JP3575131B2 - Method for producing electrode sheet for battery - Google Patents

Method for producing electrode sheet for battery Download PDF

Info

Publication number
JP3575131B2
JP3575131B2 JP25251795A JP25251795A JP3575131B2 JP 3575131 B2 JP3575131 B2 JP 3575131B2 JP 25251795 A JP25251795 A JP 25251795A JP 25251795 A JP25251795 A JP 25251795A JP 3575131 B2 JP3575131 B2 JP 3575131B2
Authority
JP
Japan
Prior art keywords
electrode
battery
electrode sheet
agent
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25251795A
Other languages
Japanese (ja)
Other versions
JPH0997603A (en
Inventor
哲雄 岡
勇 佐久間
和彦 橋阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP25251795A priority Critical patent/JP3575131B2/en
Publication of JPH0997603A publication Critical patent/JPH0997603A/en
Application granted granted Critical
Publication of JP3575131B2 publication Critical patent/JP3575131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電池用電極シートの製造方法に関する。
【0002】
【従来の技術】
近年、ビデオカメラやノート型パソコンなどの携帯機器の普及に伴い、小型高容量の電池に対する需要が高まっている。この内、二次電池の場合は、ほとんどがアルカリ電解液を用いたニッケル−カドミウム電池であるが、電池電圧が約1.2Vと低く、エネルギー密度の向上は困難である。近年、負極極材にリチウムイオンのドーピング、脱ドーピングが可能な各種炭素質材料を用いたリチウムイオン二次電池が提案されており、開発が活発に行われている。
【0003】
かかるリチウムイオン二次電池等に使用される電極シートの製造方法には種々上げられるが、一般的には集電体の片面にペースト状の電極剤を塗工し、乾燥を行う。次いで、集電体の反対面(未塗工面)にも同様に電極剤を塗工し、乾燥を行う。次いで熱処理を施し、最後にプレス等を用いて電極シートに圧力を加えて製造されている。
【0004】
かかる従来の製造方法では、熱処理後にのみプレス圧力を印加するために、後工程である電極巻込み工程において電極剤が集電体から剥離する問題が生じた。剥離が生じると、剥離時に発生する電極剤の破片、粉末等が、電極シート間やセパレータ等の間に入り込み、巻込み電極がいびつになったりあるいは巻込み電極の短絡等を生じる問題があった。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来の製造方法の欠点を解決せんとするものであり、後工程である電極巻込み工程で電極剤の剥離を生じにくくして、電池製造時の歩留まりを向上せんとするものである。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するために以下の構成を有するものである。すなわち「集電体に電極剤を塗工して製造する電池用電極シートの製造方法において、該集電体に電極剤を塗工、乾燥した後に、プレス工程をし、熱処理を施す工程を少なくとも有することを特徴とする電池用電極シートの製造方法。」を提供するものである。
【0007】
【発明の実施の形態】
本発明に使用できる集電体としては、金属箔、金属織物、金属メッシュ等が使用可能であるが、電気抵抗の小さいものが好ましい。リチウムイオン二次電池用集電体としては金属箔が最も望ましく、具体的にはアルミニウム箔、銅箔、ステンレス箔等が好ましく使用できる。
【0008】
本発明における電池用電極シートとは、集電体の片面または両面に電極剤を設けた構成のものであり、具体的には、活剤と結着剤とを混合し、溶剤にてペースト状にして作製した電極剤を集電体の片面もしくは両面に塗工、乾燥することにより形成される。
【0009】
本発明に使用される電極剤とは、上述したように活剤と結着剤とを混合し、溶剤にてペースト状にして作製したものであるが、該電極剤には導電材を混合した方が導電性を高める上で好ましい。電極剤の活剤については負極用と正極用とがあり、以下に説明する。
【0010】
負極用電極剤の活剤としては、特に限定されるものではなく、一般に負極用電極材の活剤として用いられるものを本発明においても用いることができるが、中でも、リチウムイオン二次電池としては、炭素質材料が好ましく用いられる。炭素質材料としては、特に限定されるものではなく、リチウムイオンをドーピング、脱ドーピング可能なものであれば使用可能である。具体的には、天然黒鉛、人工黒鉛、各種コークス、メソフェーズ炭素、各種炭素繊維、樹脂焼成体などが使用できる。
【0011】
炭素質材料の形態も粉末状、繊維状など種々の形態のものが使用可能である。炭素繊維としては、特に限定されるものではなく、一般に有機物を焼成したものが用いられる。ポリアクリロニトロル(PAN)から得られるPAN系炭素繊維、石炭または石油等のピッチから得られるピッチ系炭素繊維、セルロースから得られるセルロース系炭素繊維、低分子量有機物の気体から得られる気相成長炭素繊維などが使用できるが、これらのほか、ポリビニルアルコール、リグニン、ポリ塩化ビニル、ポリアミド、ポリイミド、フェノール樹脂、フルフリルアルコールなどを焼成して得られる炭素繊維も使用可能である。上記炭素繊維の中でも、アルカリ金属塩を含む非水電解液を用いた二次電池の負極として使用する場合には、PAN系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維が好ましい。さらに、アルカリ金属イオン、特にリチウムイオンのドーピングが良好である点で、PAN系炭素繊維が好ましく使用できる。
