JP3573244B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP3573244B2
JP3573244B2 JP17315397A JP17315397A JP3573244B2 JP 3573244 B2 JP3573244 B2 JP 3573244B2 JP 17315397 A JP17315397 A JP 17315397A JP 17315397 A JP17315397 A JP 17315397A JP 3573244 B2 JP3573244 B2 JP 3573244B2
Authority
JP
Japan
Prior art keywords
anode body
electrolytic capacitor
solid electrolytic
anode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17315397A
Other languages
Japanese (ja)
Other versions
JPH118166A (en
Inventor
貴之 荒屋敷
芳博 鈴木
良太郎 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi AIC Inc
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP17315397A priority Critical patent/JP3573244B2/en
Publication of JPH118166A publication Critical patent/JPH118166A/en
Application granted granted Critical
Publication of JP3573244B2 publication Critical patent/JP3573244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解コンデンサの製造方法に関し、特に再化成処理を改良した固体電解コンデンサの製造方法に関する。
【0002】
【従来の技術】
タンタル固体電解コンデンサ等の固体電解コンデンサは、例えば、タンタルやアルミニウム等の弁作用金属の微粉末にバインダーを混合した粉末を用いている。そしてこの粉末を、予じめタンタル等の弁作用金属からなる陽極用リード線の一端を埋め込んで、プレス加圧成型する。成型後、真空中で高温度で加熱して焼結し、焼結体を形成する。次に、この焼結体を化成液中に浸漬し、陽極酸化して酸化皮膜を生成して陽極体形成する。陽極体を形成後、この陽極体を硝酸マンガン溶液中等に浸漬し、次いで焼成する。焼成後、損傷した酸化皮膜を修復するために、陽極体を再化成液中に浸漬して再化成処理する。そして必要に応じてこの硝酸マンガン溶液中等に浸漬する工程から再化成処理の工程までを繰り返して行ない、所定の厚さの固体電解質を形成する。固体電解質層を形成後、グラファイト層や銀層を順次形成してコンデンサ素子を造る。
【0003】
ところで、陽極体を再化成処理するには、量産化のために、細長いステンレス製等の金属板に陽極体を等間隔に取り付けた状態で行っている。すなわち、この金属板に取り付けた複数個の陽極体を、平板状電極を配置した再化成液中に浸漬する。そして陽極体と平板状電極との間で通電して陽極体を再化成処理する。この際、陽極体間の最短距離Tに比較して、陽極体と平板状電極との最短距離Tを比較的長めになるようにし、5≦T/Tとなるように平板状電極を配置し、陽極体を再化成液中に浸漬している。
【0004】
【発明が解決しようとする課題】
しかし、従来の再化成処理方法では、陽極体間の最短距離Tに比較して、陽極体と平板状電極との間の最短距離Tが長めになっているため、陽極体から直接平板状電極に至るまでの経路の抵抗値と、陽極体から隣接する陽極体の固体電解質層を迂回して平板状電極に至るまでの経路の抵抗値とが比較的に近似した値になっている。従って、漏れ電流は、陽極体から再化成液を通って平板状電極に流れるとともに、かなりの量が前記陽極体から隣接する陽極体の固体電解質層を迂回して平板状電極にも流れる。このため、漏れ電流の大きな陽極体があると、この陽極体から隣接する陽極体を通して平板状電極に向う経路にも比較的大きな漏れ電流が流れる。そしてこの漏れ電流のため隣接する陽極体の固体電解質層が再化成液中に溶け出す。その結果、漏れ電流の大きな陽極体に隣接する陽極体も漏れ電流が増大し、外観も変色する欠点がある。
【0005】
本発明は、以上の欠点を改良し、漏れ電流特性を向上し、不良を低減できる固体電解コンデンサの製造方法を提供することを課題とするものである。
【0006】
【課題を解決するための手段】
請求項1の発明は、上記の課題を解決するために、弁作用金属を陽極酸化して酸化被膜を形成した陽極体に固体電解質を形成した後、平板状電極を配置した再化成槽の再化成液中に前記陽極体を複数個浸漬し前記陽極体と前記平板状電極との間で通電して再化成処理し、続いて金属層を形成する固体電解コンデンサの製造方法において、前記平板状電極を前記再化成槽の液底面から平行方向に離して浸漬するとともに、前記陽極体間の最短距離Tと、前記陽極体と前記平板状電極との間の最短距離Tとを0<T/T<5になるように前記陽極体を再化成液中に浸漬し再化成処理することを特長とする固体電解コンデンサの製造方法を提供するものである。
【0007】
また、請求項2の発明は、請求項1の発明において、平板状電極の材質をステンレス、カーボン、金、白金のうちの一種としたもので、この平板状電極を用いて再化成処理をするものである。
【0008】
本発明は、陽極体と平板状電極との間の最短距離Tを短かくして、陽極体間の最短距離Tとの関係を、0<T/T<5としている。すなわち、陽極体間の抵抗は、陽極体と平板状電極との間の抵抗は1/5よりも大きくなる。このため、特定の陽極体から隣接する陽極体及びその陽極体の固体電解質層を迂回して平板状電極に至る経路の抵抗は、特定の陽極体から直接平板状電極に至る経路の抵抗に比較して約1.2倍以上になる。従って、特定の陽極体の漏れ電流が大きくても、その漏れ電流のうち隣接する陽極体を迂回して流れる分が従来に比較して少なくなる。それ故、隣接する陽極体は、その分、固体電解質層が溶出するのを抑制され、漏れ電流特性の劣化が抑制される。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
先ず、タンタルやアルミニウム、ニオブ等の弁作用金属の微粉末に、カンファやアクリル系樹脂等を有機溶剤で溶かしたバインダーを添加し、混合する。混合した後、加熱して有機溶剤を揮発して除去する。
次に、この弁作用金属の粉末を、円筒形や角形等の形状にプレス等で圧縮成型する。この際、タンタル等の弁作用金属からなる陽極用リード線の一端を粉末中に挿入し、他端を引き出した構造にする。
圧縮成型後、真空中等の雰囲気中において高温度で焼成して、図1(イ)に示す通りの焼結体1を形成する。
焼成後、陽極用リード線2の根本に、テフロンやシリコーンゴム、シリコーン樹脂等からなる円板状の絶縁板3を配置する。
そして、図1(ロ)に示す通り、この焼結体1を複数個、陽極用リード線2の箇所でステンレス製等の細長い金属板4に接続する。
焼結体1を金属板4に接続後、この焼結体1を硝酸やリン酸等の化成液中に浸漬して陽極化成し、図1(ハ)に示す通り、厚さ200オングストローム〜6000オングストローム程度の酸化皮膜5を生成して、陽極体6を形成する。
【0010】
陽極体6を形成後、図1(ニ)に示す通り、二酸化マンガン等からなる固体電解質層7を形成する。固体電解質層7を形成するには、液面が陽極用リード線2の引き出した面のわずかに上であって絶縁板3を越えない程度に陽極用リード線2の引き出し面側を上にして陽極体6を硝酸マンガン溶液中等に浸漬する。これにより、液を陽極体6に含浸する。含浸後、加熱分解し、さらに再化成処理する。そして順次濃度の高い硝酸マンガン溶液を用い、その溶液の含浸、加熱分解及び再化成処理の工程を繰り返して行ない、所定の厚さの二酸化マンガン等からなる固体電解質層7を形成する。
【0011】
再化成処理は、図2(イ)及び(ロ)に示す通り、金属板4に接続した複数個の陽極体6を、再化成槽8内に充した硝酸やリン酸等の温度が30〜80℃程度の再化成液9中に浸漬して行う。再化成槽8は、例えばこの図2(イ)及び(ロ)に示す通り、底の浅い四角の箱形で、2ケの短辺の上方に各々切込みを有するバー10−1及び10−2を設けるとともに、底面に平行にして所定の深さの位置に平板状電極11を設けその長辺側の両端11a及び11bを屈曲して再化成槽8の長辺12a及び12bに引っ掛ける構造になっている。そしてバー10−1及び10−2間の切込みに、陽極体6を接続した金属板4の両端を挿入し、複数列にして並行に配置する。この場合、図2(イ)に示す通り、陽極体6間の最短距離Tと、陽極体6と平板状電極11との間の最短距離Tとの関係が0<T/T<5となるように平板状電極11を再化成槽8内に配置している。そしてこの位置関係の状態で、陽極体6側を正に、平板状電極11側を負になるように電圧を印加し、陽極体6の再化成処理をする。この場合、タンタル粉末の陽極体にあっては、その陽極体の重量1gあたり0.1〜1Aの通電電流となるようにする。再化成液9は、市販のリン酸液や硝酸液を1〜5%に希釈したものとし、化成液よりも濃度を低くしている。なお、図2(イ)においては、陽極体6間の最短距離Tを、同一の金属板4に接続した陽極体6間の最短距離としている
が、異なる金属板どうしに接続した陽極体6どうしの距離の方が短い場合には、その距離の方を最短距離とする。
【0012】
再化成処理等を行ない固体電解質層を形成した後、図1(ホ)に示す通り、カーボンペーストを塗布してカーボン層13を形成する。
また、カーボン層13の表面には、図1(ヘ)に示す通り、銀ペーストを塗布して銀層14を形成する。
銀層14を形成後、陽極体6を金属板4から切離す。
そして図1(ト)に示す通り、銀層14に銀ペースト15により陰極端子16を接続するとともに、陽極用リード線2に陽極端子17を溶接等により接続する。
次に、図1(チ)に示す通り、樹脂モールド法や樹脂ディップ法等に等により外装18を形成する。
外装18を形成後、エージング処理し、さらに陰極端子16と陽極端子17とを外装18の表面に沿って折り曲げて、固体電解コンデンサ19を形成する。
【0013】
【実施例】
次に、本発明の実施例について説明する。
先ず、タンタルの微粉末にバインダーを混合した粉末を角形にプレス圧縮成型する。この際、タンタル製の陽極用リード線の一端を粉末中に挿入し、他端を引き出した構造にする。圧縮成型後、真空中で焼結し、0.85mm×1.05mm×1.20mm角の焼結体を形成する。焼結体を形成後、陽極用リード線の根本にテフロン製の円板状の絶縁板を配置する。次に、焼結体を硝酸溶液中に浸漬し、化成電圧14Vで陽極酸化処理し、酸化皮膜を形成して陽極体とする。酸化皮膜を形成後、硝酸マンガン溶液中に陽極体を浸漬して液を含浸し、焼成して熱分解し、再化成処理する。そしてこの含浸から再化成までの工程を数回繰り返して行い、二酸化マンガンからなる固体電解質層を形成する。なお、再化成処理は、陽極体間の最短距離Tと、陽極体と平板状電極との間の最短距離Tとを表1の通りに示す値として行う。そして固体電解質層を形成後、カーボンペースト及び銀ペーストを順次塗布して、カーボン層及び銀層を形成する。次に、リードフレームの陰極端子を銀ペーストにより銀層に接続するとともに、リードフレームの陽極端子を陽極用リード線に溶接する。この後、トランスファーモールド法により外装を形成する。外装を形成後、リードフレームを所定の位置で切断する。切断後、エージング処理を行い、定格4V,22μFのタンタル固体電解コンデンサとする。
【0014】
そして上記実施例の方法により製造したタンタル固体電解コンデンサと、従来の方法により製造したタンタル固体電解コンデンサとにつき、漏れ電流の不良率を測定し、表1に示した。
【0015】
なお、従来例1〜従来例3のタンタル固体電解コンデンサは、T2/T1を表1に示す通り5よりも大きくして再化成処理する以外は実施例1〜実施例6のタンタル固体電解コンデンサと同一の条件で製造したものとする。
【0016】
また、漏れ電流は、試料に1kΩの抵抗を直列に接続し、温度25℃の雰囲気中において、試料と抵抗間に直流電圧4Vを印加し、3分後の電流値とする。そして一般的に用いている製品定格基準値0.01CV(μA/μF・V)に0.25を掛けた値、すなわち、0.25×0.01CVを基準とし、漏れ電流がこの値よりも小さい場合を良、等しいか、大きい場合を不良とする。そしてこの不良率が3%未満の場合を良、3%以上の場合を不良とし総合判定した。
試料数は各々5000ケとする。
以下余白。
【0017】
【表1】

Figure 0003573244
【0018】
この表1から明らかな通り、実施例1〜実施例6は、不良率が1.8〜2.8%、総合判定が良となった。これに対して、従来例1〜従来例3は、不良率が5
.8〜7.1%、総合判定が不良となった。
これらの結果から、実施例1〜実施例6は、従来例1〜従来例3に比較して漏れ電流特性が改良され、不良が低下することが明らかである。
【0019】
【発明の効果】
以上の通り、本発明の製造方法によれば、弁作用金属を陽極酸化して酸化皮膜を形成した陽極体に固体電解質層を形成した後、平板状電極を再化成槽の液底面から平行方向に離して浸漬するとともに、再化成液中に陽極体を複数個浸漬し、この際、陽極体間の最短距離Tと、陽極体と平板状電極との間の最短距離Tとを0<T/T<5の関係にして互いに配置し、陽極体と平板状電極との間で通電して再化成処理し、続いて金属層や外装を形成等しているため、漏れ電流特性を改善でき、不良を低減でき、信頼の高い固体電解コンデンサが得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態の工程図を示す。
【図2】本発明の実施の形態の再化成処理工程において再化成液中に陽極体を浸漬した状態の断面図を示す。
【符号の説明】
1…焼結体、 5…酸化皮膜、 6…陽極体、 7…固体電解質層、
8…再化成槽、 9…再化成液、 11…平板状電極、13…カーボン層、
14…銀層、 19…固体電解コンデンサ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor with improved re-chemical conversion treatment.
[0002]
[Prior art]
A solid electrolytic capacitor such as a tantalum solid electrolytic capacitor uses a powder obtained by mixing a binder with a fine powder of a valve metal such as tantalum or aluminum. Then, this powder is previously press-molded by embedding one end of an anode lead wire made of a valve metal such as tantalum. After molding, it is heated at a high temperature in a vacuum and sintered to form a sintered body. Next, the sintered body is immersed in a chemical conversion solution and anodized to form an oxide film to form an anode body. After forming the anode body, the anode body is immersed in a manganese nitrate solution or the like, and then fired. After firing, in order to repair the damaged oxide film, the anode body is immersed in a re-chemical conversion solution and subjected to a re-chemical conversion treatment. If necessary, the steps of dipping in a manganese nitrate solution or the like and the step of re-chemical treatment are repeated to form a solid electrolyte having a predetermined thickness. After forming the solid electrolyte layer, a graphite layer and a silver layer are sequentially formed to produce a capacitor element.
[0003]
By the way, in order to re-form the anode body, for the purpose of mass production, the anode body is attached to an elongated metal plate made of stainless steel or the like at regular intervals. That is, the plurality of anode bodies attached to the metal plate are immersed in a re-formation solution in which the flat electrodes are arranged. Then, a current is passed between the anode body and the plate-shaped electrode to re-form the anode body. In this case, compared to the shortest distance T 1 of the inter-anode body, as a relatively long the shortest distance T 2 of the anode body and the planar electrodes, flat such that 5 ≦ T 2 / T 1 The electrode is arranged, and the anode body is immersed in the re-formation solution.
[0004]
[Problems to be solved by the invention]
However, in the conventional reformation process method, compared to the shortest distance T 1 of the inter-anode body, since the shortest distance T 2 of the between the anode body and the plate-shaped electrode is in the long, directly from the anode body flat plate And the resistance of the path from the anode body to the plate electrode bypassing the solid electrolyte layer of the adjacent anode body are relatively close to each other. . Accordingly, a leakage current flows from the anode body to the flat electrode through the re-formation solution, and a considerable amount also flows from the anode body to the flat electrode bypassing the solid electrolyte layer of the adjacent anode body. For this reason, if there is an anode body having a large leakage current, a relatively large leakage current flows also from the anode body to the path toward the flat electrode through the adjacent anode body. This leakage current causes the solid electrolyte layer of the adjacent anode body to dissolve into the re-formation solution. As a result, the anode body adjacent to the anode body having a large leakage current also has a disadvantage that the leakage current increases and the appearance changes.
[0005]
An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that can improve the above-mentioned drawbacks, improve leakage current characteristics, and reduce defects.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention of claim 1 forms a solid electrolyte on an anode body on which an oxide film is formed by anodizing a valve action metal, and then re- forms a re- formation tank in which a flat electrode is disposed. the anode body plurality immersed in the chemical conversion solution, the re-chemical conversion treatment by energizing between the anode body and the plate electrodes, followed by the manufacturing method of solid electrolytic capacitor of forming a metal layer, the plate the Jo electrode while immersed apart in parallel from the liquid bottom of the re-anodizing tank, the shortest distance T 1 of the between the anode body, and a shortest distance T 2 of the between the flat electrode and the anode body 0 An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor, characterized in that the anode body is immersed in a re-chemical conversion solution and subjected to a re-chemical conversion treatment so that <T 2 / T 1 <5.
[0007]
According to a second aspect of the present invention, in the first aspect of the present invention, the material of the flat electrode is one of stainless steel, carbon, gold, and platinum, and a re-chemical treatment is performed using the flat electrode. Things.
[0008]
The present invention, the shortest distance T 2 of the between the anode body and the plate-shaped electrode shortened from, the relation between the shortest distance T 1 of the inter-anode body, and a 0 <T 2 / T 1 < 5. That is, the resistance between the anode body and the resistance between the anode body and the flat electrode is larger than 1/5. For this reason, the resistance of the path from the specific anode body to the adjacent anode body and the plate electrode bypassing the solid electrolyte layer of the anode body is compared to the resistance of the path from the specific anode body to the plate electrode directly. About 1.2 times or more. Therefore, even if the leakage current of a specific anode body is large, the amount of the leakage current flowing around the adjacent anode body is reduced as compared with the related art. Therefore, in the adjacent anode body, elution of the solid electrolyte layer is suppressed by that much, and deterioration of the leakage current characteristic is suppressed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a binder in which camphor, an acrylic resin, or the like is dissolved in an organic solvent is added to and mixed with fine powder of a valve metal such as tantalum, aluminum, or niobium. After mixing, the mixture is heated to volatilize and remove the organic solvent.
Next, the powder of the valve action metal is compression-molded into a shape such as a cylinder or a square by a press or the like. At this time, one end of an anode lead wire made of a valve metal such as tantalum is inserted into the powder, and the other end is drawn out.
After compression molding, it is fired at a high temperature in an atmosphere such as a vacuum to form a sintered body 1 as shown in FIG.
After firing, a disk-shaped insulating plate 3 made of Teflon, silicone rubber, silicone resin, or the like is arranged at the root of the anode lead wire 2.
Then, as shown in FIG. 1B, a plurality of the sintered bodies 1 are connected to an elongated metal plate 4 made of stainless steel or the like at the positions of the anode lead wires 2.
After connecting the sintered body 1 to the metal plate 4, the sintered body 1 is anodized by dipping in a chemical solution such as nitric acid or phosphoric acid, and has a thickness of 200 Å to 6000 as shown in FIG. The oxide film 5 having a thickness of about Å is formed to form the anode body 6.
[0010]
After the formation of the anode body 6, a solid electrolyte layer 7 made of manganese dioxide or the like is formed as shown in FIG. In order to form the solid electrolyte layer 7, the liquid surface is slightly above the surface from which the lead wire for anode 2 has been drawn out, and the drawing surface side of the lead wire for anode 2 is positioned upward so as not to exceed the insulating plate 3. The anode body 6 is immersed in a manganese nitrate solution or the like. Thus, the anode body 6 is impregnated with the liquid. After the impregnation, it is thermally decomposed and subjected to re-chemical treatment. Then, using a manganese nitrate solution having a high concentration sequentially, the steps of impregnation of the solution, thermal decomposition and re-chemical conversion treatment are repeated to form a solid electrolyte layer 7 of manganese dioxide or the like having a predetermined thickness.
[0011]
As shown in FIGS. 2 (a) and 2 (b), the re-formation treatment is performed by bringing the plurality of anode bodies 6 connected to the metal plate 4 into a re-formation tank 8 at a temperature of 30 to 30 nitric acid or phosphoric acid. The immersion is performed by dipping in a re-formation solution 9 at about 80 ° C. As shown in FIGS. 2 (a) and 2 (b), for example, the re-formation tank 8 is a bar-shaped box 10-1 and 10-2 each having a notch above two short sides and a rectangular box having a shallow bottom. And a flat electrode 11 is provided at a position of a predetermined depth in parallel with the bottom surface, and both ends 11a and 11b on the long side thereof are bent and hooked on the long sides 12a and 12b of the reforming tank 8. ing. Then, both ends of the metal plate 4 to which the anode body 6 is connected are inserted into the cuts between the bars 10-1 and 10-2, and are arranged in parallel in a plurality of rows. In this case, as shown in FIG. 2 (b), the shortest distance T 1 of the between anode body 6, the relationship between the shortest distance T 2 of the between the anode body 6 and the plate-shaped electrode 11 is 0 <T 2 / T 1 The plate electrode 11 is arranged in the re-formation tank 8 so as to satisfy <5. Then, in this positional relationship, a voltage is applied so that the anode body 6 side becomes positive and the plate-shaped electrode 11 side becomes negative, and the anode body 6 is subjected to re-chemical treatment. In this case, in the case of the anode body of the tantalum powder, the conduction current is set to 0.1 to 1 A per 1 g of the weight of the anode body. The re-chemical solution 9 is obtained by diluting a commercially available phosphoric acid solution or nitric acid solution to 1 to 5% and has a lower concentration than the chemical conversion solution. Incidentally, FIG. In 2 (b), the shortest distance T 1 of the between anode body 6, although the shortest distance between the anode body 6 connected to the same metal plate 4 was connected to a different metal plate to each other anode body 6 If the distance between the two is shorter, the distance is set as the shortest distance.
[0012]
After forming a solid electrolyte layer by performing re-chemical treatment or the like, a carbon paste is applied to form a carbon layer 13 as shown in FIG.
On the surface of the carbon layer 13, a silver paste is applied to form a silver layer 14, as shown in FIG.
After forming the silver layer 14, the anode body 6 is separated from the metal plate 4.
Then, as shown in FIG. 1 (g), the cathode terminal 16 is connected to the silver layer 14 by the silver paste 15, and the anode terminal 17 is connected to the anode lead wire 2 by welding or the like.
Next, as shown in FIG. 1H, the exterior 18 is formed by a resin molding method, a resin dipping method, or the like.
After the exterior 18 is formed, aging is performed, and the cathode terminal 16 and the anode terminal 17 are bent along the surface of the exterior 18 to form a solid electrolytic capacitor 19.
[0013]
【Example】
Next, examples of the present invention will be described.
First, powder obtained by mixing a binder with fine tantalum powder is press-molded into a square shape. At this time, one end of a tantalum anode lead wire is inserted into the powder, and the other end is drawn out. After compression molding, sintering is performed in a vacuum to form a 0.85 mm × 1.05 mm × 1.20 mm square sintered body. After forming the sintered body, a disk-shaped insulating plate made of Teflon is arranged at the root of the anode lead wire. Next, the sintered body is immersed in a nitric acid solution and anodized at a formation voltage of 14 V to form an oxide film to form an anode body. After forming the oxide film, the anode body is immersed in a manganese nitrate solution, impregnated with the solution, fired, thermally decomposed, and subjected to re-chemical treatment. The process from impregnation to re-chemical formation is repeated several times to form a solid electrolyte layer made of manganese dioxide. Incidentally, reformation process is carried out as the shortest distance T 1 of the inter-anode body, as a value indicating as shown in Table 1 and the shortest distance T 2 of the between the anode body and the planar electrodes. After forming the solid electrolyte layer, a carbon paste and a silver paste are sequentially applied to form a carbon layer and a silver layer. Next, the cathode terminal of the lead frame is connected to the silver layer with silver paste, and the anode terminal of the lead frame is welded to the anode lead wire. Thereafter, an exterior is formed by a transfer molding method. After forming the exterior, the lead frame is cut at a predetermined position. After cutting, an aging treatment is performed to obtain a tantalum solid electrolytic capacitor rated at 4 V and 22 μF.
[0014]
The defective rate of leakage current was measured for the tantalum solid electrolytic capacitor manufactured by the method of the above embodiment and the tantalum solid electrolytic capacitor manufactured by the conventional method, and the results are shown in Table 1.
[0015]
The tantalum solid electrolytic capacitors of Conventional Examples 1 to 3 were the same as the tantalum solid electrolytic capacitors of Examples 1 to 6 except that T2 / T1 was larger than 5 as shown in Table 1 and re-chemical conversion treatment was performed. Assume that they are manufactured under the same conditions.
[0016]
The leakage current is obtained by connecting a 1 kΩ resistor in series to the sample, applying a DC voltage of 4 V between the sample and the resistor in an atmosphere at a temperature of 25 ° C., and setting the current value after 3 minutes. Then, based on a value obtained by multiplying a commonly used product rating reference value of 0.01 CV (μA / μF · V) by 0.25, that is, 0.25 × 0.01 CV, the leakage current is smaller than this value. A small case is regarded as good, and an equal or large case is regarded as bad. The case where the defect rate was less than 3% was regarded as good, and the case where the defect rate was 3% or more was regarded as defective.
The number of samples is 5000 each.
Margin below.
[0017]
[Table 1]
Figure 0003573244
[0018]
As is clear from Table 1, in Examples 1 to 6, the defect rate was 1.8 to 2.8%, and the overall judgment was good. On the other hand, Conventional Example 1 to Conventional Example 3 have a defect rate of 5
. 8 to 7.1%, the overall judgment was poor.
From these results, it is apparent that Examples 1 to 6 have improved leakage current characteristics and reduced defects compared to Conventional Examples 1 to 3.
[0019]
【The invention's effect】
As described above, according to the production method of the present invention, after the solid electrolyte layer is formed on the anode body formed by anodic oxidation of the valve action metal to form an oxide film, the plate-like electrode is moved in a parallel direction from the liquid bottom of the re- formation tank. with immersion apart, the anode body plurality immersed in reformation solution, this time, the shortest distance T 1 of the inter-anode body, and a shortest distance T 2 of the between the anode body and the planar electrodes 0 <T 2 / T 1 <5, they are arranged with each other, and a current is passed between the anode body and the plate-shaped electrode for re-formation treatment, and subsequently, a metal layer and a casing are formed. Characteristics can be improved, defects can be reduced, and a highly reliable solid electrolytic capacitor can be obtained.
[Brief description of the drawings]
FIG. 1 shows a process chart of an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a state in which an anode body is immersed in a re-chemical conversion solution in a re-chemical conversion process according to an embodiment of the present invention.
[Explanation of symbols]
1 ... sintered body, 5 ... oxide film, 6 ... anode body, 7 ... solid electrolyte layer,
8 re-formation tank, 9 re-formation liquid, 11 plate electrode, 13 carbon layer,
14 ... Silver layer, 19 ... Solid electrolytic capacitor.

Claims (2)

弁作用金属を陽極酸化して酸化被膜を形成した陽極体に固体電解質を形成した後、平板状電極を配置した再化成槽の再化成液中に前記陽極体を複数個浸漬し前記陽極体と前記平板状電極との間で通電して再化成処理し、続いて金属層を形成する固体電解コンデンサの製造方法において、前記平板状電極を前記再化成槽の液底面から平行方向に離して浸漬するとともに、前記陽極体間の最短距離Tと、前記陽極体と前記平板状電極との間の最短距離Tとを0<T/T<5になるように前記陽極体を再化成液中に浸漬し再化成処理することを特長とする固体電解コンデンサの製造方法。After forming the solid electrolyte to the anode body to form an oxide film of the valve metal by anodic oxidation, the anode body plurality immersed in reformation solution re anodizing tank arranged a plate-shaped electrode, the anode body In the method for producing a solid electrolytic capacitor in which a current is passed between the plate-shaped electrode and the re-formation treatment, and subsequently a metal layer is formed, the plate-shaped electrode is separated in a parallel direction from the liquid bottom of the re- formation tank. with immersion, the shortest distance T 1 of the between the anode body, the anode body and the shortest distance T 2 such that 0 <T 2 / T 1 < 5 between the flat electrode and the anode body A method for producing a solid electrolytic capacitor, characterized by being immersed in a re-chemical conversion solution and re-chemically treated. 平板状電極がステンレス、カーボン、金、白金のうちの一種を材質とする請求項1の固体電解コンデンサの製造方法。2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the flat electrode is made of one of stainless steel, carbon, gold, and platinum.
JP17315397A 1997-06-13 1997-06-13 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3573244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17315397A JP3573244B2 (en) 1997-06-13 1997-06-13 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17315397A JP3573244B2 (en) 1997-06-13 1997-06-13 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH118166A JPH118166A (en) 1999-01-12
JP3573244B2 true JP3573244B2 (en) 2004-10-06

Family

ID=15955094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17315397A Expired - Fee Related JP3573244B2 (en) 1997-06-13 1997-06-13 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3573244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022152802A (en) 2021-03-29 2022-10-12 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH118166A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JPH0158856B2 (en)
JP3573244B2 (en) Method for manufacturing solid electrolytic capacitor
JP3748091B2 (en) Manufacturing method of solid electrolytic capacitor
JPH11150041A (en) Manufacture of solid electrolytic capacitor
JPH11251189A (en) Manufacture of capacitor element in solid-state electrolytic capacitor
JPH1126316A (en) Manufacture of solid electrolytic capacitor
JP4548730B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000252169A (en) Manufacture of solid electrolytic capacitor
JPH0434915A (en) Manufacture of solid electrolytic capacitor
JP4088849B2 (en) Manufacturing method of solid electrolytic capacitor
JP2022152802A (en) Electrolytic capacitor and manufacturing method thereof
JP2003338432A (en) Capacitor element used for solid electrolytic capacitor and method for forming dielectric layer thereto
JPH09237743A (en) Solid electrolytic capacitor
JPH07220982A (en) Manufacture of solid electrolytic capacitor
JPH02277212A (en) Tantalum electrolytic capacitor and its manufacture
JP2000091163A (en) Manufacture of solid electrolytic capacitor
JP2731243B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11135366A (en) Solid electrolytic capacitor
JP3150464B2 (en) Manufacturing method of solid electrolytic capacitor
JPH05182869A (en) Solid electrolytic capacitor and manufacture thereof
JP2754053B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000340466A (en) Manufacture of solid electrolytic capacitor
Vardhan et al. A Report on the Development of Solid Electrolytic Tantalum Capacitor
JP2000091157A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees