JP3573210B2 - Continuous furnace - Google Patents

Continuous furnace Download PDF

Info

Publication number
JP3573210B2
JP3573210B2 JP51473895A JP51473895A JP3573210B2 JP 3573210 B2 JP3573210 B2 JP 3573210B2 JP 51473895 A JP51473895 A JP 51473895A JP 51473895 A JP51473895 A JP 51473895A JP 3573210 B2 JP3573210 B2 JP 3573210B2
Authority
JP
Japan
Prior art keywords
distance
tunnel
guide track
boat
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51473895A
Other languages
Japanese (ja)
Other versions
JPH09505662A (en
Inventor
ウインクラー、ホルスト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH09505662A publication Critical patent/JPH09505662A/en
Application granted granted Critical
Publication of JP3573210B2 publication Critical patent/JP3573210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0001Positioning the charge
    • F27D2003/0002Positioning the charge involving positioning devices, e.g. buffers or buffer zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D2021/0057Security or safety devices, e.g. for protection against heat, noise, pollution or too much duress; Ergonomic aspects
    • F27D2021/0092Security or safety devices, e.g. for protection against heat, noise, pollution or too much duress; Ergonomic aspects against a jam in the transport line or a production interruption

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Tunnel Furnaces (AREA)

Description

この発明は、長手方向に延びた加熱可能な通過トンネルと、炉通過物のための案内軌道と、この案内軌道上の炉通過物の反り返りを検出する安全装置とを備えた連続炉に関する。
このような連続炉はドイツ連邦共和国特許出願公開第2757700号明細書から公知である。炉通過物のための案内軌道には一列に同じ長さの金属からなる移送ボートが配置され、このボートはこの案内軌道上を順番に連続炉の通過トンネルを通って移送される。案内軌道は少なくとも通過トンネルの入口前において金属からなり、この金属部と通過トンネルの壁の加熱要素との間に電気的な抵抗測定装置が接続されている。金属からなる移送ボートが連続炉の通過トンネル内部を通って移動する間に反り返ると、移送ボートと加熱要素との間に短絡が生じ、抵抗測定装置が移送ボートの移送装置を直ちに停止させる。これにより連続炉の特に加熱要素の損傷が回避される。
この発明の課題は、この公知の連続炉をさらに改良して、移送ボートが通過トンネル内において反り返るのを、この移送ボートが金属からなるのではなく、例えばセラミックのような電気的に非伝導性の物質からなる場合にも、監視することを可能にすることにある。
この課題の解決のために、冒頭に述べた種類の連続炉において、この発明によれば、通過トンネルに第一の距離検出器が、またこれと通過トンネルの方向に見て間隔をおいて第二の距離検出器が配置され、第一の距離検出器により案内軌道上にある被測定対象の第一の距離検出器に属する案内軌道上の第一の基準点からの距離が、また第二の距離検出器により案内軌道上にある被測定対象の第二の距離検出器に属する案内軌道上の第二の基準点からの距離が求められると共に、両基準点が互いに間隔を持って配置されている。
炉通過物が一列に配置された同じ長さのボートからなり、その長さが両距離検出器の基準点の間の距離より小さい場合には、常に一つのボートが第一の距離検出器の基準点を他のボートが第二の距離検出器の基準点を通過したのと丁度同じ距離だけ通過したかどうかが常に確認される。これは装置が正常に運転されていることを示す。しかしながら、一方のボートが第一の距離検出器の基準点を他方のボートが第二の距離検出器の基準点を通過する以上に通過した瞬間に、これは両基準点間でボートが反り返ったことを示し、その結果ボートの連続炉の通過トンネルを通る走行が異常を取り除くために中断される。
請求項2乃至4は請求項1による連続炉の良好な実施態様を示すものである。
この発明及びその利点を図面を参照して1つの実施例で詳細に説明する。
図1はこの発明による連続炉の通過トンネルを概略的に、
図2は図1による通過トンネルにおける距離発信器を概略的に、
図3は図1による通過トンネルにおける案内軌道の斜視図を示す。
図1に示された通過トンネル2はセラミックボート4のための案内軌道3を備え、このボートは同じ長さを持ち、案内軌道3上に一列に並んで配置されている。このセラミックボート4は例えば焼結材を載置するためのものである。通過トンネル2にはさらに電気的な加熱要素が設けられているが、これは図1では示されていない。通過トンネル2の入口端には側方の挿入口5が、他端即ちこの通過トンネル2の出口端には側方の取出し口6が設けられている。
通過トンネル2の入口端にはさらに案内軌道3の上に2つの送りチェーン8を備えた移送体7が設けられている。この両送りチェーン8の各々には歯車9の歯面がそれぞれ係合している。両歯車9は駆動電動機11の駆動軸10に嵌まっている。駆動軸10にはさらに第一の距離検出器としてエンコーダ12が取り付けられ、その属する案内軌道3の基準点は側方の挿入口が位置する案内軌道3の端部の縁13である。エンコーダ12は一つのセラミックボート4aに接している移送体7の側面と、従ってセラミックボート4a自体と基準点13との距離を検出する。
エンコーダ12は、図2に示すように、駆動軸10に同心的に固定して取り付けられているセグメント円板24を持っている。セグメント円板24は、これに同心的に配置され異なる半径を持つ多数の円形のコード列15を備えている。各コード列15には、セグメント円板24の一方の側に光源16及び他方の側にこの光源16に対応するフォトダイオード17を備える光バリヤがそれぞれ付属している。個々のコード列15のコードパターンにおいて対応のコード列に付属する光バリヤの光線がセグメント円板24を通過する。
エンコーダ12は、駆動軸10の従ってセグメント円板24の各角位置に対して駆動軸10の回転方向に無関係に一義的な信号を発し、この信号により駆動軸10の角位置、従って最終的には移送体7に接しているセラミックボート4aの基準点13からの距離が読み取られる。
案内軌道3従って通過トンネル2の他端にはもう一つの距離検出器として、赤外線光パルスを発しセラミックボート4bの側面で反射した赤外線光パルスを受けるレーザー18が設けられている。この受け取られた赤外線光パルスはレーザー18のフォトダイオードに達し、この赤外線光パルスを電気信号に変換する。
この電気信号により赤外線光パルスがレーザー18からセラミックボート4bまでの及びレーザー18に戻るまでの時間、従ってセラミックボート4bの案内軌道3におけるレーザー18の基準点14からの距離が求められる。この基準点14は、通過トンネル2の端部、即ち側面の取出し口6が存在する端部における案内軌道3の縁である。
さらに、エンコーダ12及びフォトダイオードを備えたレーザー18並びに例えば熱電対19からなる温度センサの制御に関係して駆動電動機11を制御する電子制御器20が設けられている。熱電対19は通過トンネル2の両基準点13、14の間に配置されている。
電子制御器20は、エンコーダ12により測定された、案内軌道3の上にある列のセラミックボート4の始めのセラミックボート4aの基準点13からの距離L1と、前記のセラミックボート4の列の終わりのセラミックボート4bの基準点からの距離L3との和が所定値WからΔwだけ偏位しているとき、駆動電動機11を停止させる。
熱電対19は通過トンネル2の加熱が異なるときにこの値Wの修正を行い、このようにして通過トンネル2内のセラミックボートが受ける異なる長さの伸びが考慮される。
通過トンネル2を備えた連続炉を運転するためには、先ず移送体7が駆動電動機11により案内軌道上のセラミックボートの運動方向に見て基準点の前にある初期位置に送られる。
次に側面から挿入口5を通して記載された矢印の方向にセラミックボート4aが案内軌道3に送られる。このセラミックボート4aは案内軌道3の長手方向に見て、既に案内軌道にあるセラミックボート4及び4bと同じ長さを持っている。さらにこのセラミックボート4aの長さはエンコーダ12からなる第一の距離検出器の測定範囲よりも、そしてレーザー18を備える第二の距離検出器の測定範囲よりも短い。セラミックボート4a、4及び4bの長さも案内軌道3の長手方向に見て両基準点13及び14相互の距離よりも短い。
次に駆動電動機11が送り方向に回転するように再び投入される。移送体7は送りチェーン8により案内軌道3上をレーザー18の方向に向かって送られる。その場合移送体7は案内軌道3に一列に配置されている全体のセラミックボート4をレーザー18の方向に移動させる。セラミックボート4bが取出し口6に達すると、駆動電動機11は遮断され、このセラミックボート4bは側面から取出し口6を通して通過トンネル2からそこに記入されている矢印に応じて取り出される。その後同じ動作が始めから行われる。
セラミックボートの案内軌道上の移動の際に、例えば図3に示されるように、2つのセラミックボート4に上向きの反り返りが起こると、距離L1とL3との和がもはや所定の値Wと一致しなくなるので、駆動電動機11は直ちに遮断される。これにより連続炉のそして特にその通過トンネルの加熱要素の損傷が、このセラミックボート4が電気的に導通性でない場合でも回避される。
The present invention relates to a continuous furnace provided with a longitudinally extendable heatable passage tunnel, a guide track for the furnace passage, and a safety device for detecting the warpage of the furnace passage on the guide track.
Such a continuous furnace is known from DE-OS 27 57 700. A transfer boat made of the same length of metal is arranged in a row on the guide track for furnace passages, and the boat is transferred on this guide track in sequence through the passage tunnel of a continuous furnace. The guideway is made of metal at least before the entrance of the passage tunnel, and an electrical resistance measuring device is connected between this metal part and the heating element of the wall of the passage tunnel. If the transfer boat made of metal warps while moving through the passage tunnel of the continuous furnace, a short circuit occurs between the transfer boat and the heating element, and the resistance measuring device immediately stops the transfer device of the transfer boat. This avoids damage to the continuous furnace, especially the heating element.
The object of the present invention is to further improve this known continuous furnace in order to prevent the transfer boat from warping in the passage tunnel, rather than being made of metal, but to be electrically non-conductive, for example ceramic. It is intended to be able to monitor even if it is made of a substance.
In order to solve this problem, in a continuous furnace of the type mentioned at the outset, according to the invention, a first distance detector is provided in the passing tunnel and at a distance from it in the direction of the passing tunnel. Two distance detectors are arranged, and the distance from the first reference point on the guide trajectory belonging to the first distance detector of the measured object on the guide trajectory by the first distance detector is the second distance detector. The distance from the second reference point on the guide trajectory belonging to the second distance detector of the measured object on the guide trajectory is determined by the distance detector, and both reference points are arranged with an interval from each other. ing.
If the furnace pass consists of boats of the same length arranged in a row and the length is less than the distance between the reference points of the two distance detectors, one boat always has the first distance detector. It is always checked whether the other boat has passed the reference point exactly the same distance as it has passed the reference point of the second distance detector. This indicates that the device is operating normally. However, the moment one boat crossed the reference point of the first distance detector more than the other boat passed the reference point of the second distance detector, this caused the boat to bow between the two reference points. The result is that the boat's travel through the continuous furnace passage tunnel is interrupted to remove the anomaly.
Claims 2 to 4 show preferred embodiments of the continuous furnace according to claim 1.
BRIEF DESCRIPTION OF THE DRAWINGS The invention and its advantages are explained in detail in one embodiment with reference to the drawings.
FIG. 1 schematically shows a passage tunnel of a continuous furnace according to the present invention,
FIG. 2 schematically shows a distance transmitter in a transit tunnel according to FIG.
FIG. 3 shows a perspective view of a guide track in the passage tunnel according to FIG.
The passage tunnel 2 shown in FIG. 1 comprises a guide track 3 for a ceramic boat 4 which has the same length and is arranged in line on the guide track 3. The ceramic boat 4 is for mounting, for example, a sintered material. The passage tunnel 2 is further provided with an electric heating element, which is not shown in FIG. A lateral insertion port 5 is provided at the entrance end of the passing tunnel 2, and a lateral outlet 6 is provided at the other end, that is, at the exit end of the passing tunnel 2.
At the entrance end of the passage tunnel 2 there is furthermore provided a transport 7 with two feed chains 8 on the guide track 3. A tooth surface of a gear 9 is engaged with each of the two feed chains 8. The two gears 9 are fitted on a drive shaft 10 of a drive motor 11. An encoder 12 is further attached to the drive shaft 10 as a first distance detector, and the reference point of the guide track 3 to which the encoder 12 belongs is the edge 13 of the end of the guide track 3 where the lateral insertion port is located. The encoder 12 detects the distance between the side surface of the transfer body 7 that is in contact with one ceramic boat 4a, and thus the distance between the ceramic boat 4a itself and the reference point 13.
As shown in FIG. 2, the encoder 12 has a segment disk 24 which is fixedly mounted concentrically on the drive shaft 10. The segment disk 24 has a number of circular cord rows 15 having different radii concentrically disposed thereon. Each code train 15 is accompanied by a light barrier comprising a light source 16 on one side of the segment disk 24 and a photodiode 17 corresponding to this light source 16 on the other side. In the code patterns of the individual code trains 15, the light beams of the light barriers associated with the corresponding code trains pass through the segment disk 24.
The encoder 12 emits a unique signal for each angular position of the drive shaft 10 and thus of the segment disk 24 irrespective of the direction of rotation of the drive shaft 10, by means of this signal the angular position of the drive shaft 10 and thus ultimately Is the distance from the reference point 13 of the ceramic boat 4a in contact with the transfer body 7.
At the other end of the guideway 3 and thus of the passage tunnel 2 there is provided, as another distance detector, a laser 18 which emits infrared light pulses and receives the infrared light pulses reflected on the side of the ceramic boat 4b. The received infrared light pulses reach the photodiode of laser 18 and convert the infrared light pulses into electrical signals.
The electrical signal determines the time required for the infrared light pulse to travel from the laser 18 to the ceramic boat 4b and back to the laser 18, and thus the distance of the laser 18 from the reference point 14 in the guide track 3 of the ceramic boat 4b. This reference point 14 is the edge of the guide track 3 at the end of the passage tunnel 2, ie at the end where the lateral outlet 6 is present.
Furthermore, an electronic controller 20 is provided for controlling the drive motor 11 in relation to the control of a temperature sensor comprising an encoder 12 and a photodiode 18 and a thermocouple 19, for example. The thermocouple 19 is arranged between the reference points 13 and 14 of the passage tunnel 2.
The electronic controller 20 determines the distance L1 from the reference point 13 of the ceramic boat 4a at the beginning of the row of ceramic boats 4 above the guide track 3 as measured by the encoder 12, and the end of the row of said ceramic boats 4 When the sum of the ceramic boat 4b and the distance L3 from the reference point of the ceramic boat 4b deviates from the predetermined value W by Δw, the drive motor 11 is stopped.
The thermocouple 19 corrects this value W when the heating of the passage tunnel 2 differs, thus taking into account the different lengths of elongation experienced by the ceramic boat in the passage tunnel 2.
In order to operate the continuous furnace with the passage tunnel 2, the transfer body 7 is first sent by the drive motor 11 to an initial position before the reference point in the direction of movement of the ceramic boat on the guide track.
Next, the ceramic boat 4a is sent to the guide track 3 from the side through the insertion opening 5 in the direction of the arrow described. When viewed in the longitudinal direction of the guide track 3, the ceramic boat 4a has the same length as the ceramic boats 4 and 4b already on the guide track. Furthermore, the length of this ceramic boat 4a is shorter than the measuring range of the first distance detector comprising the encoder 12 and of the second distance detector comprising the laser 18. The length of the ceramic boats 4a, 4 and 4b is also shorter than the distance between the two reference points 13 and 14 when viewed in the longitudinal direction of the guide track 3.
Next, the drive motor 11 is turned on again so as to rotate in the feed direction. The transfer body 7 is fed by a feed chain 8 on the guide track 3 toward the laser 18. In this case, the transfer body 7 moves the entire ceramic boat 4 arranged in a line on the guide track 3 in the direction of the laser 18. When the ceramic boat 4b reaches the outlet 6, the drive motor 11 is shut off, and the ceramic boat 4b is taken out of the passing tunnel 2 from the side through the outlet 6 in accordance with the arrow marked therein. Thereafter, the same operation is performed from the beginning.
When the two ceramic boats 4 warp upward when the ceramic boat moves on the guide track, for example, as shown in FIG. 3, the sum of the distances L1 and L3 no longer matches the predetermined value W. Since it is gone, the drive motor 11 is immediately shut off. In this way, damage to the heating element of the continuous furnace and in particular of its passage tunnel is avoided even if the ceramic boat 4 is not electrically conductive.

Claims (4)

長手方向に延びた加熱可能な通過トンネルと、炉通過物のための案内軌道と、この案内軌道上の炉通過物の反り返りを検出する安全装置とを備え、通過トンネル(2)に第一の距離検出器(12)が、これと通過トンネル(2)の方向に見て間隔をおいて第二の距離検出器(18)が配置され、第一の距離検出器(12)により案内軌道(3)上にある被測定対象(4a)の第一の距離検出器(12)に属する案内軌道(3)上の第一の基準点(13)からの距離(L1)が、第二の距離検出器(18)により案内軌道(3)上にある被測定対象(4b)の第二の距離検出器(18)に属する案内軌道(3)上の第二の基準点(14)からの距離(L3)が求められると共に、両基準点(13、14)が互いに間隔を持って配置されていることを特徴とする連続炉。A longitudinally extending heatable passage tunnel, a guide track for the furnace passages, and a safety device for detecting the warpage of the furnace passages on the guide track, the first in the passage tunnel (2). A second distance detector (18) is arranged at a distance from the distance detector (12) as viewed in the direction of the passing tunnel (2), and is guided by the first distance detector (12). 3) The distance (L1) from the first reference point (13) on the guide trajectory (3) belonging to the first distance detector (12) of the object to be measured (4a) is the second distance The distance from the second reference point (14) on the guide trajectory (3) belonging to the second distance detector (18) of the measured object (4b) on the guide trajectory (3) by the detector (18) (L3) is required, and both reference points (13, 14) are arranged at an interval from each other. 炉通過物(4a、4、4b)のための移送装置(7、8、9、10、11)が設けられていることを特徴とする請求項1記載の連続炉。2. The continuous furnace as claimed in claim 1, further comprising a transfer device for the passage of the furnace. 移送装置(7、8、9、10、11)が、両距離検出器(12、18)によって測定された距離(L1、L3)が所定の値(W)から偏位しているときに、移送装置(7、8、9、10、11)が停止するように、両距離検出器(12、18)により制御されることを特徴とする請求項2記載の連続炉。When the transfer devices (7, 8, 9, 10, 11) deviate from the predetermined value (W) when the distances (L1, L3) measured by the two distance detectors (12, 18) are shifted, 3. The continuous furnace as claimed in claim 2, wherein the transfer devices (7, 8, 9, 10, 11) are controlled by a distance detector (12, 18) so as to stop. 値(W)が、通過トンネル(2)の両基準点(13、14)の間に配置されている温度センサ(19)により制御されることを特徴とする請求項3記載の連続炉。4. A continuous furnace according to claim 3, wherein the value (W) is controlled by a temperature sensor (19) arranged between the reference points (13, 14) of the passage tunnel (2).
JP51473895A 1993-11-25 1994-11-14 Continuous furnace Expired - Lifetime JP3573210B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4340220 1993-11-25
DE4340220.8 1993-11-25
PCT/DE1994/001344 WO1995014900A1 (en) 1993-11-25 1994-11-14 Continuous furnace

Publications (2)

Publication Number Publication Date
JPH09505662A JPH09505662A (en) 1997-06-03
JP3573210B2 true JP3573210B2 (en) 2004-10-06

Family

ID=6503447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51473895A Expired - Lifetime JP3573210B2 (en) 1993-11-25 1994-11-14 Continuous furnace

Country Status (4)

Country Link
EP (1) EP0730723B1 (en)
JP (1) JP3573210B2 (en)
DE (1) DE59407752D1 (en)
WO (1) WO1995014900A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605948B2 (en) * 2001-07-16 2011-01-05 大日本印刷株式会社 Warpage measuring apparatus and firing apparatus using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE560097A (en) *
DE2402369C2 (en) * 1974-01-18 1975-06-12 Robert 6312 Laubach Friedrichs Method and implementation arrangement for distance monitoring when transporting objects through long straight tunnels
DE4120216A1 (en) * 1991-06-19 1992-12-24 Aichelin Gmbh Position determn. of workpieces passing through tunnel furnace - measuring relationships of set positions to proximity sensors at entry and exit

Also Published As

Publication number Publication date
WO1995014900A1 (en) 1995-06-01
DE59407752D1 (en) 1999-03-11
EP0730723B1 (en) 1999-01-27
EP0730723A1 (en) 1996-09-11
JPH09505662A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
US4863006A (en) Automatic shutoff apparatus for an escalator
US7485841B2 (en) Multi-optical axis photoelectric sensor
EP0746870B2 (en) Irradiation system utilizing conveyor-transported article carriers
KR101076969B1 (en) Method of positioning conveyance section, and conveyance device
US5660519A (en) Method for mounting components and an apparatus therefor
US6799672B2 (en) Material sortation system
FI112855B (en) Lift control methods and devices
KR102241504B1 (en) A tape feeder and self-diagnosing method of the tape feeder
JP3573210B2 (en) Continuous furnace
HU224594B1 (en) Method and device for reducing the polygon effect in the reversing area of pedestrian conveyor systems
SI9200173A (en) Device for feeding a non-woven web, particulary a mineral wool web, onto a receiving conveyor
JP3013863B2 (en) Automatic setting method of sorting reference value of sorting device
JP6727945B2 (en) Origin position detection method of operation mechanism and origin position detection device
US11745223B2 (en) Article sorting system
KR0128589Y1 (en) Speed inspective limit switch of elevator
JPH0739283B2 (en) Lead frame transport device
EP0992098B1 (en) Antisqueeze protection
EP0899368A1 (en) Abnormality detecting apparatus for weft inserting apparatus in rapier loom
JPH06323743A (en) Method and apparatus for sensing conveying malfunction of tunnel furnace
WO1998025841A1 (en) Method for pre-determinably positioning and orientating an article or a series of similar articles being carried on a moving conveyor and apparatus therefor
JP4908923B2 (en) Continuous heat treatment equipment
KR102361805B1 (en) Driving device with OHT curve section sensing device
SU1041588A1 (en) Thermal unit
KR100380136B1 (en) Surface temperature measuring device for steel plate in longitudinal direction with reflection means
JP2002284307A (en) Moving shelf device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term