【0012】
炭素繊維を用いる場合、長繊維状の形態のものを用いるよりも、製造工程数が少ないことから、ミルド状炭素繊維を用いることが望ましい。ミルド状炭素繊維とは、直径は好ましくは、0.1〜1000μm、さらに好ましくは3〜10μmであり、平均長さは、好ましくは、5μm以上、1mm未満,さらに好ましくは7μm以上、100μm未満のものである。
【0013】
ミルド状炭素繊維を負極活剤として用いる場合、サイクル寿命特性を改善するために、事前に高温熱処理を施してから用いることが一層好ましい。
【0014】
本発明に使用される、正極用電極剤の活剤としては、アルカリ金属を含む遷移金属酸化物や遷移金属カルコゲンなどの無機化合物、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアニリン、ポリピロール、ポリチオフェンなどの共役系高分子、ジスルフィド結合を有する架橋高分子、塩化チオニルなど、通常の二次電池において用いられる正極を挙げることができる。これらの中で、リチウム塩を含む非水電解液を用いた二次電池の場合には、コバルト、マンガン、モリブデン、バナジウム、クロム、鉄、銅、チタンなどの遷移金属酸化物や遷移金属カルコゲンが好ましく用いられる。
【0015】
なかでもLiCoO、LiNiO、LiMn、LiyNi1−xMexO (Me:Ti,V,Mn,Feのいずれかから選ばれる)、Li1−x−a AxNi1−y−b ByO(ただし、Aは少なくとも1種類のアルカリまたはアルカリ土類金属元素、Bは少なくとも1種類の遷移金属元素)は、電圧が高く、エネルギー密度も大きいために好ましく使用できる。特に、Li1−x−a AxNi1−y−b ByOにおいては、0<x≦0.1,0≦y≦0.3,−0.1≦a≦0.1,−0.15≦b≦0.15(ただし、A,Bが2種類以上の元素からなる場合は、xはLiを除くアルカリまたはアルカリ土類金属の、yはNiを除く全遷移金属元素の総モル数、y=0の場合、Aは1種類以上のアルカリ土類金属を含む。)とすることによって、優れた特性の正極活剤を得ることができる。また、この場合、A,Bの種類、数、組成を変えたり、あるいはx,y,a,bを変えた正極活剤を用いることは差支えない。なかでも好ましいAとしてはMg,Srであり、BとしてはCo,Feが挙げられる。
【0016】
電極剤の結着剤としては、特に限定するものではなく、熱可塑性樹脂、熱硬化性樹脂のいずれであっても良く、特に限定するものではない。また、溶液やエマルジョンなどの状態で使用することも可能である。添加量としては、通常電極剤中に0.01〜40wt%で使用される。具体的には、各種エポキシ樹脂、セルロース樹脂、有機フッ素ポリおよびコポリマ、アクリル樹脂、有機クロル系樹脂、ポリアミド、ポリイミド、ポリカーボネート等が挙げられる。なかでもポリフッ化ビニリデン、ポリテトラフルオロエチレン、六フッ化プロピレンポリマおよびコポリマが結着力、化学的安定性、塗工性などの点で優れるため好ましい。
【0017】
正極用電極剤としては導電性の小さいものがを用いる場合が多く、その場合、導電剤を用いることが好ましい。負極用電極剤にも、負極シートの抵抗値を低減し、電池全体のロス低減のために用いることが望ましい。その場合、導電剤としては特に限定されるものではなく、種々の材料を用いることが出来るが、中でも、種々の炭素質材料を好ましく使用することができる。特に、導電性が良好で、かつ活剤的な特性はなるべく有しない材料であることが望ましく、具体的には人工黒鉛、アセチレンブラック、ケッチェンブラックなどの熱分解炭素、気相生長炭素、メソフェーズ炭素、コークス、有機物焼成体などが上げられる。導電剤は活剤相互の電気的な接続を補助する機能を有しており、導電剤の粒径は活剤と同サイズか、あるいは、活剤よりも小さいことが望ましい。導電剤の添加量としては、限定されるものではないが、0.5〜30wt%,さらに好ましくは0.7〜20wt%である。0.5wt%未満では導電性への効果に乏しく、20wt%を越えると電極単位重量当たりの容量が低下する傾向がある。
【0018】
本発明の電池用電極シートの製造方法について負極シートを一例として以下に述べる。負極電極剤用の活剤としてミルド状炭素繊維を用い、結着剤としてポリフッ化ビニリデン、導電剤としてカーボンブラックを所定の重量比としたものに溶剤を加え混練機により十分混合、分散させ負極用電極剤ペーストとする。集電体である銅箔の片面に、乾燥ゾーンおよびロールプレスを有する市販のコーター等を使用して塗工し、所定温度にて乾燥する。集電体の反対面にも同様に塗工、乾燥した後、例えばロールプレスによって所定の圧力を印加する。次いで、所定の温度で熱処理を施す。次いで、再度ロールプレスによって所定の圧力を印加する。
【0019】
本発明の製造方法の特徴は上記したとおり、プレスした後、熱処理を施すことを特徴とするが、さらに、プレス工程を2回以上に分けて行い、かつプレス工程の間に少なくとも1回の熱処理を施すことが好ましい。なおプレスは、必ずしもロールプレスに限定されるものではないが、量産に供試するためにはロールプレスが好ましい。
【0020】
またプレス1工程に関して、プレス用ロールが複数本あり1工程が多段プレスになっていても差支えない。また本発明において、熱処理は複数回のプレス工程の間であれば、いずれのプレス工程の間にあっても差支えない。
【0021】
該熱処理は、乾燥時の温度よりも高温にすることが集電体と電極剤の結着力を高めるために好ましい。乾燥温度としては、例えば、80〜120℃程度、また、プレス後の熱処理温度としては、130〜220℃程度が好ましい。
【0022】
なおプレス時の圧力についても特別限定するものではないが、500kg/cm 以上、3000kg/cm 以下の範囲が好ましい。500kg/cm 未満では、電極剤の密度が小さく、従って電池缶への電極シート収納量が小さくなり、結果として電池容量が小さくなる傾向がある。また、3000kg/cm を越えると集電体の機械的な変形等を生じる場合がある。電極シートの平坦性を維持するため、プレス時の圧力は500kg/cm 以上、2000kg/cm 以下の範囲がさらに好ましい。
【0023】
従来の製造方法では圧力を加える前にのみ、熱処理を行っていたために、集電体と、電極剤との接触面積(あるいは結着面積)が小さくなっていたことが推測される。本発明の製造方法では、熱処理を施す前に、圧力を印加しておくことで接触面積を十分に拡大でき、集電体と電極剤との結着性が改善され巻込み時の剥離を生じにくくしたものと推定される。 さらに本発明の製造方法では該熱処理後に再度圧力を加えることで、該熱処理によって膨脹した電極剤厚みを、所定厚さに規定できるため、巻込み電極体の電池缶への収納量を減らすこともないので大きい電池容量を維持する事ができる。
【0024】
【実施例】
実施例1、比較例1
ロールコーターを用いて、リチウムイオン二次電池用の電極シートを形成した一実施例について以下に述べる。負極電極剤用の活剤として、1300℃の熱処理を施した、東レ製のPAN系のミルド状炭素繊維MLD−30を用い、結着剤として呉羽化学工業製ポリフッ化ビニリデン、導電剤としては電気化学工業製“デンカブラック”(アセチレンブラック)を夫々重量比90:5:5としたものに、溶剤としてN−メチルピロリドンを加えたものを混練機により十分混合、分散させ負極シート用電極剤ペーストとした。集電体である10μm厚さの銅箔を走行させ、集電体の片面に前記電極剤ペーストを塗工した後、温度90℃に設定した乾燥ゾーンを経て巻き取った。反対面も同様にして電極剤ペーストを塗工、乾燥した後、圧力1300kg/cm でロールプレスを施した。次いで温度200℃に設定した熱処理ゾーン経た後、圧力700kg/cm でロールプレスを施し約60μm厚みの負極シートを得た。
【0025】
正極電極剤用の活剤としては、市販のLiCoOと導電剤として電気化学工業製“デンカブラック”、および結着剤として呉羽化学工業製ポリフッ化ビニリデンを重量比80:5:15としたものに、溶媒としてN−メチルピロリドンを加えたものを混練機により十分混合、分散させ正極電極剤用ペーストとしたものを用い、負極シートを製造したのと同様の製造方法にて20μm厚みのアルミ箔の両面に夫々厚み約100μmの正極シートを得た。
【0026】
得られた本発明による正、負極シートを正極54mm幅,負極56mm幅に夫々スリットし、リードを溶接した後、これらの正、負極シートを、宇部興産社製の25μm厚さ、幅58mmのポリエチレン製セパレータと共に巻込み機によってスパイラル状の巻込み電極を得た。
【0027】
得られた巻込み電極の上下に絶縁板を配置して、電池缶に挿入し、次いで電解液を所定量注入した後、正極キャップを施し封口して、リチウムイオン二次電池を得た。なお電解液は1モルの6フッ化燐酸リチウムを電解質を、ポリカーボネートとジメチルカーボネートとの混合溶媒に溶かしたものを使用した。
【0028】
上記と同様の製造方法にて、スパイラル状の巻込み電極を100個製造した。この際の巻込み不良、あるいは巻込み電極短絡の生じた個数は3個であった。
【0029】
比較例として、実施例1の製造工程から熱処理工程前のプレス工程を除き、熱処理後のプレス工程1回のみとし、さらに、このプレス時の圧力を1300kg/cm とした以外は実施例1と同様にして正、負極シートを製造し、実施例1と同様にして比較例1のリチウムイオン二次電池を得た。
【0030】
上記と同様の製造方法にて、スパイラル状の巻込み電極を100個製造した。この際の巻込み不良、あるいは巻込み電極短絡の生じた個数は27個であった。
なお実施例1、比較例1の電池のサイクル寿命試験を、充電電流1A、充電時間2.5時間で4.2Vの定電流定電圧充電、放電電流0.5A、終止電圧2.5Vの条件で実施した。
【0031】
実施例1、比較例1の電池のサイクル寿命試験を行った結果、比較例1の電池についてはサイクル5回目の容量が1290mAh、サイクル500回後の容量保持率は61%であったのに対し、実施例1の電池はサイクル5回目の容量が1320mAh、サイクル500回後の容量保持率は74%であり、電池容量およびサイクル寿命の優れた電池であった。サイクル寿命試験後の電池を解体して正、負極シートを調べた結果、比較例1の正、負極シートには一部集電体からの剥離が認められたが、実施例1の正、負極シートには剥離は生じていなかった。
【0032】
また実施例1で示した通り、比較例1に比べて、巻込み時の電極の剥離が低減し、製造時の歩留まりを改善することができた。
【0033】
【発明の効果】
本発明の電池用電極シートの製造方法によれば、電極シートに熱処理を施す前に、圧力を印加しておくことで電極剤の集電体からの剥離が生じにくくなっており、製造時の歩留まりを向上できる。またサイクル寿命特性が改善できる効果もある。さらに本発明の製造方法では該熱処理後に再度圧力を加えることで、電極シートの電池缶への収納量を減らすこともなく大きい電池容量を維持することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an electrode sheet for a battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras and notebook computers, demand for small-sized and high-capacity batteries has increased. Among these, most of the secondary batteries are nickel-cadmium batteries using an alkaline electrolyte, but the battery voltage is as low as about 1.2 V, and it is difficult to improve the energy density. 2. Description of the Related Art In recent years, lithium ion secondary batteries using various carbonaceous materials capable of doping and undoping of lithium ions for a negative electrode have been proposed and are being actively developed.
[0003]
There are various methods for manufacturing an electrode sheet used for such a lithium ion secondary battery and the like. Generally, a paste-like electrode agent is applied to one surface of a current collector and dried. Next, the electrode agent is similarly applied to the opposite surface (uncoated surface) of the current collector, and drying is performed. Next, heat treatment is performed, and finally, pressure is applied to the electrode sheet using a press or the like to produce the electrode sheet.
[0004]
In such a conventional manufacturing method, since the pressing pressure is applied only after the heat treatment, there has been a problem that the electrode agent is separated from the current collector in the electrode winding step which is a subsequent step. When peeling occurs, there is a problem in that fragments, powders, etc. of the electrode agent generated at the time of peeling enter between the electrode sheets or between the separators and the like, causing the wound electrode to be distorted or causing a short circuit of the wound electrode. .
[0005]
[Problems to be solved by the invention]
The present invention is to solve the drawbacks of the conventional manufacturing method described above, and to make it difficult for the electrode material to be peeled off in an electrode winding step which is a subsequent step, and to improve the yield during battery manufacturing. It is.
[0006]
[Means for Solving the Problems]
The present invention has the following configuration to solve the above problems. That is, in the method for producing an electrode sheet for a battery manufactured by applying an electrode agent to a current collector, at least a step of applying the electrode agent to the current collector, drying the applied electrode agent, performing a pressing step, and performing a heat treatment is performed. A method for producing an electrode sheet for a battery characterized by having the above.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
As the current collector that can be used in the present invention, a metal foil, a metal fabric, a metal mesh, or the like can be used, but a current collector having a small electric resistance is preferable. As the current collector for a lithium ion secondary battery, a metal foil is most desirable, and specifically, an aluminum foil, a copper foil, a stainless steel foil, or the like can be preferably used.
[0008]
The battery electrode sheet in the present invention has a configuration in which an electrode agent is provided on one or both surfaces of a current collector. Specifically, an active agent and a binder are mixed, and a paste is formed with a solvent. The electrode agent prepared as described above is applied to one or both surfaces of the current collector and dried.
[0009]
The electrode agent used in the present invention was prepared by mixing the active agent and the binder as described above and preparing the paste in a solvent. It is more preferable to increase conductivity. The active agent of the electrode agent includes a negative electrode and a positive electrode, and will be described below.
[0010]
The active material of the negative electrode material is not particularly limited, and those generally used as the active material of the negative electrode material can also be used in the present invention. Among them, as the lithium ion secondary battery, Preferably, a carbonaceous material is used. The carbonaceous material is not particularly limited, and any material can be used as long as it is capable of doping and undoping lithium ions. Specifically, natural graphite, artificial graphite, various cokes, mesophase carbon, various carbon fibers, resin fired bodies, and the like can be used.
[0011]
Various forms of the carbonaceous material such as a powder form and a fibrous form can be used. The carbon fiber is not particularly limited, and generally is obtained by firing an organic substance. PAN-based carbon fiber obtained from polyacrylonitrile (PAN), pitch-based carbon fiber obtained from pitch such as coal or petroleum, cellulosic carbon fiber obtained from cellulose, vapor-grown carbon obtained from gas of low molecular weight organic matter Fibers and the like can be used, and in addition, carbon fibers obtained by firing polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenol resin, furfuryl alcohol, and the like can also be used. Among the carbon fibers, when used as a negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt, PAN-based carbon fibers, pitch-based carbon fibers, and vapor-grown carbon fibers are preferable. Further, PAN-based carbon fibers can be preferably used in that the doping of alkali metal ions, particularly lithium ions, is good.
[0012]
In the case of using carbon fibers, it is desirable to use milled carbon fibers because the number of manufacturing steps is smaller than in the case of using long fibers. The milled carbon fiber preferably has a diameter of 0.1 to 1000 μm, more preferably 3 to 10 μm, and an average length of preferably 5 μm or more and less than 1 mm, more preferably 7 μm or more and less than 100 μm. Things.
[0013]
When the milled carbon fiber is used as the negative electrode active material, it is more preferable to perform high-temperature heat treatment beforehand in order to improve cycle life characteristics.
[0014]
As the activator of the electrode agent for the positive electrode used in the present invention, inorganic compounds such as transition metal oxides and transition metal chalcogens containing alkali metals, polyacetylene, polyparaphenylene, polyphenylenevinylene, polyaniline, polypyrrole, polythiophene and the like Examples of the positive electrode used in ordinary secondary batteries include a conjugated polymer, a crosslinked polymer having a disulfide bond, and thionyl chloride. Among these, in the case of a secondary battery using a non-aqueous electrolyte containing a lithium salt, transition metal oxides and transition metal chalcogens such as cobalt, manganese, molybdenum, vanadium, chromium, iron, copper, and titanium are used. It is preferably used.
[0015]
Among them, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiyNi 1- xMexO 2 (selected from Me: Ti, V, Mn, Fe), Li 1-x-a AxNi 1-y-b ByO 2 (However, A is at least one kind of alkali or alkaline earth metal element, and B is at least one kind of transition metal element) can be preferably used because of high voltage and high energy density. In particular, in Li 1-x-a AxNi 1 -y-b ByO 2, 0 <x ≦ 0.1,0 ≦ y ≦ 0.3, -0.1 ≦ a ≦ 0.1, -0.15 ≦ b ≦ 0.15 (however, when A and B consist of two or more elements, x is the total number of moles of all transition metal elements excluding Ni, y is the alkali or alkaline earth metal excluding Li, When y = 0, A contains one or more kinds of alkaline earth metals), whereby a positive electrode active agent having excellent characteristics can be obtained. In this case, the type, number, and composition of A and B may be changed, or a positive electrode active agent in which x, y, a, and b are changed may be used. Among them, A is preferably Mg or Sr, and B is Co or Fe.
[0016]
The binder of the electrode agent is not particularly limited, and may be any of a thermoplastic resin and a thermosetting resin, and is not particularly limited. Further, it can be used in the form of a solution or an emulsion. The amount of addition is usually 0.01 to 40 wt% in the electrode material. Specific examples include various epoxy resins, cellulose resins, organofluorine poly and copolymers, acrylic resins, organic chlorinated resins, polyamides, polyimides, and polycarbonates. Among them, polyvinylidene fluoride, polytetrafluoroethylene, propylene hexafluoride polymer and copolymer are preferable because they are excellent in binding power, chemical stability, coating property and the like.
[0017]
In many cases, a material having low conductivity is used as the positive electrode material, and in that case, it is preferable to use a conductive material. It is desirable that the negative electrode material is also used to reduce the resistance value of the negative electrode sheet and reduce the loss of the entire battery. In this case, the conductive agent is not particularly limited, and various materials can be used. Among them, various carbonaceous materials can be preferably used. In particular, it is desirable that the material has good conductivity and does not have characteristics of an active agent as much as possible. Specifically, pyrolytic carbon such as artificial graphite, acetylene black, and Ketjen black, vapor-grown carbon, mesophase Examples include carbon, coke, and fired organic materials. The conductive agent has a function of assisting the electrical connection between the active agents, and the particle size of the conductive agent is desirably the same size as the active agent or smaller than the active agent. The addition amount of the conductive agent is not limited, but is 0.5 to 30 wt%, and more preferably 0.7 to 20 wt%. If it is less than 0.5 wt%, the effect on conductivity is poor, and if it exceeds 20 wt%, the capacity per unit weight of the electrode tends to decrease.
[0018]
The method for producing a battery electrode sheet of the present invention will be described below using a negative electrode sheet as an example. Using a milled carbon fiber as the active agent for the negative electrode agent, polyvinylidene fluoride as the binder, and carbon black as the conductive agent in a predetermined weight ratio, add a solvent to the mixture and mix and disperse well with a kneading machine. An electrode agent paste is used. One side of a copper foil as a current collector is coated using a commercially available coater having a drying zone and a roll press, and dried at a predetermined temperature. After similarly coating and drying the opposite surface of the current collector, a predetermined pressure is applied by, for example, a roll press. Next, heat treatment is performed at a predetermined temperature. Next, a predetermined pressure is applied again by the roll press.
[0019]
As described above, the manufacturing method of the present invention is characterized in that the heat treatment is performed after pressing, but the pressing step is further divided into two or more times, and at least one heat treatment is performed during the pressing step. Is preferably applied. The press is not necessarily limited to a roll press, but a roll press is preferable for trial use in mass production.
[0020]
Regarding one press step, there is no problem even if there are a plurality of press rolls and one step is a multi-stage press. In the present invention, the heat treatment may be performed during any one of the pressing steps as long as it is performed during a plurality of pressing steps.
[0021]
The heat treatment is preferably performed at a temperature higher than the temperature at the time of drying in order to increase the binding force between the current collector and the electrode agent. The drying temperature is preferably, for example, about 80 to 120 ° C, and the heat treatment temperature after pressing is preferably about 130 to 220 ° C.
[0022]
The pressure at the time of pressing is not particularly limited, but is preferably in a range of 500 kg / cm 2 or more and 3000 kg / cm 2 or less. If it is less than 500 kg / cm 2 , the density of the electrode agent is low, and therefore the amount of the electrode sheet stored in the battery can is small, and as a result, the battery capacity tends to be small. If it exceeds 3000 kg / cm 2 , mechanical deformation of the current collector may occur. In order to maintain the flatness of the electrode sheet, the pressure at the time of pressing is more preferably in the range of 500 kg / cm 2 or more and 2000 kg / cm 2 or less.
[0023]
In the conventional manufacturing method, since the heat treatment was performed only before applying pressure, it is presumed that the contact area (or binding area) between the current collector and the electrode agent was reduced. In the manufacturing method of the present invention, the contact area can be sufficiently increased by applying pressure before heat treatment is performed, the binding between the current collector and the electrode agent is improved, and peeling during entrainment occurs. It is presumed that it became difficult. Further, in the manufacturing method of the present invention, by applying pressure again after the heat treatment, the thickness of the electrode material expanded by the heat treatment can be regulated to a predetermined thickness, so that the amount of the wound electrode body stored in the battery can can be reduced. No battery power can be maintained.
[0024]
【Example】
Example 1, Comparative Example 1
An example in which an electrode sheet for a lithium ion secondary battery is formed using a roll coater will be described below. As an active agent for the negative electrode, a PAN-based milled carbon fiber MLD-30 manufactured by Toray and subjected to a heat treatment at 1300 ° C. is used. As a binder, polyvinylidene fluoride manufactured by Kureha Chemical Industry Co., Ltd. An electrode material paste for a negative electrode sheet is obtained by mixing and dispersing N-methylpyrrolidone as a solvent in a mixture of “Denka Black” (acetylene black) manufactured by Chemical Industry at a weight ratio of 90: 5: 5, respectively, using a kneader. And A copper foil having a thickness of 10 μm, which is a current collector, was caused to travel, the electrode agent paste was applied to one surface of the current collector, and then wound up through a drying zone set at a temperature of 90 ° C. The opposite side was similarly coated with an electrode agent paste, dried, and then roll-pressed at a pressure of 1300 kg / cm 2 . Next, after passing through a heat treatment zone set at a temperature of 200 ° C., roll pressing was performed at a pressure of 700 kg / cm 2 to obtain a negative electrode sheet having a thickness of about 60 μm.
[0025]
As the active agent for the positive electrode agent, commercially available LiCoO 2 , “Denka Black” manufactured by Denki Kagaku Kogyo as a conductive agent, and polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd. as a binder at a weight ratio of 80: 5: 15. Then, a mixture obtained by adding N-methylpyrrolidone as a solvent to a paste for a positive electrode material by sufficiently mixing and dispersing with a kneader was used, and a 20 μm-thick aluminum foil was produced by the same production method as that for producing a negative electrode sheet. A positive electrode sheet having a thickness of about 100 μm was obtained on both surfaces of the substrate.
[0026]
The obtained positive and negative electrode sheets according to the present invention were slit to a width of 54 mm for the positive electrode and a width of 56 mm for the negative electrode, and after welding the leads, these positive and negative electrode sheets were made of Ube Industries, Ltd. A spiral wound electrode was obtained by a winding machine together with a separator made of the same.
[0027]
Insulating plates were arranged above and below the obtained wound electrode, inserted into a battery can, and then a predetermined amount of an electrolyte was injected. Then, a positive electrode cap was placed and sealed to obtain a lithium ion secondary battery. The electrolyte used was one in which 1 mol of lithium hexafluorophosphate was dissolved in an electrolyte in a mixed solvent of polycarbonate and dimethyl carbonate.
[0028]
100 spiral wound electrodes were manufactured by the same manufacturing method as described above. In this case, the number of defective windings or the short-circuiting of the wound electrodes was three.
[0029]
As a comparative example, the manufacturing process of Example 1 was the same as Example 1 except that the pressing step before the heat treatment step was omitted, the pressing step after the heat treatment was performed only once, and the pressure at the time of this pressing was 1300 kg / cm 2. Similarly, positive and negative electrode sheets were manufactured, and a lithium ion secondary battery of Comparative Example 1 was obtained in the same manner as in Example 1.
[0030]
100 spiral wound electrodes were manufactured by the same manufacturing method as described above. In this case, the number of winding defects or the number of winding electrode short-circuits was 27.
The cycle life tests of the batteries of Example 1 and Comparative Example 1 were performed under the conditions of a charging current of 1 A, a constant current and constant voltage charging of 4.2 V at a charging time of 2.5 hours, a discharging current of 0.5 A and a final voltage of 2.5 V. It was carried out in.
[0031]
As a result of a cycle life test of the batteries of Example 1 and Comparative Example 1, the capacity of the battery of Comparative Example 1 was 1290 mAh at the fifth cycle, and the capacity retention after 500 cycles was 61%. The battery of Example 1 had a capacity at the fifth cycle of 1320 mAh and a capacity retention after 500 cycles of 74%, and was a battery excellent in battery capacity and cycle life. As a result of disassembling the battery after the cycle life test and examining the positive and negative electrode sheets, some of the positive and negative electrode sheets of Comparative Example 1 were separated from the current collector, but the positive and negative electrode sheets of Example 1 were removed. No peeling occurred on the sheet.
[0032]
Further, as shown in Example 1, peeling of the electrodes during winding was reduced as compared with Comparative Example 1, and the yield during manufacturing was able to be improved.
[0033]
【The invention's effect】
According to the method for manufacturing a battery electrode sheet of the present invention, before applying heat treatment to the electrode sheet, peeling of the electrode agent from the current collector by applying pressure is less likely to occur. The yield can be improved. There is also an effect that the cycle life characteristics can be improved. Furthermore, in the manufacturing method of the present invention, by applying pressure again after the heat treatment, a large battery capacity can be maintained without reducing the storage amount of the electrode sheet in the battery can.

Claims (7)

集電体に電極剤を塗工して製造する電池用電極シートの製造方法において、該集電体に電極剤を塗工、乾燥した後に、プレス工程をし、2回以上のプレス工程の間に、該熱処理工程を有することを特徴とする電池用電極シートの製造方法。In the manufacturing method of an electrode sheet for a battery produced by coating an electrode material on the current collector, coating an electrode material on the current collector, and dried, and the pressing process, during the two or more pressing process And a method for producing an electrode sheet for a battery , comprising the heat treatment step . 該熱処理の温度が、乾燥温度よりも高温であることを特徴とする請求項1記載の電池用電極シートの製造方法。The method for producing a battery electrode sheet according to claim 1, wherein the temperature of the heat treatment is higher than a drying temperature. 該電極シートが、リチウムイオン二次電池用であることを特徴とする請求項1記載の電池用電極シートの製造方法。The method for producing a battery electrode sheet according to claim 1, wherein the electrode sheet is for a lithium ion secondary battery. 該電極シートが、負極として用いられ、かつ、活剤が炭素繊維であることを特徴とする請求項1記載の電池用電極シートの製造方法。The method according to claim 1, wherein the electrode sheet is used as a negative electrode, and the active agent is carbon fiber. 該炭素繊維が、ポリアクリロニトロルから得られることを特徴とする請求項記載の電池用電極シートの製造方法。The method for producing an electrode sheet for a battery according to claim 4 , wherein the carbon fiber is obtained from polyacrylonitrile. 該炭素繊維がミルド状炭素繊維であることを特徴とする請求項記載の電池用電極シートの製造方法。The method for producing an electrode sheet for a battery according to claim 4 , wherein the carbon fibers are milled carbon fibers. 該電極剤に、導電剤を含有することを特徴とする請求項1記載の電池用電極シートの製造方法。The method for producing an electrode sheet for a battery according to claim 1, wherein the electrode agent comprises a conductive agent.
JP25251795A 1995-09-29 1995-09-29 Method for producing electrode sheet for battery Expired - Fee Related JP3575131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25251795A JP3575131B2 (en) 1995-09-29 1995-09-29 Method for producing electrode sheet for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25251795A JP3575131B2 (en) 1995-09-29 1995-09-29 Method for producing electrode sheet for battery

Publications (2)

Publication Number Publication Date
JPH0997603A JPH0997603A (en) 1997-04-08
JP3575131B2 true JP3575131B2 (en) 2004-10-13

Family

ID=17238477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25251795A Expired - Fee Related JP3575131B2 (en) 1995-09-29 1995-09-29 Method for producing electrode sheet for battery

Country Status (1)

Country Link
JP (1) JP3575131B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636965B2 (en) * 2011-01-05 2014-12-10 トヨタ自動車株式会社 Method for producing electrode body for lithium ion secondary battery and method for producing lithium ion secondary battery
JP6264780B2 (en) * 2013-08-21 2018-01-24 日産自動車株式会社 Electrode manufacturing method and electrode manufacturing apparatus
US10586988B2 (en) 2015-04-16 2020-03-10 Kureha Corporation Electrode structural body and production method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664819B2 (en) * 1991-07-05 1997-10-22 日機装株式会社 Graphite fiber and method for producing the same
JPH05283063A (en) * 1992-03-31 1993-10-29 Osaka Gas Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using same electrode
JP3191394B2 (en) * 1992-04-10 2001-07-23 松下電器産業株式会社 Manufacturing method of non-aqueous secondary battery and its negative electrode plate
JP3444616B2 (en) * 1993-02-04 2003-09-08 旭化成株式会社 Negative electrode for non-aqueous secondary batteries
JPH06325752A (en) * 1993-03-16 1994-11-25 Dainippon Printing Co Ltd Plate for nonaqueous electrolytic secondary battery and its manufacture
JPH076752A (en) * 1993-06-15 1995-01-10 Toray Ind Inc Electrode, manufacture thereof, and secondary battery using this electrode
JP3175801B2 (en) * 1993-09-17 2001-06-11 株式会社東芝 Negative electrode for secondary battery
JPH07220722A (en) * 1994-01-28 1995-08-18 Sumitomo Chem Co Ltd Manufacture of electrode for lithium secondary battery
JP3556270B2 (en) * 1994-06-15 2004-08-18 株式会社東芝 Lithium secondary battery
JP3259561B2 (en) * 1995-01-26 2002-02-25 松下電器産業株式会社 Anode material for lithium secondary battery and method for producing the same

Also Published As

Publication number Publication date
JPH0997603A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
US20070248884A1 (en) Negative electrode and secondary battery
JP3556636B2 (en) Flat secondary battery and method of manufacturing the same
JP2002042789A (en) Method and device for manufacturing electrode for battery
JPH076752A (en) Electrode, manufacture thereof, and secondary battery using this electrode
JPH09204936A (en) Battery
JP2000011991A (en) Organic electrolyte secondary battery
JPH09180704A (en) Battery and manufacture thereof
JPH09199177A (en) Battery
JP3575131B2 (en) Method for producing electrode sheet for battery
JP4003276B2 (en) Battery electrode and secondary battery using the same
JPH09161768A (en) Battery
JPH11329439A (en) Non-aqueous electrolyte secondary battery
JPH09180759A (en) Battery
JPH1092415A (en) Electrode and secondary battery using it
JP3456771B2 (en) Non-aqueous electrolyte secondary battery
JPH09161838A (en) Battery
JPH09320599A (en) Nonaqueous electrolyte secondary battery
JPH103947A (en) Battery
JPH11213988A (en) Manufacture of electrode sheet for battery
JPH1064546A (en) Electrode and secondary battery using it
JPH08180878A (en) Lithium secondary battery
JP3702497B2 (en) Method for producing electrode body for lithium ion secondary battery
JPH1197067A (en) Battery and manufacture of the same
JPH0927313A (en) Nonaqueous electrolyte secondary battery
JPH10106546A (en) Manufacture of electrode for battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees