JP3573109B2 - IPN type adhesive, IPN type adhesive sheet and bonding method - Google Patents

IPN type adhesive, IPN type adhesive sheet and bonding method Download PDF

Info

Publication number
JP3573109B2
JP3573109B2 JP2001188778A JP2001188778A JP3573109B2 JP 3573109 B2 JP3573109 B2 JP 3573109B2 JP 2001188778 A JP2001188778 A JP 2001188778A JP 2001188778 A JP2001188778 A JP 2001188778A JP 3573109 B2 JP3573109 B2 JP 3573109B2
Authority
JP
Japan
Prior art keywords
adhesive
ipn
polymerizable
adhesive component
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001188778A
Other languages
Japanese (ja)
Other versions
JP2002080811A (en
Inventor
泰浩 藤田
かおり 関
常雄 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP2001188778A priority Critical patent/JP3573109B2/en
Publication of JP2002080811A publication Critical patent/JP2002080811A/en
Application granted granted Critical
Publication of JP3573109B2 publication Critical patent/JP3573109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、相互侵入高分子網目構造を形成可能なIPN(interpenetrating polymer network)型接着剤に関する。
【0002】
【従来の技術】
近年、ICチップ等の電子部品を基板に実装するためのパッケージ手法として、ボールグリッドアレイ法やチップオンフィルム法が広く採用されており、その際に接着シートが使用されている。
【0003】
従来の接着シートとしては、エポキシ系接着剤、アクリル系接着剤あるいはポリエステル系接着剤をそれぞれシート化した接着シートが知られている。
【0004】
しかし、エポキシ系接着剤の場合、高い凝集力と高い接着力とを示すが、柔軟性や応力緩和性に乏しいという欠点がある。また、アクリル系接着剤の場合には、柔軟性、応力緩和性、耐候性に優れているが、凝集力に乏しいという欠点がある。
【0005】
一方、ポリエステル系接着剤の場合には、エポキシ系接着剤に比べて柔軟性に優れ、アクリル系接着剤に比べて接着力に優れている。このため、ICチップ等の電子部品を基板に実装する際に使用する接着シートとしては、ポリエステル系接着剤をシート化したものが一般的に使用されている。
【0006】
【発明が解決しようとする課題】
しかしながら、ポリエステル系接着剤の場合、長時間、高温(例えば100〜150℃)環境下に置かれると、その接着力が大きく低下するという問題があった。
【0007】
これに対し、エポキシ系接着剤とアクリル系接着剤とを混合して使用することも考えられるが、単に混合しても両者の利点が欠点を互いに補うように作用せず、使用に耐えるものではない。
【0008】
本発明は、以上の従来の技術の問題を解決しようとするものであり、従来のポリエステル系接着剤に劣らない柔軟性及び接着力を示し、且つポリエステル系接着剤よりも耐熱性の点で優れている接着剤を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、接着剤を熱硬化型エポキシ系接着剤成分とエネルギー線硬化型アクリル系接着剤成分との混合物から構成し、特徴的なガラス転移温度特性を示すように、それらの接着成分から相互侵入高分子網目構造を形成させることにより、上述の目的が達成できることを見出し、本発明を完成させるに至った。
【0010】
即ち、本発明は、重合性エポキシ系化合物と潜在性硬化剤とを含む熱硬化型エポキシ系接着剤成分と、重合性アクリル系化合物と光重合開始剤とを含むエネルギー線硬化型アクリル系接着剤成分とを含有し、相互侵入高分子網目構造を形成可能なIPN型接着剤であって、相互侵入高分子網目構造を形成した後に2つのガラス転移温度ピークを示し、熱硬化型エポキシ系接着剤成分に由来する高温側のガラス転移温度が、熱硬化型エポキシ系接着剤成分自体のガラス転移温度よりも10℃〜30℃低温側にシフトし、エネルギー線硬化型アクリル系接着剤成分に由来する低温側のガラス転移温度が、エネルギー線硬化型アクリル系接着剤成分自体のガラス転移温度と同一であり、重合性エポキシ系化合物と重合性アクリル系化合物との配合比(重量)が、5/95〜50/50であり、該重合性エポキシ系化合物がビスフェノールAグリシジルエーテルであり、重合性アクリル系化合物がフェノキシエチルアクリレート又はテトラヒドロフルフリルアクリレートであるIPN型接着剤を提供する。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0012】
本発明は、熱硬化型エポキシ系接着剤成分及びエネルギー線硬化型アクリル系接着剤成分とを含有し、相互侵入高分子網目構造(IPN)を形成可能なIPN型接着剤である。ここで、接着剤をIPN化するには、通常、紫外線や電子線等のエネルギー線を照射してエネルギー線硬化型アクリル系接着剤成分を重合させ、次いで加熱することにより熱硬化型エポキシ系接着剤成分を重合させればよい。これにより、アクリル系ポリマー鎖とエポキシ系ポリマー鎖とが相互に絡み合ったIPN構造が形成される。
【0013】
本発明のIPN型接着剤は、結果的に2種類のポリマーがブレンドされた状態の硬化物(IPN化物)を与えるが、そのIPN化物においては2種類のポリマーが完全に相溶しているのではなくIPN構造を形成しているので、熱硬化型エポキシ系接着剤成分に由来する相対的に高温側に位置するガラス転移温度と、エネルギー線硬化型アクリル系接着剤成分に由来する相対的に低温側に位置するガラス転移温度との二つのガラス転移温度を示す。
【0014】
本発明においては、これら二つのガラス転移温度の内、熱硬化型エポキシ系接着剤成分に由来する高温側のガラス転移温度が、熱硬化型エポキシ系接着剤成分自体のガラス転移温度よりも5℃以上、好ましくは10〜30℃低温側にシフトすることが必要である。このことは、硬化性エポキシ系接着剤成分にエネルギー線硬化型アクリル系接着剤成分が部分相溶していることを示しており、その結果、両者の利点が互いの欠点を補うように作用する。従って、本発明のIPN型接着剤は、従来のポリエステル系接着剤に匹敵する柔軟性及び接着力を示し、しかも一段と優れた耐熱性を示す硬化物を与えることができる。
【0015】
また、同様な理由で、本発明のIPN型接着剤のIPN化物におけるエネルギー線硬化型アクリル系接着剤成分に由来するガラス転移温度についても、そのガラス転移温度が、エネルギー線硬化型アクリル系接着剤自体のガラス転移温度よりも5℃以上、特に5〜20℃高温側にシフトすることが好ましい。
【0016】
本発明のIPN型接着剤を構成する熱硬化型エポキシ系接着剤成分は、通常、重合性エポキシ系化合物と潜在性硬化剤とを含有する。また、エネルギー線硬化型アクリル系接着剤成分は、通常、重合性アクリル系化合物と光重合開始剤とを含有する。本発明においては、これらの成分のうち重合性エポキシ系化合物と重合性アクリル系化合物とが、重合前の段階では互いに相溶していることが好ましい。これは、この段階で既に分離していると、IPN化した際には部分相溶状態を作り出し難いからである。
【0017】
このような重合性エポキシ系化合物としては、分子量(重量平均分子量)10000以下のエポキシ系モノマーもしくはオリゴマーを好ましく挙げることができる。例えば、ビスフェノールA、ビスフェノールF、レゾルシノール、フェノールノボラック、クレゾールノボラックなどのフェノール類のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコールなどのアルコール類のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸などのカルボン酸のグリシジルエステル等のエポキシモノマーやこれらのオリゴマーもしくは脂環型エポキシドを挙げることができる。中でも、ビスフェノールAグリシジルエーテルモノマーもしくはオリゴマーを好ましく使用できる。具体的には、油化シェル社製造のエピコート828(分子量380)、エピコート834(分子量470)、エピコート1001(分子量900)、エピコート1002(分子量1060)、エピコート1055(分子量1350)、エピコート1007(分子量2900)等を使用することができる。これらは、単独で、あるいは2種以上を併用することもできる。
【0018】
重合性アクリル系化合物としては、分子量(重量平均分子量)10000以下のアクリル系モノマーもしくはオリゴマーを好ましく挙げることができる。例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アリールアルキルエステル、ウレタン変性アクリレート等を挙げることができる。中でも、フェノキシエチルアクリレート、テトラヒドロフルフリルアクリレートを好ましく挙げることができる。具体的には、新中村化学工業社製造のAMP−10G(分子量192)、大阪有機化学工業社製造のビスコート150(分子量156)等を挙げることができる。これらは、単独で、あるいは2種以上を併用することもできる。
【0019】
本発明のIPN型接着剤における重合性エポキシ系化合物と重合性アクリル系化合物との配合比(重量)は、好ましくは5/95〜50/50、より好ましくは20/80〜40/60である。この範囲をはずれると、両者の欠点を補うような補償効果が期待できない。
【0020】
本発明において使用できる潜在性硬化剤としては、公知の熱硬化型エポキシ系接着剤において使用されているものを使用することができ、例えばイミダゾール系、アミン系、ジシアンジアミド系の各潜在性硬化剤等を使用できる。
【0021】
潜在性硬化剤の使用量は、重合性エポキシ系化合物100重量部に対し、好ましくは1〜100重量部である。
【0022】
本発明において使用できる光重合開始剤としては、公知のエネルギー線硬化型アクリル系接着剤において使用されているものを使用することができる。
【0023】
本発明において使用される光重合開始剤としては、ベンゾフェノン系、アセトフェノン系、ベンゾイン、ベンゾインアルキルエーテル系、ベンジル、ベンジルジメチルケタール、アシルホスフィンオキサイド系、チオキサントン系の各光重合開始剤を挙げることができる。これらの光重合開始剤は単独で、あるいは組み合わせて使用することができる。なお、脂肪族アミンや芳香族アミンを助剤として添加することもできる。
【0024】
光重合開始剤の使用量は、重合性アクリル系化合物100重量部に対して、好ましくは0.1〜10重量部である。
【0025】
本発明のIPN型接着剤には、上述した成分に加えて、架橋剤、各種ゴム成分、フィラ、レベリング剤、粘度調整剤、酸化防止剤等を必要に応じて適宜配合することができる。
【0026】
本発明のIPN型接着剤は、例えば、重合性エポキシ系化合物と重合性アクリル系化合物とを混合し、その混合物に潜在性硬化剤と光重合開始剤とその他の添加成分とを混合することにより製造することができる。
【0027】
本発明のIPN型接着剤は、通常、接着シートとして用いられるが、この場合には、IPN型接着剤をポリエチレンテレフタレートなどの剥離シート上に常法により塗布し熱硬化型エポキシ系接着剤成分を未硬化状態に維持したまま、紫外線等のエネルギー線を照射してエネルギー線硬化型アクリル系接着剤成分を重合させればよい。
【0028】
本発明のIPN型接着剤を使用する場合、被接着体に塗布し、得られた塗布膜に対し、エネルギー線硬化型アクリル系接着剤成分を重合させるためにエネルギー線を照射し、その後に熱硬化型エポキシ系接着剤成分を重合させるために加熱すればよい。
【0029】
また、IPN型接着シートの使用方法としては、IPN型接着シートを被接着体に貼り合わせた後、熱硬化型エポキシ系接着剤成分が熱硬化する温度に加熱すればよい。
【0030】
なお、本発明のIPN型接着シートを作成する際に、エネルギー線硬化型アクリル系接着剤成分の重合が不十分な場合、即ち、残留モノマーや低重合度(2量体や3量体など)物質がシート中に残留した場合、その後の接着処理の際の加熱時(即ち、熱硬化型エポキシ系接着剤成分を重合させるための加熱時、具体的には、BGA接合を始めとするハンダ接合する際のリフロー加熱時等)に、接着部位にフクレが生じたり、基板実装後にアウトガスとして基板上の配線や部品を汚染したり、人体に悪影響を与えるような異臭を発生させたりする可能性がある。
【0031】
このような可能性を排除するためには、本発明のIPN型接着シートの加熱減量(加熱によりモノマーや低重合度のオリゴマー等が揮散して重量が減少すること)を1%以下に抑制することが好ましい。この場合、加熱減量が1%以下となるように、例えば、エネルギー線硬化型アクリル系接着剤成分を構成する重合性アクリル系化合物の種類と配合量を変化させたり、エネルギー線硬化型アクリル系接着剤成分に2以上のアクリレート残基を有する多官能アクリレートを併用したり、重合開始剤の種類と配合量とを変化させたりすればよい。
【0032】
また、ハンダ接合に使用するハンダとして、従来の240℃程度のリフロー温度から260℃程度のより高いリフロー温度が必要となる無鉛ハンダを使用するようになると、IPN型接着シートの保存中に周囲環境から吸湿された水分がリフロー時に一気にガス化し、ボイドの発生や接着強度の低下を引き起こす可能性がある。
【0033】
このような可能性を排除するためには、本発明のIPN型接着シートの吸湿率を0.3%以下に抑制することが好ましい。この場合、吸湿率が0.3%以下となるように、例えば、硬化剤の配合量を変化させたり、硬化時間(反応率)を規定したり、充填剤の種類を併用したりすればよい。なお、吸湿率は、以下式
【0034】
【数1】
吸湿率(%)={(吸湿後重量−吸湿前重量)/吸湿前重量}×100
で定義されるものであり、具体的には、IPN型接着シートの熱硬化型エポキシ系接着剤成分を熱硬化させた後、30℃で85%RHの環境下に168時間放置した場合の放置前後の重量変化を測定した値である。
【0035】
【実施例】
以下、本発明を実施例により、具体的に説明する。
【0036】
実施例1〜3及び比較例3〜5
表1及び表2に示したように、重合性エポキシ系化合物と重合性アクリル系化合物とを混合し、この混合物に潜在性硬化剤と光重合開始剤とを添加し、混合した。得られた混合物を、ポリエチレンテレフタレート剥離フィルム上に、50μm厚となるようにバーコーターで塗布した。次いで、塗膜に紫外線を2000mJ/cmのエネルギー密度で照射し、重合性アクリル系化合物を重合させ、接着シートを得た。
【0037】
得られた接着シートでポリイミドフィルム(ユーピレックス25S、宇部興産社製)と銅箔(12μm厚)とを貼り合わせ、150℃雰囲気中で60分加熱することにより重合性エポキシ系化合物を重合させて両者を接着し、試験サンプルを作製した。
【0038】
比較例1
表2に示した組成の重合性エポキシ系化合物と潜在性硬化剤との混合物を、ポリイミドフィルム(ユーピレックス25S、宇部興産社製)に50μm厚で塗布し、銅箔(12μm厚)を貼り合わせ、150℃雰囲気中で60分加熱することにより重合性エポキシ系化合物を重合させて両者を接着し、試験サンプルを作製した。
【0039】
比較例2
表2に示した組成の重合性アクリル系化合物と光重合開始剤との混合物を、ポリエチレンテレフタレート剥離フィルム上に、50μm厚となるようにバーコーターで塗布した。次いで、塗膜に紫外線を2000mJ/cmのエネルギー密度で照射し、重合性アクリル系化合物を重合させ、接着シートを得た。
【0040】
得られた接着シートでポリイミドフィルム(ユーピレックス25S、宇部興産社製)と銅箔(12μm厚)とを貼り合わせて試験サンプルを作製した。
【0041】
比較例6
表2のポリエステル系接着剤を、ポリイミドフィルム(ユーピレックス25S、宇部興産社製)に50μm厚で塗布し、銅箔(12μm厚)を貼り合わせ、150℃雰囲気中で、9.81×10−2Mpa(1kgf/cm)の条件で10秒間熱プレスすることにより両者を接着し、試験サンプルを作製した。
【0042】
(評価)
まず、各実施例及び比較例の接着シートを構成する熱硬化型エポキシ系接着剤成分(重合性エポキシ化合物+潜在性硬化剤)及びエネルギー線硬化型アクリル系接着剤成分(重合性アクリル系化合物+光重合開始剤)を別途調製し、それぞれ重合させ、それら自体のガラス転移温度をポリエンテック社製のレオバイブロン(昇温速度3℃/分、周波数11Hz)を使用して測定した。得られた結果を表1及び表2に示す。
【0043】
次に、各実施例及び比較例の別の試験サンプルの接着剤自体のガラス転移温度Tg1、Tg2(℃)と弾性率(MPa)とをポリエンテック社製のレオバイブロン(昇温速度3℃/分、周波数11Hz)を使用して測定した。得られた結果を表1及び表2に示す。
【0044】
また、各実施例及び比較例の別の試験サンプルを150℃の雰囲気中に168時間放置するという条件の耐熱試験を行い、その試験前の室温下での剥離強度と試験後の剥離強度(N/cm)とをJIS K6854に従って測定した。得られた結果を表1及び表2に示す。
【0045】
【表1】

Figure 0003573109
【0046】
【表2】
Figure 0003573109
【0047】
表1及び表2の結果から、熱硬化型エポキシ系接着剤成分に由来する高温側のガラス転移点の温度が、熱硬化型エポキシ系接着剤成分自体のガラス転移温度よりも5℃以上低温側にシフトしている実施例1(15℃シフト)、実施例2(14℃シフト)及び実施例3(20℃シフト)の接着シートは、従来のポリエステル系接着剤(比較例6)に劣らない柔軟性及び接着力を示し、しかもポリエステル系接着剤よりも耐熱性の点でも優れていることが分かる。
【0048】
一方、熱硬化型エポキシ系接着剤単独(比較例1)では、柔軟性に欠け、剥離強度も弱いものであった。また、エネルギー線硬化型アクリル系接着剤単独(比較例2)では、柔らかすぎ、凝集力に欠け、剥離強度も弱いものであった。
【0049】
また、比較例3の場合には、熱硬化型エポキシ系接着剤成分とエネルギー線硬化型アクリル系接着剤成分とが部分相溶せず、従って熱硬化型エポキシ系接着剤成分に由来する高温側のガラス転移温度がシフトしないので、剥離強度に問題があった。また、耐熱性にも問題があった。逆に、熱硬化型エポキシ系接着剤成分とエネルギー線硬化型アクリル系接着剤成分とが相溶し、ガラス転移温度が一つしか示していない比較例4の場合には、柔軟性にも剥離強度にも問題があった。
【0050】
なお、熱硬化型エポキシ系接着剤成分が多すぎると、熱硬化型エポキシ系接着剤成分に由来する高温側のガラス転移温度がシフトし過ぎる結果となり、剥離強度が十分でなく、柔軟性にも欠けるものであった。
【0051】
実施例4
IPN型接着剤や接着シートに対する加熱減量の影響を調べるために、表3及び表4に示した実験例a〜jのように、加熱減量の異なるIPN型接着シートを作製した。
【0052】
即ち、重合性エポキシ系化合物と重合性アクリル系化合物とをモノマーの状態で混合し、この混合物に潜在性硬化剤と光重合開始剤と架橋剤とを添加し、混合した。得られた混合物を、ポリエチレンテレフタレート剥離フィルム上に、50μm厚となるようにバーコーターで塗布した。次いで、塗膜に紫外線を2000mJ/cmのエネルギー密度で照射し、重合性アクリル系化合物を重合させ、IPN型接着シートを得た。
【0053】
得られた接着シートを用いて、ポリイミドフィルム(ユーピレックス50S、宇部興産社製)と銅箔(12μm厚(JIS3100)、エンジニアリングテストサービス社製)とを貼り合わせ、150℃雰囲気中で60分加熱することにより重合性エポキシ系化合物を重合させて両者を接着し、試験サンプルを作製した。
【0054】
(評価)
まず、各実験例の接着シートを構成するエネルギー線硬化型アクリル系接着剤成分(各重合性アクリル系化合物+光重合開始剤)を別途調製し、それぞれ重合させ、それら自体のガラス転移温度を実施例1と同様に測定した。得られた結果を表3及び表4に示す。
【0055】
次に、各実験例の試験サンプルの接着剤自体のガラス転移温度Tg1,Tg2(℃)と弾性率(MPa)とを、実施例1と同様に測定した。得られた結果を表3及び表4に示す。
【0056】
また、各実験例の別の試験サンプルの加熱減量を、135℃雰囲気中で1時間加熱した場合の加熱前後の重量変化として測定した。得られた結果を表3及び表4に示す。
【0057】
更に、各実験例の別の試験サンプルを30℃、85%RHの湿熱雰囲気に24時間放置後、最高温度265℃のリフロー炉を通過させ、そのリフロー処理の前と後のそれぞれの剥離強度(N/cm)をJIS K6854に従って測定した。得られた測定結果を表3及び表4に示す。併せて、リフロー処理後の外観を目視にて観察した。フクレが観察されなかった場合を「○」、観察された場合を「×」と評価した。
【0058】
【表3】
Figure 0003573109
【0059】
【表4】
Figure 0003573109
【0060】
表3及び表4の結果から、加熱減量が1%以下の実験例a〜fの接着シートは、弾性率及びリフロー前後の剥離強度も十分であり、外観にも問題がないことがわかる。
【0061】
一方、実験例gのように重合開始剤の量が相対的に少なくなりすぎると加熱減量が1%を超え、リフロー後の外観に問題が生じる。逆に実験例hのように、重合開始剤の量が相対的に多すぎると、残留重合開始剤の影響が無視できないようになるために加熱減量が1%を超え、やはりリフロー後の外観に問題が生じる。実験例iのように、反応性の比較的低いアクリルモノマーを使用すると、加熱減量が1%を超え、やはりリフロー後の外観に問題が生じる。なお、実験例jのように、2官能アクリルモノマーの使用量を増やすと加熱減量は1%以下となるが、剥離強度が低下する。
【0062】
実施例5
IPN型接着剤や接着シートに対する吸湿率の影響を調べるために、表5及び表6に示した実験例k〜tのように、吸湿率の異なるIPN型接着シートを、実施例4と同様に作製した。
【0063】
得られた接着シートと、実施例4で用いたのと同様のポリイミドフィルムと銅箔とを用い、実施例4の操作に従って試験サンプルを作製した。
【0064】
(評価)
まず、各実験例の試験サンプルの接着剤自体のガラス転移温度Tg1,Tg2(℃)と弾性率(MPa)とを実施例1と同様に測定した。得られた結果を表5及び表6に示す。
【0065】
各実験例の別の試験サンプルの反応率を、示差熱走査熱量計(DSC6200、セイコーインスツルメンツ社製)で昇温速度10℃/minの条件で測定した反応熱量から算出した。得られた結果を表5及び表6に示す。
【0066】
サンプルの吸湿率は、各実験例の別の試験サンプルを加熱処理して熱硬化性エポキシ系接着剤成分を硬化させた後、30℃で85%RH雰囲気に168時間放置した場合の放置前後の重量変化として測定した。得られた結果を表5及び表6に示す。
【0067】
また、各実験例の別の試験サンプルを30℃、85%RHの湿熱雰囲気に24時間放置後、最高温度265℃のリフロー炉を通過させ、そのリフロー処理の前と後のそれぞれの剥離強度(N/cm)をJIS K6854に従って測定した。得られた測定結果を表5及び表6に示す。併せて、リフロー処理後の外観を目視にて観察した。フクレが観察されなかった場合を「○」、観察された場合を「×」と評価した。
【0068】
【表5】
Figure 0003573109
【0069】
【表6】
Figure 0003573109
【0070】
表5及び表6の結果から、吸湿率が0.3%以下の実験例k〜oの接着シートは、弾性率及びリフロー前後の剥離強度も十分であり、外観にも問題がないことがわかる。なお、反応率は100%であった、
【0071】
一方、実験例pは、実験例kの硬化時間を1時間短縮して反応率を低下させて吸湿率を0.43%としたものであり、実験例qは、実験例kの硬化剤を2.5倍量として反応率を99%としたが、吸湿率を0.61%としたものであり、実験例rは実験例kの硬化剤を半量とし、反応率を低下させて吸湿率を0.54%としたものであり、実験例sは実験例lの硬化剤を2倍量として反応率を99%としたが、吸湿率を0.41%としたものであり、実験例tは、実験例mの硬化時間を1時間短縮して反応率を低下させて吸湿率を0.52%としたものであり、いずれも吸湿率が0.3%を超えているので、リフロー後の剥離強度が低下し、リフロー後の外観に問題が生じることがわかる。
【0072】
即ち、反応率が90%以上であっても吸湿率が0.3%を超えていると良好な結果が得られていないことがわかる。
【0073】
【発明の効果】
本発明のIPN型接着剤及びIPN型接着シートは、従来のポリエステル系接着剤に劣らない柔軟性及び接着力を示し、且つポリエステル系接着剤よりも耐熱性の点で優れている。従って、ICチップなどの電子部品を基板上にボールグリッドアレイ法やチップオンフィルム法などにより実装する際に、好ましく使用することができる。
【0074】
また、IPN型接着シートにおける加熱減量を1%以下とすることにより、接着部位にフクレを生じさせたり、基板実装後にアウトガスとして基板上の配線や部品を汚染したり、人体に悪影響を与えるような異臭を発生させたりすることを防止することができる。
【0075】
また、IPN型接着シートにおける吸湿率を0.3%以下とすることにより、従来の240℃程度のリフロー温度から260℃程度のより高いリフロー温度が必要となる無鉛ハンダを使用した場合であっても、リフロー時にボイドの発生や接着強度の低下を引き起こす可能性を低減することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an IPN (interpenetrating polymer network) type adhesive capable of forming an interpenetrating polymer network structure.
[0002]
[Prior art]
In recent years, a ball grid array method or a chip-on-film method has been widely used as a packaging method for mounting an electronic component such as an IC chip on a substrate, and an adhesive sheet has been used at that time.
[0003]
As a conventional adhesive sheet, an adhesive sheet in which an epoxy-based adhesive, an acrylic-based adhesive, or a polyester-based adhesive is formed into a sheet is known.
[0004]
However, epoxy adhesives exhibit high cohesive strength and high adhesive strength, but have the drawback of poor flexibility and stress relaxation. In the case of an acrylic adhesive, flexibility, stress relaxation, and weather resistance are excellent, but there is a disadvantage that cohesive strength is poor.
[0005]
On the other hand, in the case of the polyester-based adhesive, the flexibility is superior to the epoxy-based adhesive, and the adhesive strength is superior to the acrylic-based adhesive. For this reason, as an adhesive sheet used when mounting an electronic component such as an IC chip on a substrate, a sheet made of a polyester-based adhesive is generally used.
[0006]
[Problems to be solved by the invention]
However, in the case of a polyester-based adhesive, there has been a problem that its adhesive strength is greatly reduced when it is placed in a high-temperature (for example, 100 to 150 ° C.) environment for a long time.
[0007]
On the other hand, it is also conceivable to use a mixture of an epoxy adhesive and an acrylic adhesive, but if they are simply mixed, the advantages of both do not act to compensate for the disadvantages, and if they are used, they cannot be used. Absent.
[0008]
The present invention is intended to solve the above-mentioned problems of the conventional technology, exhibits flexibility and adhesive strength not inferior to conventional polyester-based adhesives, and is more excellent in heat resistance than polyester-based adhesives. The purpose is to provide an adhesive.
[0009]
[Means for Solving the Problems]
The present inventors have constructed an adhesive from a mixture of a thermosetting epoxy-based adhesive component and an energy-ray-curable acrylic-based adhesive component, and exhibited a characteristic glass transition temperature characteristic. It has been found that the above object can be achieved by forming an interpenetrating polymer network structure from the above, and the present invention has been completed.
[0010]
That is, the present invention provides a thermosetting epoxy adhesive component containing a polymerizable epoxy compound and a latent curing agent, and an energy ray-curable acrylic adhesive containing a polymerizable acrylic compound and a photopolymerization initiator. An IPN-type adhesive capable of forming an interpenetrating polymer network structure, wherein the thermosetting epoxy adhesive shows two glass transition temperature peaks after forming the interpenetrating polymer network structure. The glass transition temperature on the high temperature side derived from the component is shifted to a lower side by 10 ° C. to 30 ° C. than the glass transition temperature of the thermosetting epoxy adhesive component itself, and is derived from the energy ray-curable acrylic adhesive component. the glass transition temperature of the low temperature side is the same as the glass transition temperature of the energy ray-curable acrylic adhesive components themselves, polymerizable blending ratio of the epoxy compound and the polymerizable acrylic compound Weight) is a 5/95 to 50/50, the polymerizable epoxy compound is bisphenol A glycidyl ether, provides an IPN adhesive polymerizable acrylic compound is phenoxyethyl acrylate or tetrahydrofurfuryl acrylate I do.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0012]
The present invention is an IPN adhesive containing a thermosetting epoxy adhesive component and an energy ray-curable acrylic adhesive component, and capable of forming an interpenetrating polymer network structure (IPN). Here, in order to convert the adhesive into an IPN, usually, an energy ray such as an ultraviolet ray or an electron beam is irradiated to polymerize the energy ray-curable acrylic adhesive component, and then heated to obtain a thermosetting epoxy adhesive. What is necessary is just to polymerize an agent component. Thereby, an IPN structure in which the acrylic polymer chain and the epoxy polymer chain are entangled with each other is formed.
[0013]
The IPN-type adhesive of the present invention gives a cured product (IPN compound) in a state where two types of polymers are blended. In the IPN type, the two types of polymers are completely compatible. Rather than the IPN structure, the glass transition temperature located on the relatively high temperature side derived from the thermosetting epoxy adhesive component, and the relative glass transition temperature derived from the energy ray-curable acrylic adhesive component Two glass transition temperatures are shown, with the glass transition temperature located on the lower temperature side.
[0014]
In the present invention, of these two glass transition temperatures, the glass transition temperature on the high temperature side derived from the thermosetting epoxy adhesive component is 5 ° C. higher than the glass transition temperature of the thermosetting epoxy adhesive component itself. As described above, it is necessary to shift the temperature to a low temperature side of preferably 10 to 30 ° C. This indicates that the energy ray-curable acrylic adhesive component is partially compatible with the curable epoxy adhesive component, and as a result, the advantages of both act to compensate for the disadvantages of each other. . Therefore, the IPN-type adhesive of the present invention can provide a cured product exhibiting flexibility and adhesive strength comparable to conventional polyester-based adhesives and exhibiting even more excellent heat resistance.
[0015]
For the same reason, the glass transition temperature derived from the energy ray-curable acrylic adhesive component in the IPN compound of the IPN adhesive of the present invention is also the same as the energy ray-curable acrylic adhesive. It is preferable that the temperature shifts to 5 ° C. or more, particularly 5 to 20 ° C. higher than the glass transition temperature of itself.
[0016]
The thermosetting epoxy adhesive component constituting the IPN adhesive of the present invention usually contains a polymerizable epoxy compound and a latent curing agent. The energy ray-curable acrylic adhesive component usually contains a polymerizable acrylic compound and a photopolymerization initiator. In the present invention, among these components, the polymerizable epoxy compound and the polymerizable acrylic compound are preferably compatible with each other at a stage before the polymerization. This is because if IPN is already separated at this stage, it is difficult to create a partially compatible state when IPN is formed.
[0017]
As such a polymerizable epoxy compound, an epoxy monomer or oligomer having a molecular weight (weight average molecular weight) of 10,000 or less can be preferably mentioned. For example, glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenol novolak and cresol novolak; glycidyl ethers of alcohols such as butanediol, polyethylene glycol and polypropylene glycol; phthalic acid, isophthalic acid, tetrahydrophthalic acid and the like Examples thereof include epoxy monomers such as glycidyl esters of carboxylic acids, oligomers thereof, and alicyclic epoxides. Among them, bisphenol A glycidyl ether monomer or oligomer can be preferably used. Specifically, Epicoat 828 (molecular weight 380), Epicoat 834 (molecular weight 470), Epicoat 1001 (molecular weight 900), Epicoat 1002 (molecular weight 1060), Epicoat 1055 (molecular weight 1350), Epicoat 1007 (molecular weight) manufactured by Yuka Shell Co., Ltd. 2900) can be used. These can be used alone or in combination of two or more.
[0018]
As the polymerizable acrylic compound, an acrylic monomer or oligomer having a molecular weight (weight average molecular weight) of 10,000 or less can be preferably mentioned. For example, (meth) acrylic acid alkyl ester, (meth) acrylic acid arylalkyl ester, urethane-modified acrylate and the like can be mentioned. Among them, phenoxyethyl acrylate and tetrahydrofurfuryl acrylate are preferred. Specific examples include AMP-10G (molecular weight 192) manufactured by Shin-Nakamura Chemical Co., Ltd., and Biscoat 150 (molecular weight 156) manufactured by Osaka Organic Chemical Industry Co., Ltd. These can be used alone or in combination of two or more.
[0019]
The compounding ratio (weight) of the polymerizable epoxy compound and the polymerizable acrylic compound in the IPN adhesive of the present invention is preferably 5/95 to 50/50, and more preferably 20/80 to 40/60. . If it is out of this range, it is not possible to expect a compensation effect that compensates for both disadvantages.
[0020]
As the latent curing agent that can be used in the present invention, those used in known thermosetting epoxy adhesives can be used, such as imidazole-based, amine-based, and dicyandiamide-based latent curing agents. Can be used.
[0021]
The use amount of the latent curing agent is preferably 1 to 100 parts by weight based on 100 parts by weight of the polymerizable epoxy compound.
[0022]
As the photopolymerization initiator that can be used in the present invention, those used in known energy ray-curable acrylic adhesives can be used.
[0023]
Examples of the photopolymerization initiator used in the present invention include benzophenone-based, acetophenone-based, benzoin, benzoin alkyl ether-based, benzyl, benzyldimethylketal, acylphosphine oxide-based, and thioxanthone-based photopolymerization initiators. . These photopolymerization initiators can be used alone or in combination. In addition, an aliphatic amine or an aromatic amine can also be added as an auxiliary.
[0024]
The use amount of the photopolymerization initiator is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the polymerizable acrylic compound.
[0025]
The IPN-type adhesive of the present invention may optionally contain, in addition to the components described above, a crosslinking agent, various rubber components, a filler, a leveling agent, a viscosity modifier, an antioxidant, and the like, if necessary.
[0026]
The IPN type adhesive of the present invention is obtained, for example, by mixing a polymerizable epoxy compound and a polymerizable acrylic compound, and mixing the mixture with a latent curing agent, a photopolymerization initiator, and other additional components. Can be manufactured.
[0027]
The IPN-type adhesive of the present invention is usually used as an adhesive sheet. In this case, the IPN-type adhesive is applied on a release sheet such as polyethylene terephthalate by a conventional method, and a thermosetting epoxy-based adhesive component is added. While maintaining the uncured state, energy rays such as ultraviolet rays may be irradiated to polymerize the energy ray-curable acrylic adhesive component.
[0028]
When the IPN type adhesive of the present invention is used, the IPN type adhesive is applied to an object to be bonded, and the obtained coating film is irradiated with energy rays to polymerize the energy ray-curable acrylic adhesive component. What is necessary is just to heat in order to polymerize a hardening type epoxy adhesive component.
[0029]
In addition, as a method of using the IPN-type adhesive sheet, after the IPN-type adhesive sheet is attached to the adherend, it may be heated to a temperature at which the thermosetting epoxy-based adhesive component is thermally cured.
[0030]
When the IPN-type adhesive sheet of the present invention is prepared, if the polymerization of the energy ray-curable acrylic adhesive component is insufficient, that is, the residual monomer or the low polymerization degree (such as dimer or trimer) When the substance remains in the sheet, it is heated at the time of the subsequent bonding process (that is, at the time of heating for polymerizing the thermosetting epoxy adhesive component, specifically, solder bonding such as BGA bonding). (E.g., during reflow heating), swelling may occur at the bonded area, wiring and components on the board may be contaminated as outgas after mounting on the board, or an unpleasant odor that may have a bad effect on the human body may be generated. is there.
[0031]
In order to eliminate such a possibility, the loss on heating of the IPN-type adhesive sheet of the present invention (that is, the weight is reduced by volatilization of a monomer or an oligomer having a low polymerization degree by heating) is suppressed to 1% or less. Is preferred. In this case, for example, the type and the amount of the polymerizable acrylic compound constituting the energy ray-curable acrylic adhesive component may be changed or the energy ray-curable acrylic adhesive may be changed so that the heating loss is 1% or less. A polyfunctional acrylate having two or more acrylate residues may be used in combination as the agent component, or the type and amount of the polymerization initiator may be changed.
[0032]
In addition, when a lead-free solder that requires a higher reflow temperature of about 260 ° C. from a conventional reflow temperature of about 240 ° C. is used as the solder used for solder bonding, the ambient environment during storage of the IPN-type adhesive sheet is reduced. Moisture absorbed from the gas may be gasified at once at the time of reflow, which may cause generation of voids and decrease in adhesive strength.
[0033]
In order to eliminate such a possibility, it is preferable to suppress the moisture absorption rate of the IPN type adhesive sheet of the present invention to 0.3% or less. In this case, for example, the amount of the curing agent may be changed, the curing time (reaction rate) may be specified, or the type of the filler may be used in combination so that the moisture absorption is 0.3% or less. . The moisture absorption is calculated by the following equation:
(Equation 1)
Moisture absorption rate (%) = {(weight after moisture absorption-weight before moisture absorption) / weight before moisture absorption} x 100
Specifically, after the thermosetting epoxy-based adhesive component of the IPN-type adhesive sheet is thermoset, it is left for 168 hours in an environment of 85% RH at 30 ° C. This is a value obtained by measuring a change in weight before and after.
[0035]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
[0036]
Examples 1 to 3 and Comparative Examples 3 to 5
As shown in Tables 1 and 2, a polymerizable epoxy compound and a polymerizable acrylic compound were mixed, and a latent curing agent and a photopolymerization initiator were added to the mixture and mixed. The obtained mixture was applied on a polyethylene terephthalate release film so as to have a thickness of 50 μm using a bar coater. Next, the coating film was irradiated with ultraviolet rays at an energy density of 2000 mJ / cm 2 to polymerize the polymerizable acrylic compound to obtain an adhesive sheet.
[0037]
A polyimide film (UPILEX 25S, manufactured by Ube Industries, Ltd.) and a copper foil (12 μm thick) are adhered to each other with the obtained adhesive sheet, and heated in a 150 ° C. atmosphere for 60 minutes to polymerize the polymerizable epoxy-based compound. Were bonded to prepare a test sample.
[0038]
Comparative Example 1
A mixture of a polymerizable epoxy compound having the composition shown in Table 2 and a latent curing agent was applied to a polyimide film (UPILEX 25S, manufactured by Ube Industries, Ltd.) at a thickness of 50 μm, and a copper foil (12 μm thickness) was attached thereto. By heating in a 150 ° C. atmosphere for 60 minutes, the polymerizable epoxy compound was polymerized and the two were adhered to prepare a test sample.
[0039]
Comparative Example 2
A mixture of a polymerizable acrylic compound having the composition shown in Table 2 and a photopolymerization initiator was applied on a polyethylene terephthalate release film so as to have a thickness of 50 μm using a bar coater. Next, the coating film was irradiated with ultraviolet rays at an energy density of 2000 mJ / cm 2 to polymerize the polymerizable acrylic compound to obtain an adhesive sheet.
[0040]
A test sample was prepared by laminating a polyimide film (UPILEX 25S, manufactured by Ube Industries, Ltd.) and a copper foil (12 μm thick) with the obtained adhesive sheet.
[0041]
Comparative Example 6
The polyester-based adhesive shown in Table 2 was applied to a polyimide film (UPILEX 25S, manufactured by Ube Industries, Ltd.) at a thickness of 50 μm, a copper foil (12 μm thickness) was adhered, and 9.81 × 10 −2 in a 150 ° C. atmosphere. Both were adhered by hot pressing for 10 seconds under the condition of Mpa (1 kgf / cm 2 ) to produce a test sample.
[0042]
(Evaluation)
First, a thermosetting epoxy adhesive component (polymerizable epoxy compound + latent curing agent) and an energy ray-curable acrylic adhesive component (polymerizable acrylic compound + Photopolymerization initiators) were separately prepared, each was polymerized, and their own glass transition temperatures were measured using a Leovibron (a heating rate of 3 ° C./min, a frequency of 11 Hz) manufactured by Polyentec. The obtained results are shown in Tables 1 and 2.
[0043]
Next, the glass transition temperatures Tg1 and Tg2 (° C.) and the elastic modulus (MPa) of the adhesive itself of another test sample of each of Examples and Comparative Examples were compared with those of Leo Vibron manufactured by Polyentec (heating rate 3 ° C./min.). , Frequency 11 Hz). The obtained results are shown in Tables 1 and 2.
[0044]
In addition, another test sample of each of the examples and comparative examples was subjected to a heat resistance test under the condition of being left in an atmosphere of 150 ° C. for 168 hours, and the peel strength at room temperature before the test and the peel strength after the test (N / Cm) was measured according to JIS K6854. The obtained results are shown in Tables 1 and 2.
[0045]
[Table 1]
Figure 0003573109
[0046]
[Table 2]
Figure 0003573109
[0047]
From the results of Tables 1 and 2, the temperature of the glass transition point on the high temperature side derived from the thermosetting epoxy adhesive component is 5 ° C. or more lower than the glass transition temperature of the thermosetting epoxy adhesive component itself. The adhesive sheets of Example 1 (15 ° C. shift), Example 2 (14 ° C. shift) and Example 3 (20 ° C. shift) are not inferior to the conventional polyester-based adhesive (Comparative Example 6). It shows flexibility and adhesive strength, and is also superior in heat resistance to polyester-based adhesives.
[0048]
On the other hand, the thermosetting epoxy adhesive alone (Comparative Example 1) lacked flexibility and had low peel strength. In addition, the energy ray-curable acrylic adhesive alone (Comparative Example 2) was too soft, lacked cohesive strength, and had low peel strength.
[0049]
In the case of Comparative Example 3, the thermosetting epoxy-based adhesive component and the energy ray-curable acrylic-based adhesive component were not partially compatible with each other. Since the glass transition temperature did not shift, there was a problem in the peel strength. There was also a problem with heat resistance. Conversely, in the case of Comparative Example 4 in which the thermosetting epoxy adhesive component and the energy ray-curable acrylic adhesive component are compatible and show only one glass transition temperature, the flexibility is also released. There was also a problem with strength.
[0050]
In addition, if the thermosetting epoxy adhesive component is too large, the glass transition temperature on the high temperature side derived from the thermosetting epoxy adhesive component is shifted too much, and the peel strength is not sufficient, and the flexibility is also low. It was missing.
[0051]
Example 4
In order to investigate the influence of weight loss on heating on the IPN type adhesive and the adhesive sheet, IPN type adhesive sheets having different weight loss on heating were prepared as in Experimental Examples a to j shown in Tables 3 and 4.
[0052]
That is, a polymerizable epoxy compound and a polymerizable acrylic compound were mixed in a monomer state, and a latent curing agent, a photopolymerization initiator, and a crosslinking agent were added to the mixture and mixed. The obtained mixture was applied on a polyethylene terephthalate release film so as to have a thickness of 50 μm using a bar coater. Next, the coating film was irradiated with ultraviolet rays at an energy density of 2000 mJ / cm 2 to polymerize the polymerizable acrylic compound to obtain an IPN-type adhesive sheet.
[0053]
Using the obtained adhesive sheet, a polyimide film (UPILEX 50S, manufactured by Ube Industries, Ltd.) and a copper foil (12 μm thick (JIS3100), manufactured by Engineering Test Service Co., Ltd.) are bonded together and heated in an atmosphere of 150 ° C. for 60 minutes. As a result, the polymerizable epoxy compound was polymerized and both were adhered to each other to prepare a test sample.
[0054]
(Evaluation)
First, the energy ray-curable acrylic adhesive components (each polymerizable acrylic compound + photopolymerization initiator) constituting the adhesive sheet of each experimental example were separately prepared and polymerized, and their own glass transition temperatures were measured. The measurement was performed in the same manner as in Example 1. Tables 3 and 4 show the obtained results.
[0055]
Next, the glass transition temperatures Tg1 and Tg2 (° C.) and the elastic modulus (MPa) of the adhesive itself of the test sample of each experimental example were measured in the same manner as in Example 1. Tables 3 and 4 show the obtained results.
[0056]
Further, the loss on heating of another test sample of each experimental example was measured as a weight change before and after heating when the sample was heated in a 135 ° C. atmosphere for 1 hour. Tables 3 and 4 show the obtained results.
[0057]
Further, another test sample of each experimental example was left in a moist heat atmosphere of 30 ° C. and 85% RH for 24 hours, and then passed through a reflow furnace having a maximum temperature of 265 ° C., and the peel strength before and after the reflow treatment ( N / cm) was measured according to JIS K6854. The measurement results obtained are shown in Tables 3 and 4. In addition, the external appearance after the reflow treatment was visually observed. The case where swelling was not observed was evaluated as “○”, and the case where swelling was observed was evaluated as “×”.
[0058]
[Table 3]
Figure 0003573109
[0059]
[Table 4]
Figure 0003573109
[0060]
From the results in Tables 3 and 4, it can be seen that the adhesive sheets of Experimental Examples a to f having a heat loss of 1% or less have sufficient elasticity and peel strength before and after reflow, and have no problem in appearance.
[0061]
On the other hand, when the amount of the polymerization initiator is relatively small as in Experimental Example g, the weight loss on heating exceeds 1%, and a problem occurs in the appearance after reflow. Conversely, when the amount of the polymerization initiator is relatively large as in Experimental Example h, the effect of the residual polymerization initiator cannot be ignored, so that the weight loss on heating exceeds 1%, and the appearance after reflow is also increased. Problems arise. When an acrylic monomer having a relatively low reactivity is used, as in Experimental Example i, the loss on heating exceeds 1%, which also causes a problem in appearance after reflow. When the amount of the bifunctional acrylic monomer used is increased as in Experimental Example j, the loss on heating becomes 1% or less, but the peel strength decreases.
[0062]
Example 5
In order to investigate the influence of the moisture absorption rate on the IPN-type adhesive and the adhesive sheet, IPN-type adhesive sheets having different moisture absorption rates were used in the same manner as in Example 4 as in Experimental Examples kt shown in Tables 5 and 6. Produced.
[0063]
Using the obtained adhesive sheet, the same polyimide film and copper foil used in Example 4, a test sample was prepared according to the operation of Example 4.
[0064]
(Evaluation)
First, the glass transition temperatures Tg1 and Tg2 (° C.) and the elastic modulus (MPa) of the adhesive of the test sample of each experimental example were measured in the same manner as in Example 1. Tables 5 and 6 show the obtained results.
[0065]
The reaction rate of another test sample of each experimental example was calculated from the reaction heat amount measured by a differential scanning calorimeter (DSC6200, manufactured by Seiko Instruments Inc.) at a heating rate of 10 ° C./min. Tables 5 and 6 show the obtained results.
[0066]
The moisture absorption of the sample was measured before and after standing after leaving another test sample of each experimental example by heat treatment to cure the thermosetting epoxy-based adhesive component and then leaving it in an 85% RH atmosphere at 30 ° C. for 168 hours. It was measured as a change in weight. Tables 5 and 6 show the obtained results.
[0067]
Further, another test sample of each experimental example was left in a moist heat atmosphere of 30 ° C. and 85% RH for 24 hours, and then passed through a reflow furnace having a maximum temperature of 265 ° C., and the peel strength before and after the reflow treatment ( N / cm) was measured according to JIS K6854. Tables 5 and 6 show the obtained measurement results. In addition, the external appearance after the reflow treatment was visually observed. The case where swelling was not observed was evaluated as “○”, and the case where swelling was observed was evaluated as “×”.
[0068]
[Table 5]
Figure 0003573109
[0069]
[Table 6]
Figure 0003573109
[0070]
From the results in Tables 5 and 6, it can be seen that the adhesive sheets of Experimental Examples ko having a moisture absorption of 0.3% or less have sufficient elasticity and peel strength before and after reflow, and have no problem in appearance. . The reaction rate was 100%.
[0071]
On the other hand, in the experimental example p, the curing time of the experimental example k was shortened by 1 hour to reduce the reaction rate, and the moisture absorption was set to 0.43%. In the experimental example q, the curing agent of the experimental example k was used. The reaction rate was 99% with 2.5 times the amount, but the moisture absorption rate was 0.61%. In Experimental Example r, the curing agent in Experiment k was halved, and the reaction rate was reduced to reduce the moisture absorption rate. Is 0.54%, and in Experimental Example s, the curing rate of the curing agent in Experimental Example 1 was doubled and the reaction rate was 99%, but the moisture absorption rate was 0.41%. t is a value obtained by shortening the curing time of Experimental Example m by 1 hour to reduce the reaction rate to 0.52% of the moisture absorption rate. Since the moisture absorption rate exceeds 0.3% in each case, reflow is performed. It can be seen that the peel strength after the process decreases, and a problem occurs in the appearance after the reflow.
[0072]
That is, even if the reaction rate is 90% or more, good results are not obtained when the moisture absorption rate exceeds 0.3%.
[0073]
【The invention's effect】
The IPN-type adhesive and the IPN-type adhesive sheet of the present invention exhibit flexibility and adhesive strength not inferior to conventional polyester-based adhesives, and are superior in heat resistance to polyester-based adhesives. Therefore, it can be preferably used when electronic components such as IC chips are mounted on a substrate by a ball grid array method, a chip-on-film method, or the like.
[0074]
Further, by setting the weight loss on heating of the IPN type adhesive sheet to 1% or less, blisters may be generated at the bonding portion, wirings and components on the substrate may be contaminated as outgas after mounting on the substrate, or the human body may be adversely affected. Generation of an unpleasant odor can be prevented.
[0075]
In addition, by setting the moisture absorption rate of the IPN type adhesive sheet to 0.3% or less, a lead-free solder which requires a higher reflow temperature of about 260 ° C. from a conventional reflow temperature of about 240 ° C. is used. In addition, it is possible to reduce the possibility of generating voids and lowering the bonding strength during reflow.

Claims (5)

重合性エポキシ系化合物と潜在性硬化剤とを含む熱硬化型エポキシ系接着剤成分と、重合性アクリル系化合物と光重合開始剤とを含むエネルギー線硬化型アクリル系接着剤成分とを含有し、相互侵入高分子網目構造を形成可能なIPN型接着剤であって、相互侵入高分子網目構造を形成した後に2つのガラス転移温度ピークを示し、熱硬化型エポキシ系接着剤成分に由来する高温側のガラス転移温度が、熱硬化型エポキシ系接着剤成分自体のガラス転移温度よりも10℃〜30℃低温側にシフトし、エネルギー線硬化型アクリル系接着剤成分に由来する低温側のガラス転移温度が、エネルギー線硬化型アクリル系接着剤成分自体のガラス転移温度と同一であり、重合性エポキシ系化合物と重合性アクリル系化合物との配合比(重量)が、5/95〜50/50であり、該重合性エポキシ系化合物がビスフェノールAグリシジルエーテルであり、重合性アクリル系化合物がフェノキシエチルアクリレート又はテトラヒドロフルフリルアクリレートであるIPN型接着剤。 A thermosetting epoxy adhesive component containing a polymerizable epoxy compound and a latent curing agent, and an energy ray-curable acrylic adhesive component containing a polymerizable acrylic compound and a photopolymerization initiator , An IPN-type adhesive capable of forming an interpenetrating polymer network structure, which shows two glass transition temperature peaks after forming an interpenetrating polymer network structure, and has a high temperature side derived from a thermosetting epoxy adhesive component. Is lower by 10 ° C. to 30 ° C. than the glass transition temperature of the thermosetting epoxy adhesive component itself, and the glass transition temperature on the low temperature side derived from the energy ray-curable acrylic adhesive component but the same as the glass transition temperature of the energy ray-curable acrylic adhesive components themselves, polymerizable epoxy compound and a polymerizable compounding ratio of the acrylic compound (weight), 5 / 5 to 50/50, the polymerizable epoxy compound is bisphenol A glycidyl ether, polymeric IPN adhesive acrylic compound is phenoxyethyl acrylate or tetrahydrofurfuryl acrylate. 請求項1記載のIPN型接着剤を、シート状に加工し、熱硬化型エポキシ系接着剤成分を未硬化状態に維持したままエネルギー線を照射してエネルギー線硬化型アクリル系接着剤成分を重合させることにより得られるIPN型接着シート。The claim 1 Symbol placement of IPN adhesive, processed into a sheet, a thermosetting epoxy-based adhesive component is irradiated with while energy beam was maintained uncured an energy ray-curable acrylic adhesive component An IPN-type adhesive sheet obtained by polymerization. 加熱減量が1%以下である請求項記載のIPN型接着シート。The IPN-type adhesive sheet according to claim 2 , wherein the weight loss on heating is 1% or less. 吸湿率が0.3%以下である請求項記載のIPN型接着シート。The IPN-type adhesive sheet according to claim 2 , wherein a moisture absorption rate is 0.3% or less. 請求項記載のIPN型接着シートを被接着体に貼り合わせた後、熱硬化型エポキシ系接着剤成分を熱硬化させる接着方法。A bonding method comprising: bonding the IPN-type adhesive sheet according to claim 2 to a body to be bonded; and then thermosetting the thermosetting epoxy-based adhesive component.
JP2001188778A 2000-06-22 2001-06-21 IPN type adhesive, IPN type adhesive sheet and bonding method Expired - Lifetime JP3573109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001188778A JP3573109B2 (en) 2000-06-22 2001-06-21 IPN type adhesive, IPN type adhesive sheet and bonding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-188211 2000-06-22
JP2000188211 2000-06-22
JP2001188778A JP3573109B2 (en) 2000-06-22 2001-06-21 IPN type adhesive, IPN type adhesive sheet and bonding method

Publications (2)

Publication Number Publication Date
JP2002080811A JP2002080811A (en) 2002-03-22
JP3573109B2 true JP3573109B2 (en) 2004-10-06

Family

ID=26594482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188778A Expired - Lifetime JP3573109B2 (en) 2000-06-22 2001-06-21 IPN type adhesive, IPN type adhesive sheet and bonding method

Country Status (1)

Country Link
JP (1) JP3573109B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233202A (en) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film for circuit connection
JP2006233200A (en) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film
JP2006233203A (en) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film
JP2006233201A (en) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film
JP2007009176A (en) * 2005-01-31 2007-01-18 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film
JP2007217503A (en) * 2006-02-15 2007-08-30 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film
JP2007224111A (en) * 2006-02-22 2007-09-06 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive sheet and its production method
JP2007224112A (en) * 2006-02-22 2007-09-06 Asahi Kasei Electronics Co Ltd Anisotropic conductive adhesive sheet and method for producing the same
JP5676444B2 (en) * 2008-07-23 2015-02-25 スリーエム イノベイティブ プロパティズ カンパニー Two-component epoxy structural adhesive
TWI488931B (en) * 2010-06-08 2015-06-21 Henkel IP & Holding GmbH Wafer backside coating containing reactive sulfur compound
US9464217B2 (en) * 2010-09-01 2016-10-11 The Boeing Company Composite structures using interpenetrating polymer network adhesives
US8882956B2 (en) 2010-09-01 2014-11-11 The Boeing Company Composite structures using interpenetrating polymer network adhesives
JP6066211B2 (en) * 2011-10-14 2017-01-25 エルジー・ケム・リミテッド Adhesive for polarizing plate, polarizing plate and optical element
EP2759514A1 (en) * 2013-01-29 2014-07-30 tesa SE Adhesive mass containing a connected nanoparticle network, process for its preparation and utilisation of the same
CN109608586B (en) * 2018-12-26 2021-06-22 广州科为科技有限公司 Modified polyacrylate emulsion and preparation method thereof
JP2020105253A (en) * 2018-12-26 2020-07-09 スリーエム イノベイティブ プロパティズ カンパニー Composition for forming sealing material, sealing material, thermosetting material of sealing material, and method for manufacturing adhesive structure
JP6923721B1 (en) * 2020-07-28 2021-08-25 昭和電工株式会社 Substrate with primer, its manufacturing method, and bonded body

Also Published As

Publication number Publication date
JP2002080811A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP3573109B2 (en) IPN type adhesive, IPN type adhesive sheet and bonding method
JP4275221B2 (en) Adhesive composition and adhesive sheet
US9296928B2 (en) Flexible bismaleimide, benzoxazine, epoxy-anhydride adduct hybrid adhesive
TWI229694B (en) Dual cure B-stageable adhesive for die attach
JP5499516B2 (en) Adhesive composition, circuit member connecting adhesive sheet, and method for manufacturing semiconductor device
WO2021172431A1 (en) Resin film, composite sheet and method for producing semiconductor device
JP6619525B2 (en) Optical pressure-sensitive adhesive composition and optical pressure-sensitive adhesive layer containing the cured product
JP7107946B2 (en) infrared sensor module
JP2022000905A (en) Kit and method for manufacturing semiconductor chip
TW201235430A (en) Heat-curing resin composition, heat-curing adhesive sheet, and method for producing heat-curing adhesive sheet
JP5879675B2 (en) Adhesive film for semiconductor, wiring board for semiconductor mounting, semiconductor device, and adhesive composition
JP5009752B2 (en) Thermosetting film for die bonding and manufacturing method of semiconductor device using the same
JP5320117B2 (en) Adhesive for electronic parts
CN108140622B (en) Kit of thermosetting resin film and 2 nd protective film forming film, and method for forming same
TWI841538B (en) Method for manufacturing laminate containing hardening bonding material
JP4788425B2 (en) Adhesive for semiconductor, semiconductor device using the same, and method for manufacturing semiconductor device
JPH07216336A (en) Adhesive composition for flexible printed wiring board
JP4763876B2 (en) Thermosetting adhesive composition and adhesive sheets
JP6775517B2 (en) Protective film forming sheet
JP7033237B2 (en) How to manufacture kits and semiconductor chips
JP2001152123A (en) Heat-curable adhesive and its adhesive sheets
JP6482748B2 (en) Adhesive member and method for manufacturing electronic component
JP4535567B2 (en) Thermosetting adhesive composition and adhesive sheets
JPH11335649A (en) Thermosetting adhesive composition and its adhesive sheets
JP4321911B2 (en) Thermosetting adhesive and its adhesive sheets

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Ref document number: 3573109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term