JP5636965B2 - Method for producing electrode body for lithium ion secondary battery and method for producing lithium ion secondary battery - Google Patents

Method for producing electrode body for lithium ion secondary battery and method for producing lithium ion secondary battery Download PDF

Info

Publication number
JP5636965B2
JP5636965B2 JP2011000690A JP2011000690A JP5636965B2 JP 5636965 B2 JP5636965 B2 JP 5636965B2 JP 2011000690 A JP2011000690 A JP 2011000690A JP 2011000690 A JP2011000690 A JP 2011000690A JP 5636965 B2 JP5636965 B2 JP 5636965B2
Authority
JP
Japan
Prior art keywords
electrode layer
negative electrode
current collector
positive electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011000690A
Other languages
Japanese (ja)
Other versions
JP2012142228A (en
Inventor
博司 陶山
博司 陶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011000690A priority Critical patent/JP5636965B2/en
Publication of JP2012142228A publication Critical patent/JP2012142228A/en
Application granted granted Critical
Publication of JP5636965B2 publication Critical patent/JP5636965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、集電体及び該集電体上に積層された正極層又は負極層を備える電極体の製造方法、並びに、集電体、正極層、電解質層、負極層、及び集電体を該順序にて備えた電池を製造する方法に関する。   The present invention relates to a current collector, a method for producing an electrode body comprising a positive electrode layer or a negative electrode layer laminated on the current collector, and a current collector, a positive electrode layer, an electrolyte layer, a negative electrode layer, and a current collector. The present invention relates to a method of manufacturing a battery provided in this order.

リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車やハイブリッド自動車用等、大型の動力用としての需要も高まっている。   A lithium ion secondary battery has the characteristics that it has higher energy density than other secondary batteries and can operate at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.

リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質層とが備えられ、電解質層に備えられる電解質としては、例えば非水系の液体や固体が用いられる。電解質に液体(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、固体の電解質(以下において、「固体電解質」という。)は不燃性であるため、上記システムを簡素化できる。それゆえ、不燃性である固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」という。)が提案されている。   A lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed therebetween. As the electrolyte provided in the electrolyte layer, for example, a non-aqueous liquid or solid is used. When a liquid (hereinafter referred to as “electrolytic solution”) is used as the electrolyte, the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved. However, since the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety. On the other hand, since the solid electrolyte (hereinafter referred to as “solid electrolyte”) is nonflammable, the above system can be simplified. Therefore, a lithium ion secondary battery (hereinafter referred to as “solid battery”) in a form provided with a layer containing a solid electrolyte that is nonflammable (hereinafter referred to as “solid electrolyte layer”) has been proposed. Yes.

このような電池に関する技術として、例えば特許文献1には、金属を有する集電体上に、正極又は負極の活物質を有する合剤層を形成する合剤層形成工程と、前記合剤層上に被覆層を形成する被覆層形成工程と、前記被覆層とともに前記合剤層をプレスするプレス工程とを備えた、電池用電極の製造方法が開示されている。   As a technique relating to such a battery, for example, Patent Document 1 discloses a mixture layer forming step of forming a mixture layer having a positive electrode or a negative electrode active material on a current collector having a metal, There is disclosed a method for producing a battery electrode, comprising: a coating layer forming step for forming a coating layer on the substrate; and a pressing step for pressing the mixture layer together with the coating layer.

また、特許文献2には、帯状の正極集電体箔の表面に正極活物質層が形成され1回折り又は2回以上の葛折りにより折畳まれかつ一方の側縁に正極端子が接続された正極シートと、前記正極シートの折畳み面積に相応した面積を有する負極集電体箔の表面に負極活物質層が形成され前記折畳まれる正極シートの間にポリマー電解質層を介して挟持されかつ一方の側縁に負極端子が接続された負極シートとを備えたリチウムイオンポリマー二次電池において、前記ポリマー電解質層が、前記負極シートの表面に形成された負極側第1電解質層と、前記負極側第1電解質層に連設され前記負極シートの他方の側縁の端面に形成された負極側第2電解質層とを有することを特徴とすることを特徴とするリチウムイオンポリマー二次電池が開示されている。   Further, in Patent Document 2, a positive electrode active material layer is formed on the surface of a strip-shaped positive electrode current collector foil, folded by one or two or more twists, and a positive electrode terminal is connected to one side edge. A negative electrode active material layer is formed on the surface of the positive electrode sheet and a negative electrode current collector foil having an area corresponding to the folded area of the positive electrode sheet, and is sandwiched between the folded positive electrode sheet via a polymer electrolyte layer. And in a lithium ion polymer secondary battery comprising a negative electrode sheet having a negative electrode terminal connected to one side edge, the polymer electrolyte layer includes a negative electrode side first electrolyte layer formed on a surface of the negative electrode sheet, and A lithium ion polymer secondary battery comprising: a negative electrode side second electrolyte layer formed on the end surface of the other side edge of the negative electrode sheet, which is connected to the negative electrode side first electrolyte layer. Disclosed That.

さらに、特許文献3には、集電体の一方の面に正極が形成され、他方の面に負極が形成された双極型電極を、電解質層を挟んで少なくとも2層以上直列に積層した双極型二次電池要素を、外装材に密封してなる双極型二次電池モジュールにおいて、双極型二次電池要素と外装材との間に前記外装材よりも引張応力が高い部材を挿入することを特徴とする双極型二次電池モジュールが開示されている。   Further, Patent Document 3 discloses a bipolar type in which at least two or more bipolar electrodes each having a positive electrode formed on one surface of a current collector and a negative electrode formed on the other surface are stacked in series with an electrolyte layer interposed therebetween. In a bipolar secondary battery module in which a secondary battery element is sealed in an exterior material, a member having a higher tensile stress than the exterior material is inserted between the bipolar secondary battery element and the exterior material. A bipolar secondary battery module is disclosed.

特開2005−276444号公報JP 2005-276444 A 特開2004−207118号公報JP 2004-207118 A 特開2008−140633号公報JP 2008-140633 A

特許文献1には、集電体上に、正極又は負極の活物質を有する合剤層を形成し、該合剤層上に被覆層を形成して、該被覆層とともに合剤層を積層方向にプレスする工程を備えた電池用電極の製造方法が開示されている。特許文献1に記載の発明によれば、かかる工程を経ることによって、合剤層の空隙率を減らせるとしている。しかしながら、上記のように集電体と合剤層とを備えた積層体を積層方向に加圧すると、除荷した後に集電体から合剤層(正極層又は負極層)が剥がれるという問題があった。これは、以下に説明する理由によると考えられる。すなわち、上記のように合剤層を積層方向に加圧すると、集電体と合剤層とがそれぞれ積層方向に垂直な面方向に伸びる。このとき集電体と合剤層との伸び率が異なるため、集電体と合剤層との間において、積層方向に垂直な面方向の応力が発生し、この応力が原因となって、集電体から合剤層(正極層又は負極層)が剥がれやすくなる。   In Patent Document 1, a mixture layer having a positive electrode or negative electrode active material is formed on a current collector, a coating layer is formed on the mixture layer, and the mixture layer is laminated in the stacking direction together with the coating layer. The manufacturing method of the electrode for batteries provided with the process pressed to is disclosed. According to the invention described in Patent Document 1, the porosity of the mixture layer can be reduced by going through this process. However, when the laminate including the current collector and the mixture layer is pressed in the lamination direction as described above, there is a problem that the mixture layer (positive electrode layer or negative electrode layer) is peeled off from the current collector after unloading. there were. This is considered to be due to the reason explained below. That is, when the mixture layer is pressurized in the stacking direction as described above, the current collector and the mixture layer extend in the plane direction perpendicular to the stacking direction. At this time, because the elongation rate of the current collector and the mixture layer is different, a stress in a plane direction perpendicular to the stacking direction is generated between the current collector and the mixture layer. The mixture layer (positive electrode layer or negative electrode layer) is easily peeled off from the current collector.

特許文献2に記載の発明では、上記問題について考慮されておらず、特許文献2に記載の発明によっても、上記問題は解決できなかった。特許文献3には、集電体、正極層及び負極層を有する積層体を収容した外装材内部の内圧を低くし、該外装材内の部材を加圧することが記載されている(0067段落等)。かかる形態とすることによって、電池の使用時に集電体から正極層又は負極層が剥がれることは、ある程度防げると考えられる。しかしながら、製造過程において集電体から正極層又は負極層が剥がれる虞があることについては、特許文献3に記載の発明でも考慮されていないため、特許文献3に記載の発明によっても、上記問題は解決できなかった。   In the invention described in Patent Document 2, the above problem is not taken into consideration, and even the invention described in Patent Document 2 cannot solve the above problem. Patent Document 3 describes that the internal pressure inside the exterior material containing the current collector, the laminate having the positive electrode layer and the negative electrode layer is lowered, and the members in the exterior material are pressurized (0067 paragraph etc.). ). By adopting such a configuration, it is considered that the positive electrode layer or the negative electrode layer can be prevented from being peeled off from the current collector when the battery is used. However, since there is a possibility that the positive electrode layer or the negative electrode layer may be peeled off from the current collector in the manufacturing process, the invention described in Patent Document 3 is not considered. It could not be solved.

そこで本発明は、集電体と該集電上に積層された正極層又は負極層との剥離が防止される電極体の製造方法、及び電池の製造方法を提供することを課題とする。   Then, this invention makes it a subject to provide the manufacturing method of the electrode body in which peeling with the positive electrode layer or negative electrode layer laminated | stacked on this collector and this collector is prevented, and the manufacturing method of a battery.

上記課題を解決するために、本発明は以下の構成をとる。すなわち、
本発明の第1の態様は、集電体、及び該集電体上に積層された正極層又は負極層を備えるリチウムイオン二次電池用電極体の製造方法であって、集電体、及び集電体上に積層された正極層又は負極層を備える積層体を作製する積層工程と、積層工程で作製した積層体を積層方向に50MPa以上800MPa以下の圧力で加圧する加圧工程と、加圧工程の後、10MPa以上30MPa以下の圧力にて0.1時間以上10時間以下の間、積層体を積層方向に加圧したまま拘束する拘束工程と、を含む、リチウムイオン二次電池用電極体の製造方法である。
In order to solve the above problems, the present invention has the following configuration. That is,
1st aspect of this invention is a manufacturing method of the electrode body for lithium ion secondary batteries provided with a collector and the positive electrode layer or negative electrode layer laminated | stacked on this collector, A lamination process for producing a laminate comprising a positive electrode layer or a negative electrode layer laminated on a current collector, a pressurizing process for pressurizing the laminate produced in the lamination process at a pressure of 50 MPa or more and 800 MPa or less in the lamination direction, A constraining step of constraining the laminate while being pressed in the laminating direction at a pressure of 10 MPa or more and 30 MPa or less for 0.1 hour or more and 10 hours or less after the pressing step, and an electrode for a lithium ion secondary battery It is a manufacturing method of a body.

以下、正極層に接触する集電体と負極層に接触する集電体とを区別する必要がない場合は、それらの集電体を単に「集電体」と表記する場合があり、区別する必要がある場合は、正極層に接触する集電体を「正極集電体」、負極層に接触する集電体を「負極集電体」を表記する場合がある。また、正極層と負極層とを区別する必要がない場合は、両者のどちらかを指すものとして「電極層」と表記する場合がある。   Hereinafter, when there is no need to distinguish between the current collector in contact with the positive electrode layer and the current collector in contact with the negative electrode layer, these current collectors may be simply referred to as “current collectors” and are distinguished from each other. If necessary, the current collector in contact with the positive electrode layer may be referred to as “positive electrode current collector”, and the current collector in contact with the negative electrode layer may be referred to as “negative electrode current collector”. In addition, when there is no need to distinguish between the positive electrode layer and the negative electrode layer, “electrode layer” may be used to indicate either of them.

また、上記本発明の第1の態様の電極体の製造方法の拘束工程において、0.5時間以上5時間以下の間、積層体を積層方向に拘束することがより好ましい。   In the constraining step of the electrode body manufacturing method according to the first aspect of the present invention, it is more preferable to constrain the stacked body in the stacking direction for 0.5 hour or more and 5 hours or less.

また、上記本発明の第1の態様の電極体の製造方法の拘束工程において、1時間以上3時間以下の間、積層体を積層方向に拘束することがさらに好ましい。   In the constraining step of the electrode body manufacturing method according to the first aspect of the present invention, it is more preferable to constrain the stacked body in the stacking direction for 1 hour to 3 hours.

また、上記本発明の第1の態様の電極体の製造方法は、積層工程において、金属箔を含む集電体、及び該集電体上に積層された、カーボン系負極合材を含む負極層、を備える積層体を作製する場合に好適である。   Moreover, the manufacturing method of the electrode body according to the first aspect of the present invention includes a current collector including a metal foil and a negative electrode layer including a carbon-based negative electrode mixture laminated on the current collector in the stacking step. It is suitable when producing the laminated body provided with these.

本発明の第2の態様は、正極集電体、正極層、電解質層、負極層、及び負極集電体を該順序にて備えたリチウムイオン二次電池を製造する方法であって、正極集電体、正極層、電解質層、負極層、及び負極集電体を該順序で備えた積層体を作製する積層工程と、積層工程で作製した積層体を積層方向に50MPa以上800MPa以下の圧力で加圧する加圧工程と、加圧工程の後、10MPa以上30MPa以下の圧力にて0.1時間以上10時間以下の間、積層体を積層方向に加圧したまま拘束する拘束工程と、を含む、リチウムイオン二次電池の製造方法である。 A second aspect of the present invention is a method for producing a lithium ion secondary battery comprising a positive electrode current collector, a positive electrode layer, an electrolyte layer, a negative electrode layer, and a negative electrode current collector in this order. A stacking step of preparing a laminate including an electric current body, a positive electrode layer, an electrolyte layer, a negative electrode layer, and a negative electrode current collector in this order; and a laminate manufactured in the stacking step at a pressure of 50 MPa or more and 800 MPa or less in the stacking direction. A pressurizing step of pressurizing, and a constraining step of constraining the laminate while being pressed in the stacking direction at a pressure of 10 MPa or more and 30 MPa or less for 0.1 hour or more and 10 hours or less after the pressurization step. And a method of manufacturing a lithium ion secondary battery.

本発明の第1の態様によれば、集電体と該集電体上に積層された正極層又は負極層とを備える積層体を、所定の圧力にて所定の時間、積層方向に加圧して拘束することによって、徐荷後も集電体と該集電体上に積層された正極層又は負極層との剥離が防止される電極体の製造方法を提供することができる。   According to the first aspect of the present invention, a laminate including a current collector and a positive electrode layer or a negative electrode layer laminated on the current collector is pressurized in a laminating direction at a predetermined pressure for a predetermined time. By constraining the electrode body, it is possible to provide a method for producing an electrode body in which peeling of the current collector and the positive electrode layer or negative electrode layer laminated on the current collector is prevented even after gradual loading.

本発明の第2の態様によれば、正極集電体、正極層、電解質層、負極層、及び負極集電体を該順序で備えた積層体を、所定の圧力にて所定の時間、積層方向に加圧して拘束することによって、徐荷後も集電体と該集電体上に積層された正極層又は負極層との剥離が防止される電池の製造方法を提供することができる。   According to the second aspect of the present invention, a laminate comprising a positive electrode current collector, a positive electrode layer, an electrolyte layer, a negative electrode layer, and a negative electrode current collector in that order is laminated at a predetermined pressure for a predetermined time. By pressing and restraining in the direction, it is possible to provide a method for manufacturing a battery in which peeling of the current collector and the positive electrode layer or the negative electrode layer laminated on the current collector is prevented even after unloading.

本発明の電極体の製造方法に含まれる工程を示すフローチャートである。It is a flowchart which shows the process included in the manufacturing method of the electrode body of this invention. 本発明の電極体の製造方法の一例について、その過程を概略的に示す断面図である。It is sectional drawing which shows the process roughly about an example of the manufacturing method of the electrode body of this invention. 本発明の電極体の製造方法の他の例について、その過程を概略的に示す断面図である。It is sectional drawing which shows the process roughly about the other example of the manufacturing method of the electrode body of this invention. 従来の電池の製造方法について、その過程を概略的に示す断面図である。It is sectional drawing which shows the process roughly about the manufacturing method of the conventional battery.

以下、図面を参照しつつ、本発明について説明する。   The present invention will be described below with reference to the drawings.

最初に従来の電池の製造方法の問題を説明したうえで、本発明の電極体の製造方法について説明する。   First, after explaining the problem of the conventional battery manufacturing method, the electrode body manufacturing method of the present invention will be described.

図4は、従来の電池の製造方法について、その過程を概略的に示す断面図である。従来の電池の製造方法では、まず、図4(a)に示すように、正極集電体1、正極層2、電解質層3、負極層4及び負極集電体5を備える積層体10aを作製していた。積層体10aの作製方法としては、例えば、以下のような方法がある。まず、正極層2を構成する組成物を正極集電体1上に塗布して乾燥させ、正極集電体1上に正極層2を積層する。また、負極集電体5上には負極層4を構成する組成物を塗布して乾燥させ、負極集電体5上に負極層4を積層する。この時点では、正極集電体1及び正極層は、次の工程まで取り扱い可能な程度に結着している。また、負極集電体5及び負極層4も同様に、次の工程まで取り扱い可能な程度に結着している。   FIG. 4 is a cross-sectional view schematically showing the process of a conventional battery manufacturing method. In the conventional battery manufacturing method, first, as shown in FIG. 4A, a laminate 10a including a positive electrode current collector 1, a positive electrode layer 2, an electrolyte layer 3, a negative electrode layer 4, and a negative electrode current collector 5 is produced. Was. As a manufacturing method of the stacked body 10a, for example, the following method is available. First, the composition constituting the positive electrode layer 2 is applied on the positive electrode current collector 1 and dried, and the positive electrode layer 2 is laminated on the positive electrode current collector 1. Further, the composition constituting the negative electrode layer 4 is applied on the negative electrode current collector 5 and dried, and the negative electrode layer 4 is laminated on the negative electrode current collector 5. At this point, the positive electrode current collector 1 and the positive electrode layer are bound to such an extent that they can be handled until the next step. Similarly, the negative electrode current collector 5 and the negative electrode layer 4 are bound to the extent that they can be handled until the next step.

次に、固体電解質等を含む組成物を正極層2上と負極層4上とにそれぞれに塗布して、正極層2上と負極層4上とのそれぞれに電解質層3の一部を形成し、当該電解質層3の一部同士を合わせるようにして重ねることによって、正極集電体1、正極層2、電解質層3、負極層4、及び負極集電体5がその順で積層された積層体10aを作製することができる。   Next, a composition containing a solid electrolyte or the like is applied to each of the positive electrode layer 2 and the negative electrode layer 4 to form part of the electrolyte layer 3 on each of the positive electrode layer 2 and the negative electrode layer 4. A stack in which the positive electrode current collector 1, the positive electrode layer 2, the electrolyte layer 3, the negative electrode layer 4, and the negative electrode current collector 5 are stacked in this order by overlapping the electrolyte layers 3 so as to match each other. The body 10a can be produced.

上述したようにして積層体10aを作製した後、図4(b)に示すように、積層体10aを積層方向に圧力P1を加えることによって、正極層2や負極層4等に含まれる空隙を減らすとともに、正極層2に含まれる正極活物質や負極層4に含まれる負極活物質と固体電解質との界面を増やすようにしていた。   After producing the laminated body 10a as described above, as shown in FIG. 4B, by applying pressure P1 to the laminated body 10a in the laminating direction, voids included in the positive electrode layer 2, the negative electrode layer 4 and the like are formed. While reducing, the positive electrode active material contained in the positive electrode layer 2 and the negative electrode active material contained in the negative electrode layer 4 and the interface of a solid electrolyte were increased.

このようにして製造された従来の電池は、圧力P1を除荷後、例えば、図4(c)に示すように、正極集電体1側を谷として反りが生じ、負極層4と負極集電体5との間で剥離する虞があった。これには、以下の2つの原因があると考えられる。1つ目の原因は以下の通りである。積層体10aを積層方向に加圧すると、積層体10aを構成する層が、それぞれ積層方向に垂直な面方向に伸びる。このとき集電体と電極層との伸び率が異なるため、集電体と電極層との間において、積層方向に垂直な面方向の応力が発生する。この応力が原因となって、集電体と電極層とが剥がれ易くなる。2つ目の原因は、正極集電体1と正極層2との間の結着力の方が、負極集電体5と負極層4との間の結着力より強かったということである。   In the conventional battery manufactured in this way, after unloading the pressure P1, for example, as shown in FIG. 4C, warping occurs with the positive electrode current collector 1 side as a trough, and the negative electrode layer 4 and the negative electrode current collector are There was a possibility of peeling between the electric body 5 and the like. This is considered to have the following two causes. The first cause is as follows. When the stacked body 10a is pressed in the stacking direction, the layers constituting the stacked body 10a extend in the plane direction perpendicular to the stacking direction. At this time, since the elongation rates of the current collector and the electrode layer are different, a stress in a plane direction perpendicular to the stacking direction is generated between the current collector and the electrode layer. Due to this stress, the current collector and the electrode layer are easily peeled off. The second cause is that the binding force between the positive electrode current collector 1 and the positive electrode layer 2 was stronger than the binding force between the negative electrode current collector 5 and the negative electrode layer 4.

上述したように、従来の電池の製造方法では、集電体と該集電上に積層された正極層又は負極層との間で剥離が起こるという問題があった、なお、従来の電池の製造方法について説明したが、正極集電体上に正極層が形成された電極体、又は、負極集電体上に負極層が形成された電極体のみを作製する場合であっても、積層方向に強く加圧したとき、上記1つ目の原因によって、同様に剥離する虞があった。しかしながら、以下に説明するように、本発明の電極体の製造方法によれば、上記問題を解決することができる。   As described above, in the conventional battery manufacturing method, there is a problem that peeling occurs between the current collector and the positive electrode layer or the negative electrode layer laminated on the current collector. Although the method has been described, even in the case where only an electrode body in which a positive electrode layer is formed on a positive electrode current collector or an electrode body in which a negative electrode layer is formed on a negative electrode current collector is produced, When strongly pressurized, there was a risk of peeling in the same manner due to the first cause. However, as described below, according to the method for manufacturing an electrode body of the present invention, the above problem can be solved.

図1は、本発明の電極体の製造方法に含まれる工程を示すフローチャートである。本発明の電極体の製造方法は、図1に示すように、積層工程(以下、「S11」と表記する場合がある。)と、加圧工程(以下、「S12」と表記する場合がある。)と、拘束工程(以下、「S13」と表記する場合がある。)を有する。これらの工程を経ることによって、集電体と該集電上に積層された正極層又は負極層との剥離が防止される電極体を製造することができる。   FIG. 1 is a flowchart showing steps included in the method of manufacturing an electrode body according to the present invention. As shown in FIG. 1, the electrode body manufacturing method of the present invention may be described as a lamination step (hereinafter sometimes referred to as “S11”) and a pressurizing step (hereinafter referred to as “S12”). And a constraining step (hereinafter sometimes referred to as “S13”). By passing through these steps, it is possible to produce an electrode body in which peeling between the current collector and the positive electrode layer or negative electrode layer laminated on the current collector is prevented.

1.第一実施形態
図2は、本発明の電極体の製造方法の一例について、その過程を概略的に示す断面図である。図1及び図2を参照しつつ、第一実施形態にかかる本発明の電極体の製造方法について説明する。
1. First Embodiment FIG. 2 is a cross-sectional view schematically showing the process of an example of the method for producing an electrode body of the present invention. With reference to FIG. 1 and FIG. 2, the manufacturing method of the electrode body of the present invention according to the first embodiment will be described.

<積層工程(S11)>
S11は、集電体、及び該集電体上に積層された正極層又は負極層を備える積層体を作製する工程である。
<Lamination process (S11)>
S11 is a process for producing a current collector and a laminate including the positive electrode layer or the negative electrode layer laminated on the current collector.

上述したように、集電体と該集電上に積層された正極層又は負極層との剥離が起こるのは、正極集電体上に正極層が積層された電極体、又は、負極集電体上に負極層が積層された電極体を積層方向に強く加圧するからである。一方、電池を作製する場合、負極集電体、負極層、電解質層、正極層、及び正極集電体を積層した積層体を作製した後、該積層体を積層方向に加圧することがある。よって、図2には、正極集電体1上に正極層2が積層された積層体、又は、負極集電体5上に負極層4が積層された積層体を個別に加圧するのではなく、これらの積層体と電解質層3とを備える積層体10aを作製した後、積層体10aを積層方向に加圧して電池を製造する方法について示している。すなわち、図2には、本発明の電極体の製造方法によって、正極集電体1上に正極層2が積層された電極体、及び、負極集電体5上に負極層4が積層された電極体を同時に作製する方法について例示している。なお、図2に示した積層体10aは、正極集電体1、正極層2、電解質層3、負極層4、及び負極集電体5を該順序にて備えており、図2は本発明の電池の製造方法を例示しているともいえる。ただし、本発明はかかる形態に限定されない。本発明の電極体の製造方法において、S11では、集電体、及び該集電体上に積層された正極層又は負極層を備える積層体を作製すればよい。すなわち、S11は、正極集電体と該正極集電体上に積層された正極層とからなる積層体、若しくは、負極集電体と該負極集電体上に積層された負極層とからなる積層体を作製する工程であってもよい。   As described above, separation between the current collector and the positive electrode layer or the negative electrode layer laminated on the current collector occurs because the electrode body in which the positive electrode layer is laminated on the positive electrode current collector, or the negative electrode current collector. This is because the electrode body having the negative electrode layer laminated on the body is strongly pressed in the laminating direction. On the other hand, when a battery is produced, a laminate in which a negative electrode current collector, a negative electrode layer, an electrolyte layer, a positive electrode layer, and a positive electrode current collector are produced may be produced, and then the laminate may be pressed in the lamination direction. Therefore, in FIG. 2, the stacked body in which the positive electrode layer 2 is stacked on the positive electrode current collector 1 or the stacked body in which the negative electrode layer 4 is stacked on the negative electrode current collector 5 is not individually pressurized. 1 shows a method of manufacturing a battery by producing a laminated body 10a including these laminated bodies and an electrolyte layer 3 and then pressing the laminated body 10a in the laminating direction. That is, in FIG. 2, the electrode body in which the positive electrode layer 2 is stacked on the positive electrode current collector 1 and the negative electrode layer 4 on the negative electrode current collector 5 are stacked by the electrode body manufacturing method of the present invention. An example of a method for simultaneously producing electrode bodies is illustrated. 2 includes a positive electrode current collector 1, a positive electrode layer 2, an electrolyte layer 3, a negative electrode layer 4, and a negative electrode current collector 5 in this order, and FIG. 2 shows the present invention. It can be said that the method for producing the battery is exemplified. However, the present invention is not limited to such a form. In the method for producing an electrode body of the present invention, in S11, a stacked body including a current collector and a positive electrode layer or a negative electrode layer stacked on the current collector may be produced. That is, S11 is composed of a laminate composed of a positive electrode current collector and a positive electrode layer laminated on the positive electrode current collector, or a negative electrode current collector and a negative electrode layer laminated on the negative electrode current collector. It may be a step of producing a laminate.

S11は、例えば、図2(a)に示したように、正極集電体1、正極層2、電解質層3、負極層4、及び負極集電体5を備える積層体10aを作製する工程とすることができる。積層体10aを作製する具体的な方法としては、例えば、以下のような方法がある。まず、正極活物質と固体電解質と結着用バインダーとを含む正極材をスラリー状にしたものを正極集電体1上に塗布して乾燥させて正極層2を積層する。また、負極活物質と固体電解質と結着用バインダーとを含む負極材をスラリー状にしたものを負極集電体5上に塗布して乾燥させて負極層4を積層する。その後、固体電解質と結着用バインダーとを含む組成物を正極層2上と負極層4上とのそれぞれに塗布して、正極層2上と負極層4上とのそれぞれに電解質層3の一部を積層する。その後、当該電解質層3の一部同士を合わせるようにして重ねることによって、正極集電体1、正極層2、電解質層3、負極層4、及び負極集電体5がその順で積層された積層体10aを作製することができる。   S11 includes, for example, a step of producing a laminate 10a including the positive electrode current collector 1, the positive electrode layer 2, the electrolyte layer 3, the negative electrode layer 4, and the negative electrode current collector 5, as shown in FIG. can do. As a specific method for producing the stacked body 10a, for example, there are the following methods. First, a positive electrode material containing a positive electrode active material, a solid electrolyte, and a binding binder in the form of a slurry is applied onto the positive electrode current collector 1 and dried to laminate the positive electrode layer 2. In addition, a negative electrode material containing a negative electrode active material, a solid electrolyte, and a binder is made into a slurry and applied onto the negative electrode current collector 5 and dried to laminate the negative electrode layer 4. Thereafter, a composition containing a solid electrolyte and a binder is applied to each of the positive electrode layer 2 and the negative electrode layer 4, and a part of the electrolyte layer 3 is formed on each of the positive electrode layer 2 and the negative electrode layer 4. Are laminated. Thereafter, the positive electrode current collector 1, the positive electrode layer 2, the electrolyte layer 3, the negative electrode layer 4, and the negative electrode current collector 5 were laminated in this order by overlapping the electrolyte layers 3 so as to match each other. The laminated body 10a can be produced.

正極層2に含有される正極活物質としては、コバルト酸リチウム等に代表される公知の正極活物質を適宜用いることができる。また、正極層2に含有される固体電解質としては、LiPO等の酸化物系固体電解質のほか、LiPSや、LiS:P=50:50〜100:0となるようにLiS及びPを混合して作製した硫化物系固体電解質(例えば、質量比で、LiS:P=70:30となるようにLiS及びPを混合して作製した硫化物固体電解質)等、公知の固体電解質を適宜用いることができる。さらに、正極層2に含有される結着用バインダーとしては、ポリフッ化ビニリデン(PVDF)等のフッ素含有樹脂を挙げることができる。このほか、正極層2には、アセチレンブラック等の公知の導電材を含有させることも可能である。正極層2の厚みは特に限定されないが、例えば、0.1μm以上1000μm以下であることが好ましい。 As the positive electrode active material contained in the positive electrode layer 2, a known positive electrode active material typified by lithium cobaltate can be used as appropriate. As the solid electrolyte contained in the positive electrode layer 2, Li 3 PO 4 addition of the oxide-based solid electrolytes such as, Li 3 PS 4 and, Li 2 S: P 2 S 5 = 50: 50~100: 0 become as Li 2 S and P 2 S 5 sulfide was prepared by mixing a solid electrolyte (e.g., by mass ratio, Li 2 S: P 2 S 5 = 70: 30 to become as Li 2 S and A known solid electrolyte such as a sulfide solid electrolyte prepared by mixing P 2 S 5 can be appropriately used. Furthermore, examples of the binding binder contained in the positive electrode layer 2 include fluorine-containing resins such as polyvinylidene fluoride (PVDF). In addition, the positive electrode layer 2 can contain a known conductive material such as acetylene black. Although the thickness of the positive electrode layer 2 is not specifically limited, For example, it is preferable that they are 0.1 micrometer or more and 1000 micrometers or less.

負極層4には、負極活物質としてグラファイト等を含む公知のカーボン系負極合材を用いることができる。ただし、負極層4に含有される負極活物質はグラファイトに限定されず、その他の公知の負極活物質を適宜用いることができる。また、負極層4に含有される固体電解質としては、正極層2に用いることが可能な上記固体電解質と同様の物質を用いることができる。さらに、負極層4に含有される結着用バインダーとしては、ポリフッ化ビニリデン(PVDF)等のフッ素含有樹脂を挙げることができる。このほか、負極層4には、アセチレンブラック等の公知の導電材を含有させることも可能である。負極層4の厚みは特に限定されないが、例えば、0.1μm以上1000μm以下であることが好ましい。   For the negative electrode layer 4, a known carbon-based negative electrode mixture containing graphite or the like as a negative electrode active material can be used. However, the negative electrode active material contained in the negative electrode layer 4 is not limited to graphite, and other known negative electrode active materials can be appropriately used. Further, as the solid electrolyte contained in the negative electrode layer 4, the same material as the solid electrolyte that can be used for the positive electrode layer 2 can be used. Furthermore, examples of the binding binder contained in the negative electrode layer 4 include fluorine-containing resins such as polyvinylidene fluoride (PVDF). In addition, the negative electrode layer 4 may contain a known conductive material such as acetylene black. Although the thickness of the negative electrode layer 4 is not specifically limited, For example, it is preferable that they are 0.1 micrometer or more and 1000 micrometers or less.

電解質層3に用いられる固体電解質としては、電池に使用可能な公知の固体電解質であれば特に限定されず、正極層2や負極層4に用いることが可能な上記固体電解質と同様の物質を用いることができる。電解質層3の厚さは、電解質の種類や電池の構成等によって大きく異なるものであるが、例えば、0.1μm以上1000μm以下の範囲内、中でも0.1μm以上300μm以下の範囲内であることが好ましい。   The solid electrolyte used for the electrolyte layer 3 is not particularly limited as long as it is a known solid electrolyte that can be used for a battery, and the same material as the solid electrolyte that can be used for the positive electrode layer 2 and the negative electrode layer 4 is used. be able to. The thickness of the electrolyte layer 3 varies greatly depending on the type of electrolyte, the configuration of the battery, and the like. For example, the thickness of the electrolyte layer 3 may be in the range of 0.1 μm to 1000 μm, particularly in the range of 0.1 μm to 300 μm. preferable.

正極集電体1や負極集電体5としては、Al箔、Cu箔、Ni箔、Fe箔、CuNi箔、CuFe箔等の金属箔等、電池に使用可能な公知の集電体を適宜用いることができる。   As the positive electrode current collector 1 or the negative electrode current collector 5, a known current collector that can be used for a battery, such as an Al foil, a Cu foil, a Ni foil, a Fe foil, a CuNi foil, a CuFe foil, or the like is appropriately used. be able to.

<加圧工程(S12)>
S12は、S11で作製した積層体を積層方向に加圧する工程である。S12において積層体を加圧する手段は特に限定されず、公知の手段によって加圧することができる。
<Pressurizing step (S12)>
S12 is a process of pressurizing the laminated body produced in S11 in the laminating direction. The means for pressurizing the laminate in S12 is not particularly limited, and can be pressurized by a known means.

S12は、例えば、図2(b)に示したように、積層体10aを積層方向に圧力P1で加圧する工程とすることができる。積層体10aを積層方向に加圧することによって、正極層2や負極層4等に含まれる空隙を減らすとともに、正極層2に含まれる正極活物質や負極層4に含まれる負極活物質(以下、正極活物質と負極活物質とを区別する必要がない場合は、両者のどちらかを指すものとして「活物質」と表記する場合がある。)と、固体電解質との接触面積を増大させることができる。S12において、圧力P1の強さは50MPa以上800MPa以下であることが好ましく、加圧時間は1秒以上10時間以下であることが好ましい。圧力P1の強さが上記範囲の下限値より弱い場合や加圧時間が上記範囲の下限値より短い場合は、正極層2や負極層4等に含まれる空隙が多く残り、活物質と固体電解質との接触面積が少なくなる虞がある。一方、圧力P1の強さ上記範囲の上限値より強い場合や加圧時間が上記範囲の上限値より短い場合は、正極層2及び負極層4に含まれる空隙が少なくなり過ぎてしまい、充放電時の活物質の膨張収縮によって、正極層2及び負極層4が割れる虞がある。   For example, S12 may be a step of pressurizing the stacked body 10a with the pressure P1 in the stacking direction as illustrated in FIG. By pressing the laminated body 10a in the laminating direction, the voids contained in the positive electrode layer 2, the negative electrode layer 4 and the like are reduced, and the positive electrode active material contained in the positive electrode layer 2 and the negative electrode active material contained in the negative electrode layer 4 (hereinafter referred to as “positive electrode active material”) When there is no need to distinguish between the positive electrode active material and the negative electrode active material, it may be referred to as “active material” to indicate either of them, and the contact area between the solid electrolyte may be increased. it can. In S12, the strength of the pressure P1 is preferably 50 MPa or more and 800 MPa or less, and the pressurization time is preferably 1 second or more and 10 hours or less. When the strength of the pressure P1 is weaker than the lower limit value of the above range or when the pressurizing time is shorter than the lower limit value of the above range, a large amount of voids are left in the positive electrode layer 2 and the negative electrode layer 4 and the active material and the solid electrolyte There is a risk that the contact area with the surface will be reduced. On the other hand, when the strength of the pressure P1 is higher than the upper limit value in the above range or when the pressurization time is shorter than the upper limit value in the above range, the voids contained in the positive electrode layer 2 and the negative electrode layer 4 become too small, and charging / discharging. There is a possibility that the positive electrode layer 2 and the negative electrode layer 4 may break due to expansion and contraction of the active material.

<拘束工程(S13)>
S13は、S12の後、S11で作製した積層体を積層方向に加圧して拘束する工程である。
<Restraining step (S13)>
S13 is a step of constraining the laminated body produced in S11 by pressing in the laminating direction after S12.

S13は、例えば、図2(c)に示したように、適切な拘束手段20、20を用いて、積層体10aを積層方向に圧力P2で加圧したまま拘束する工程とすることができる。   For example, as shown in FIG. 2C, S13 can be a step of restraining the laminated body 10a while being pressurized in the laminating direction with the pressure P2 using appropriate restraining means 20 and 20.

S12において、積層体10aの積層方向に強い圧力を加えると、積層体10aを構成する各層が、図2(b)に示したように、積層方向に垂直な面方向に伸ばされる。このとき、上述したように、正極集電体1と正極層2との間、及び負極集電体5と負極層4との間に応力が発生する。しかしながら、S13において、0.1MPa以上100MPa以下の圧力P2にて所定の時間の間、積層体10aを積層方向に加圧したまま拘束することによって、正極集電体1と正極層2との間、及び負極集電体5と負極層4との間に発生していた応力を緩和することができる。よって、正極集電体1と正極層2との間、及び負極集電体5と負極層4との間での剥離を防止することができる。   In S12, when a strong pressure is applied in the stacking direction of the stacked body 10a, each layer constituting the stacked body 10a is stretched in a plane direction perpendicular to the stacking direction as shown in FIG. At this time, as described above, stress is generated between the positive electrode current collector 1 and the positive electrode layer 2 and between the negative electrode current collector 5 and the negative electrode layer 4. However, in S13, between the positive electrode current collector 1 and the positive electrode layer 2 by restraining the stacked body 10a while being pressurized in the stacking direction for a predetermined time at a pressure P2 of 0.1 MPa or more and 100 MPa or less. And the stress which generate | occur | produced between the negative electrode collector 5 and the negative electrode layer 4 can be relieved. Therefore, peeling between the positive electrode current collector 1 and the positive electrode layer 2 and between the negative electrode current collector 5 and the negative electrode layer 4 can be prevented.

S13において、積層体を加圧する圧力の強さは、1MPa以上50MPa以下であることが好ましく、10MPa以上30MPa以下であることがより好ましい。また、S12において、積層体を加圧する時間は、0.1時間以上10時間以下であることが好ましく、0.5時間以上5時間以下であることがより好ましく、1時間以上3時間以下であることがさらに好ましい。積層体を加圧する圧力が1MPa未満であると、電極層と集電体との間の接着力が不足して、電極層と集電体との剥離を防止できない虞がある。一方、積層体を加圧する圧力が50MPaを超えると、S13において集電体と電極層との間で常に応力が生じたまま加圧されることとなり、集電体と電極層との間の応力の緩和が十分に行われない虞がある。また、積層体を加圧する時間が0.1時間より短いと、集電体と電極層との間の応力の緩和が十分に行われない虞がある。一方、積層体を加圧する時間が10時間より長いと、正極層及び負極層が硬化し、充放電時の活物質の膨張収縮により、正極層及び負極層が割れる虞がある。   In S13, the strength of the pressure for pressurizing the laminate is preferably 1 MPa or more and 50 MPa or less, and more preferably 10 MPa or more and 30 MPa or less. In S12, the time during which the laminate is pressed is preferably from 0.1 hours to 10 hours, more preferably from 0.5 hours to 5 hours, and more preferably from 1 hour to 3 hours. More preferably. If the pressure for pressurizing the laminate is less than 1 MPa, the adhesive force between the electrode layer and the current collector is insufficient, and peeling between the electrode layer and the current collector may not be prevented. On the other hand, if the pressure to pressurize the laminated body exceeds 50 MPa, the pressure between the current collector and the electrode layer is always applied while the stress is generated between the current collector and the electrode layer in S13. There is a risk that this will not be sufficiently relaxed. Further, if the time for pressurizing the laminate is shorter than 0.1 hour, there is a possibility that the stress between the current collector and the electrode layer is not sufficiently relaxed. On the other hand, when the time for pressurizing the laminate is longer than 10 hours, the positive electrode layer and the negative electrode layer are cured, and the positive electrode layer and the negative electrode layer may break due to expansion and contraction of the active material during charge and discharge.

2.第二実施形態
図1及び図3を参照しつつ、第二実施形態にかかる本発明の電極体の製造方法について説明する。図3は、本発明の電極体の製造方法の他の例について、その過程を概略的に示す断面図である。
2. Second Embodiment With reference to FIGS. 1 and 3, a method for manufacturing an electrode body according to a second embodiment of the present invention will be described. FIG. 3 is a cross-sectional view schematically showing the process of another example of the electrode body manufacturing method of the present invention.

図3に示した方法は、S12以外は上記第一実施形態と同様である。すなわち、図3(a)に示したように積層体10aを作製する工程は、上記第一実施形態のS11と同様であるため、説明を省略する。   The method shown in FIG. 3 is the same as that of the first embodiment except for S12. That is, since the process of producing the laminated body 10a as shown in FIG. 3A is the same as S11 of the first embodiment, description thereof is omitted.

図3に示した方法では、S12をCIP(Cold Isostatic Press)によって行う。より具体的には、図3(b)に示すように、積層体10aを外装材30に封入し、さらにその外側を被覆材31で被覆し、CIPを行う。外装材30としては、従来の電池に用いられている公知の外装材を適宜用いることができる。例えば、アルミニウム製の外装材を用いることができる。また、被覆材31は、CIPを行う際に積層体10aが圧媒(水等)で濡れることを防止する目的で用いられるものである。被覆材31としては、従来用いられているものを特に限定することなく用いることができきる。CIPで積層体10aに加える圧力は、50MPa以上800MPa以下の範囲で任意の値を選択することができる。当該圧力は、例えば、196MPa程度とすることができる。また、加圧する時間は、1秒以上10時間以下の範囲で任意の時間を設定することができる。CIPを行うことによって、積層体10aを等方加圧することができる。   In the method shown in FIG. 3, S12 is performed by CIP (Cold Isostatic Press). More specifically, as shown in FIG. 3B, the laminated body 10a is enclosed in an exterior material 30, and the outside is further covered with a coating material 31, and CIP is performed. As the exterior material 30, a known exterior material used for a conventional battery can be appropriately used. For example, an aluminum exterior material can be used. Moreover, the coating | covering material 31 is used in order to prevent the laminated body 10a from getting wet with a pressure medium (water etc.), when performing CIP. As the covering material 31, a conventionally used material can be used without any particular limitation. The pressure applied to the laminated body 10a by CIP can select arbitrary values in the range of 50 MPa or more and 800 MPa or less. The pressure can be set to, for example, about 196 MPa. Moreover, the time to pressurize can set arbitrary time in the range of 1 second or more and 10 hours or less. By performing CIP, the laminated body 10a can be isotropically pressurized.

なお、本発明において、S12で積層体10aを加圧する方法としては、ロールプレスや平面プレスによる方法を採用することもできる。このときは、被覆材31が不要であり、積層体10aを加圧する強さ及び時間は、上記CIPと同一とすることができる。   In the present invention, as a method of pressurizing the laminated body 10a in S12, a method using a roll press or a plane press may be employed. At this time, the covering material 31 is unnecessary, and the strength and time for pressurizing the laminated body 10a can be the same as the CIP.

このようにCIP等によって積層体10aを加圧することによっても、正極層2や負極層4等に含まれる空隙を減らすとともに、正極層2に含まれる正極活物質や負極層4に含まれる負極活物質と、固体電解質との接触面積を増大させることができる。   Thus, by pressing the laminate 10a with CIP or the like, the voids contained in the positive electrode layer 2 and the negative electrode layer 4 are reduced, and the positive electrode active material contained in the positive electrode layer 2 and the negative electrode active material contained in the negative electrode layer 4 are reduced. The contact area between the substance and the solid electrolyte can be increased.

また、上記のようにCIPを行った場合も積層体10aの積層方向に加圧されるため、積層体10aを構成する各層が積層方向に垂直な面方向に伸ばされる。このとき、上述したように、正極集電体1と正極層2との間、及び負極集電体5と負極層4との間に応力が発生する。そのため、CIPを行った後は、図3(c)に示すように、被覆材31は除去して、外装材30に封入された積層体10aを上記第一実施形態のS13と同様に加圧したまま拘束する。かかる工程を経ることによって、正極集電体1と正極層2との間、及び負極集電体5と負極層4との間での剥離を防止することができる。   In addition, when the CIP is performed as described above, since pressure is applied in the stacking direction of the stacked body 10a, each layer constituting the stacked body 10a is stretched in a plane direction perpendicular to the stacking direction. At this time, as described above, stress is generated between the positive electrode current collector 1 and the positive electrode layer 2 and between the negative electrode current collector 5 and the negative electrode layer 4. Therefore, after performing CIP, as shown in FIG.3 (c), the coating | covering material 31 is removed and the laminated body 10a enclosed with the exterior material 30 is pressurized like S13 of said 1st embodiment. Restrained. By passing through this process, peeling between the positive electrode current collector 1 and the positive electrode layer 2 and between the negative electrode current collector 5 and the negative electrode layer 4 can be prevented.

以上、現時点において最も実践的で好ましいと思われる実施形態に関連して本発明を説明した。しかしながら、本発明は本願明細書中に開示された実施形態に限定されるものではなく、特許請求の範囲、及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電極体の製造方法及び電池の製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   The present invention has been described with reference to the most practical and preferred embodiments at the present time. However, the present invention is not limited to the embodiments disclosed in the present specification, and can be appropriately changed within the scope of the claims and the gist or idea of the invention that can be read from the entire specification. It should be understood that the manufacturing method of the electrode body and the manufacturing method of the battery with such a change are also included in the technical scope of the present invention.

本発明の電極体の製造方法は、携帯機器、電気自動車、ハイブリッド車等の電源として用いられる電池に備えられる電極体の製造に適用することができる。   The electrode body manufacturing method of the present invention can be applied to manufacture of an electrode body provided in a battery used as a power source for portable devices, electric vehicles, hybrid vehicles, and the like.

1 正極集電体
2 正極層
3 電解質層
4 負極層
5 負極集電体
10a 積層体
20 拘束手段
30 外装材
31 被覆材
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode layer 3 Electrolyte layer 4 Negative electrode layer 5 Negative electrode collector 10a Laminated body 20 Constraining means 30 Exterior material 31 Covering material

Claims (7)

集電体、及び該集電体上に積層された正極層又は負極層を備えるリチウムイオン二次電池用電極体の製造方法であって、
前記集電体、及び前記集電体上に積層された前記正極層又は前記負極層を備える積層体を作製する積層工程と、
前記積層工程で作製した前記積層体を積層方向に50MPa以上800MPa以下の圧力で加圧する加圧工程と、
前記加圧工程の後、10MPa以上30MPa以下の圧力にて0.1時間以上10時間以下の間、前記積層体を積層方向に加圧したまま拘束する拘束工程と、
を含む、リチウムイオン二次電池用電極体の製造方法。
A method for producing an electrode body for a lithium ion secondary battery comprising a current collector and a positive electrode layer or a negative electrode layer laminated on the current collector,
A stacking step of manufacturing a stack including the current collector and the positive electrode layer or the negative electrode layer stacked on the current collector;
A pressurizing step of pressurizing the laminate produced in the laminating step with a pressure of 50 MPa or more and 800 MPa or less in the laminating direction;
After the pressurizing step, a constraining step of restraining the laminated body while being pressed in the laminating direction at a pressure of 10 MPa or more and 30 MPa or less for 0.1 hour or more and 10 hours or less ;
The manufacturing method of the electrode body for lithium ion secondary batteries containing this.
前記拘束工程において、0.5時間以上5時間以下の間、前記積層体を積層方向に拘束する、請求項1に記載のリチウムイオン二次電池用電極体の製造方法。 2. The method of manufacturing an electrode body for a lithium ion secondary battery according to claim 1, wherein, in the restraining step, the laminate is restrained in the stacking direction for 0.5 hours or more and 5 hours or less. 前記拘束工程において、1時間以上3時間以下の間、前記積層体を積層方向に拘束する、請求項1に記載のリチウムイオン二次電池用電極体の製造方法。 2. The method for producing an electrode body for a lithium ion secondary battery according to claim 1, wherein in the restraining step, the laminate is restrained in the stacking direction for 1 hour or more and 3 hours or less. 前記積層工程において、金属箔を含む前記集電体、及び該集電体上に積層された、カーボン系負極合材を含む前記負極層を備える前記積層体を作製する、請求項1〜のいずれかに記載のリチウムイオン二次電池用電極体の製造方法。 In the laminating step, the current collector comprising a metal foil, and said population stacked on the collector, said to produce a laminate comprising the negative electrode layer containing a carbon-based negative electrode admixture of claim 1-3 The manufacturing method of the electrode body for lithium ion secondary batteries in any one. 正極集電体、正極層、電解質層、負極層、及び負極集電体を該順序にて備えたリチウムイオン二次電池を製造する方法であって、
前記正極集電体、前記正極層、前記電解質層、前記負極層、及び前記負極集電体を該順序で備えた積層体を作製する積層工程と、
前記積層工程で作製した前記積層体を積層方向に50MPa以上800MPa以下の圧力で加圧する加圧工程と、
前記加圧工程の後、10MPa以上30MPa以下の圧力にて0.1時間以上10時間以下の間、前記積層体を積層方向に加圧したまま拘束する拘束工程と、
を含む、リチウムイオン二次電池の製造方法。
A method for producing a lithium ion secondary battery comprising a positive electrode current collector, a positive electrode layer, an electrolyte layer, a negative electrode layer, and a negative electrode current collector in the order,
A laminating step of producing a laminate including the positive electrode current collector, the positive electrode layer, the electrolyte layer, the negative electrode layer, and the negative electrode current collector in the order;
A pressurizing step of pressurizing the laminate produced in the laminating step with a pressure of 50 MPa or more and 800 MPa or less in the laminating direction;
After the pressurizing step, a constraining step of restraining the laminated body while being pressed in the laminating direction at a pressure of 10 MPa or more and 30 MPa or less for 0.1 hour or more and 10 hours or less ;
A method for producing a lithium ion secondary battery, comprising :
前記正極層及び前記負極層が固体電解質を含む、請求項1〜4のいずれかに記載のリチウムイオン二次電池用電極体の製造方法。The manufacturing method of the electrode body for lithium ion secondary batteries in any one of Claims 1-4 in which the said positive electrode layer and the said negative electrode layer contain a solid electrolyte. 前記正極層及び前記負極層が固体電解質を含む、請求項5に記載のリチウムイオン二次電池の製造方法。The method for producing a lithium ion secondary battery according to claim 5, wherein the positive electrode layer and the negative electrode layer contain a solid electrolyte.
JP2011000690A 2011-01-05 2011-01-05 Method for producing electrode body for lithium ion secondary battery and method for producing lithium ion secondary battery Active JP5636965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000690A JP5636965B2 (en) 2011-01-05 2011-01-05 Method for producing electrode body for lithium ion secondary battery and method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000690A JP5636965B2 (en) 2011-01-05 2011-01-05 Method for producing electrode body for lithium ion secondary battery and method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012142228A JP2012142228A (en) 2012-07-26
JP5636965B2 true JP5636965B2 (en) 2014-12-10

Family

ID=46678289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000690A Active JP5636965B2 (en) 2011-01-05 2011-01-05 Method for producing electrode body for lithium ion secondary battery and method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5636965B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043663B2 (en) 2017-03-30 2021-06-22 Lg Chem, Ltd. Method for manufacturing high-loading electrode

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032233B2 (en) 2014-03-18 2016-11-24 トヨタ自動車株式会社 Solid battery and manufacturing method thereof, and assembled battery and manufacturing method thereof
JP6521825B2 (en) * 2015-10-14 2019-05-29 トヨタ自動車株式会社 Method of manufacturing stacked battery
JP6902732B2 (en) * 2016-08-09 2021-07-14 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
KR102628327B1 (en) * 2016-08-17 2024-01-25 에이지씨 가부시키가이샤 Glass
JP6912658B2 (en) * 2018-03-28 2021-08-04 富士フイルム株式会社 All-solid-state secondary battery and its manufacturing method
WO2020153457A1 (en) 2019-01-23 2020-07-30 大日本印刷株式会社 All-solid-state battery and method for manufacturing same
JP6777276B1 (en) 2019-01-23 2020-10-28 大日本印刷株式会社 Exterior materials for all-solid-state batteries, their manufacturing methods, and all-solid-state batteries
WO2020184693A1 (en) 2019-03-12 2020-09-17 大日本印刷株式会社 Outer package material for all-solid-state batteries, method for producing same and all-solid-state battery
KR20210136977A (en) 2019-03-12 2021-11-17 다이니폰 인사츠 가부시키가이샤 All-solid-state battery exterior material, all-solid-state battery and manufacturing method thereof
CN115244768A (en) 2020-03-12 2022-10-25 大日本印刷株式会社 Exterior material for all-solid-state battery, method for producing same, and all-solid-state battery
JP7018166B1 (en) 2020-03-12 2022-02-09 大日本印刷株式会社 Exterior materials for all-solid-state batteries, their manufacturing methods, and all-solid-state batteries
US20230261290A1 (en) 2020-06-29 2023-08-17 Dai Nippon Printing Co., Ltd. All-solid-state battery packaging material, method for producing same, and all-solid-state battery
WO2022118938A1 (en) 2020-12-02 2022-06-09 大日本印刷株式会社 Process film for use in manufacture of all-solid-state battery and method for manufacturing all-solid-state battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088100B2 (en) * 1989-01-09 1996-01-29 工業技術院長 Method for manufacturing hydrogen storage electrode
JPH0513099A (en) * 1991-06-28 1993-01-22 Matsushita Electric Ind Co Ltd Manufacture of solid secondary battery
JP3575131B2 (en) * 1995-09-29 2004-10-13 東レ株式会社 Method for producing electrode sheet for battery
JP3956478B2 (en) * 1998-03-31 2007-08-08 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery
TW499766B (en) * 2000-03-29 2002-08-21 Elite Ionergy Co Ltd Battery manufacturing method
JP2003059538A (en) * 2001-08-20 2003-02-28 Sony Corp Manufacturing method of cell
JP2010073571A (en) * 2008-09-19 2010-04-02 Panasonic Corp Lithium ion secondary battery and method of manufacturing the same
JP2010086754A (en) * 2008-09-30 2010-04-15 Nissan Motor Co Ltd Method for manufacturing battery
JP2012089421A (en) * 2010-10-21 2012-05-10 Sumitomo Electric Ind Ltd Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11043663B2 (en) 2017-03-30 2021-06-22 Lg Chem, Ltd. Method for manufacturing high-loading electrode

Also Published As

Publication number Publication date
JP2012142228A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5636965B2 (en) Method for producing electrode body for lithium ion secondary battery and method for producing lithium ion secondary battery
JP5610057B2 (en) Solid battery
US9099694B2 (en) Method of manufacturing electrode body
JP6547768B2 (en) Method of manufacturing all solid lithium ion battery
US20110162198A1 (en) Method of producing solid electrolyte-electrode assembly
JP5448964B2 (en) All solid-state lithium ion secondary battery
JP6639383B2 (en) All-solid secondary battery
WO2017163846A1 (en) Lithium ion secondary battery, electrode and method for producing same
US20200028200A1 (en) Method for producing an electrode unit for a battery cell and electrode unit
KR20110081286A (en) Lithium secondary battery and use thereof
KR20200027999A (en) Coin-type battery and its manufacturing method
KR101836581B1 (en) A solid-state battery and preparation thereof
JP2017204377A (en) All-solid battery
JP2015162353A (en) Method for manufacturing all-solid battery
KR102227307B1 (en) Electrode assembly
JP5557471B2 (en) Manufacturing method of all-solid-state secondary battery
US11424474B2 (en) Secondary battery, and apparatus and method for manufacturing the same
JP5343663B2 (en) Method and apparatus for manufacturing bipolar secondary battery
US6737196B2 (en) Method of making a lithium polymer battery and battery made by the method
KR102328527B1 (en) Stack-type electrode assembly with no deflection of the electrode and manufacturing methods thereof
TW201302971A (en) Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
CN113964394B (en) Method for manufacturing all-solid-state battery
JP2010067537A (en) Method of manufacturing nonaqueous electrolyte secondary battery
KR102197360B1 (en) Electrode Assembly Comprising One-sided Coating Electrode of Improved Mechanical Strength
JP2015076315A (en) Method of manufacturing solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R151 Written notification of patent or utility model registration

Ref document number: 5636965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151