2 (en) * | 2007-01-10 | 2013-11-27 | 三菱レイヨン株式会社 | Chemical solution for soil stabilization |
JP7308499B1 (en) * | 2022-09-06 | 2023-07-14 | 強化土エンジニヤリング株式会社 | Ground consolidation material and ground grouting method using it |
JP7244971B1 (en) * | 2022-11-21 | 2023-03-23 | 強化土エンジニヤリング株式会社 | Ground consolidation material and ground grouting method using it |
-
1994
- 1994-10-13 JP JP24747994A patent/JP3575561B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08109378A (en) | 1996-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3575561B2 (en) | Ground consolidated material | |
JP3856541B2 (en) | Injection material | |
JP7244971B1 (en) | Ground consolidation material and ground grouting method using it | |
JP5689224B2 (en) | Injection material and injection method | |
JPH1161125A (en) | Grouting material | |
JP3501543B2 (en) | Ground consolidated material | |
JP2959706B2 (en) | Ground improvement agent | |
JP2530658B2 (en) | Alkaline hydraulic ground injection material | |
JP2808252B2 (en) | Ground consolidated material | |
US5468292A (en) | Grouting liquid for injection into a ground | |
JP2884395B2 (en) | Ground consolidated material | |
JP7308499B1 (en) | Ground consolidation material and ground grouting method using it | |
JP2000087035A (en) | Ground solidifying material | |
JPH0859314A (en) | Concreting material | |
JP2001098271A (en) | Ground solidification material | |
JPH11172248A (en) | Grout for ground injection | |
JP2525330B2 (en) | Ground injection chemical | |
JPH05280032A (en) | Civil-engineering material | |
JP2853087B1 (en) | Reinforced cement composition | |
JP2981859B2 (en) | Suspended ground injection chemicals | |
JPH0948654A (en) | Material for filling cavity | |
JPH09165576A (en) | Slag-based high-strength grouting agent | |
JP2860753B2 (en) | Ground improvement method | |
JPH0586370A (en) | Grout for ground and grouting work | |
JPH05140557A (en) | Grouting agent and grouting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040630 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070716 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |