JP3571540B2 - Filtration mold and method for producing ceramic sintered body using the mold - Google Patents

Filtration mold and method for producing ceramic sintered body using the mold Download PDF

Info

Publication number
JP3571540B2
JP3571540B2 JP24490098A JP24490098A JP3571540B2 JP 3571540 B2 JP3571540 B2 JP 3571540B2 JP 24490098 A JP24490098 A JP 24490098A JP 24490098 A JP24490098 A JP 24490098A JP 3571540 B2 JP3571540 B2 JP 3571540B2
Authority
JP
Japan
Prior art keywords
slurry
mold
water
filter
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24490098A
Other languages
Japanese (ja)
Other versions
JPH11286002A (en
Inventor
村 功 中
森 洋一郎 江
辺 弘 渡
穣 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP24490098A priority Critical patent/JP3571540B2/en
Priority to TW088101590A priority patent/TW548256B/en
Priority to KR10-1999-0003841A priority patent/KR100453621B1/en
Priority to CN99100765A priority patent/CN1121358C/en
Publication of JPH11286002A publication Critical patent/JPH11286002A/en
Application granted granted Critical
Publication of JP3571540B2 publication Critical patent/JP3571540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックス成形体の成形に用いられる濾過式成形型、スパッタリング法で使用される高純度スパッタリングターゲットおよびスパッタリングターゲットとして使用するのに好適な使用効率の高い肉厚差を有するセラミックス焼結体の製造方法に関する。
【0002】
【従来の技術】
セラミックスの成形方法の一つである泥漿鋳込み成形は、石膏などの吸水性のある多孔質の密閉型にスラリーを加圧で注入し、型の全面あるいは2面から吸水する方法(特公平6−659号公報)が一般的である。しかし、成形型の全面あるいは2面から吸水した場合、成形体の中心部が最後に着肉するので、密度ムラや組成ムラなどの欠陥が発生しやすい。
【0003】
また、泥漿鋳込み成形で使用される石膏は、水溶性であるため成形体中へのカルシウムの混入は防ぐことが出来ない。スパッタリングゲートようセラミックス焼結体は、高純度であることが望ましくいが、これにカルシウムが混入するとスパッタリングによって成膜した薄膜の導電性、透明性、エッチング性に悪影響を及ぼすことになる。
【0004】
さらに、金型を用いた乾式プレス成形法においては、肉厚差のある成形体では成形密度が均一になりにくく、成形体に反りやクラックが発生しやすくなる。また成形サイズの大型化に伴ない金型やプレス設備が高価になるなどの特徴がある。
【発明が解決しようとする課題】
【0005】
本発明の目的は、セラミックス焼結体の製造において不純物の混入が少なく、内部欠陥がなく密度ムラや組成ムラのない成形体や、肉厚差のある成形体を得るための安価な濾過式成形型およびその成形型を用いたセラミックス焼結体の製造法を提供することにある。
【0006】
また、本発明の他の目的は、酸化インジウムと酸化錫を含むスラリーを上記の濾過式成形型を用いて成形し、得られた成形体を焼結して、高純度ITO焼結体やスパッタリングゲートとして使用効率の高い肉厚差を有するITO焼結体を製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、泥漿鋳込み用石膏型に替わる成形型として、非水溶性の材料からなる濾過式成形型を用いて一方向の着肉を起こさせることにより、密度ムラや組成ムラがなく不純物の混入がない、高純度セラミックス焼結体が得られることを見い出した。また、同時に、前記の成形型の構造では、成形用下型にかかる負荷が小さいので、その材料として比較的強度の小さいものを使用できるため、成形サイズの大型化に対しても安価に成形型を提供できることを見い出した。さらに、成形用下型を凹凸形状に加工することにより肉厚差のある成形体が得られることを見い出した。
【0008】
本発明は、下記の事項をその特徴としている。
(1) セラミックス原料スラリーから水分を減圧排水して成形体を得るための非水溶性材料からなる濾過式成形型であって、1個以上の水抜き孔を有する成形用下型と、この成形用下型の上に載置した通水性を有するフィルターと、このフィルターをシールするためのシール材を介して上面側から挟持する成形用型枠からなり、前記成形用下型、成形用型枠、シール材、およびフィルターが各々分解できるように組立てられており、該フィルター面側からのみスラリー中の水分を減圧排水することを特徴とする濾過式成形型。
(2) 成形用下型のフィルター面側が、凹凸形状を有することを特徴とする前記(1)に記載の濾過式成形型。
(3) セラミックス原料粉、イオン交換水と有機添加剤からなるスラリーを調製し、このスラリーを請求項(1)に記載の濾過式成形型に注入し、該フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、得られたセラミックス成形体を乾燥脱脂後、焼成することを特徴とする高純度セラミックス焼結体の製造方法。
(4) セラミックス原料粉、イオン交換水と有機添加剤からなるスラリーを調製し、このスラリーを請求項(2)に記載の濾過式成形型に注入し、該フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、得られたセラミックス成形体を乾燥脱脂後、焼成することを特徴とする肉厚差を有するセラミックス焼結体の製造方法。
(5) 酸化インジウム粉、酸化錫粉、イオン交換水および有機添加剤からなるスラリーを前記(1)に記載の濾過式成形型に注入し、フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、得られたITO成形体を乾燥脱脂後、焼成することを特徴とする高純度ITO焼結体の製造方法。
(6) 酸化インジウム粉、酸化錫粉、イオン交換水および有機添加剤からなるスラリーを調製し、このスラリーを前記(2)に記載の濾過式成形型に注入し、フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、得られたITO成形体を乾燥脱脂後、焼成することを特徴とする肉厚差を有するITO焼結体の製造方法。
【0009】
【発明の実施の形態】
本発明の濾過式成形型は、図1に示すように、セラミックス原料スラリー1を成形用型枠2内に上部より注入し、下部に配置されている1個以上の水抜き孔6より減圧排水を行い成形体を得るものである。
【0010】
濾過式成形型は、水抜き孔6をもつアルミ製あるいは樹脂(ポリプロピレン、ナイロン等)製の成形用下型3に、スラリー1中のセラミックス粉が透過しない通水性を有するフィルター4(例えば、ゴアテックス湿式フィルタークロス、ジャパンゴアテックス株式会社製)を載置した該成形用下型3と、シール材5を介してアルミ製の成形用型枠2を重ねた構造からなっている。
【0011】
本発明の成形型では減圧排水時にかかる圧力は、フィルターと成形用下型間のみにかかるので比較的強度の低い材料を成形用下型として使用できる。
【0012】
次に、本発明のセラミックスおよびITO焼結体の製造方法について説明する。セラミックス焼結体の製造工程は図3に、ITO焼結体の製造工程は図4に示す通りである。
【0013】
(a)原料粉の調整
セラミックス原料粉を仮焼処理や粉砕処理を行うことで、1次粒子径や比表面積を調整することにより、スラリー化を容易にすることができる。
ITO焼結体の場合では、酸化インジウム粉と酸化錫粉は市販品を使用できる。ただし市販の酸化インジウム粉を予め仮焼などの処理により粒成長させておくことが好ましい。酸化インジウム粉の1次粒子径が不適当になると成形密度の低下や密度ムラによる脱脂、焼結でのクラックや割れ、反りが大きくなるので、0.1〜0.5μmの範囲とするのが好ましい。
【0014】
(b)スラリーの調製
セラミックス原料粉を単独または数種類をイオン交換水と有機添加剤(分散剤、バインダー、消泡剤)を加えてボールミル混合し、スラリーの調整を行う。ITO焼結体の場合は、原料の酸化インジウム粉と酸化錫粉を予め乾式ボールミルで混合、粉砕する。酸化錫の組成は5〜10重量%が好ましい。この際、イオン交換水1〜5重量%を加えておくと原料粉のポット壁への付着を減少させ、混合を十分に行なえる効果が期待できる。ボールミルのポットとしては、樹脂製ポットを使用するのが好ましい。またボールの材質は、比重が大きくて耐摩耗性に優れたジルコニアが好ましい。乾式ボールミルは、凝集粒子を解砕するとともに、粉の嵩密度を上げる効果がある。
【0015】
次に、前記ボールミルポット中へイオン交換水を10〜25重量%、および有機添加剤(分散剤)を添加し、樹脂製ポットにて混合を行って原料粉を分散させる。分散剤としてはポリカルボン酸系分散剤が使用でき、添加量は0.2〜1.0重量%が好ましい。
【0016】
さらに、有機添加剤(バインダー)を添加して混合を行いスラリーを得る。バインダーとしてはワックス系バインダーが使用でき、添加量は0.3〜1.0重量%が好ましい。スラリー粘度としては100cp以下のスラリーを調製することが好ましい。スラリー粘度が高いと脱気が困難になったり、容器やボールへの付着によってスラリー回収率が低下する。
最後に、スラリーに有機添加剤(消泡剤)を添加して減圧脱気する。消泡剤としては、アミド系消泡剤が使用でき、添加量は0.01〜0.5重量%が好ましい。
【0017】
(c)濾過式成形型による成形体の製作
脱気した前記スラリーを成形型に注入し、フィルターの下型面側を減圧し、スラリー中の水分をフィルター面側から減圧排水することにより成形する。減圧は−700mmHgより大きい方が好ましい。減圧には真空ポンプなどを使用することができる。
減圧排水時間は、成形体の着肉終了から約30分後までがよい。減圧排水時間が短いと、成形体の成形用型枠からの離型性が悪くなりクラックが発生することがある。また減圧排水時間が長すぎると、減圧排水中に成形用型枠から成形体が離型して隙間から空気が吸引され、成形体の離型部分のみが急速に乾燥しクラックが発生することがある。
【0018】
(d)成形体の乾燥、脱脂
前記により得られた成形体を自然乾燥するのが好ましい。成形体は離型時に10重量%程度の水分を含んでおり、成形体の乾燥を乾燥器などを使用して急速に行うと、乾燥ムラから成形体の反り、クラックが発生することがある。
さらに、乾燥した成形体の脱脂を行う。成形体の脱脂を行わないと焼成時に成形体に反りやクラック、割れが発生しやすくなる。脱脂は熱風循環式脱脂炉等を使用して400〜600℃で加熱し、残留水分およびバインダーを除去することが好ましい。
【0019】
(e)成形体の焼成
成形体を焼成することにより高純度セラミックス焼結体を得る。ITO焼結体の場合は焼成温度は1400〜1600℃が好ましい。焼成雰囲気は大気および酸素が使用できるが、酸素雰囲気を用いることが高密度の焼結体を得るためには好ましい。
【0020】
本発明の成形型について従来型と比較した利点を、表1に示す。本発明の成形型は従来の石膏型、プレス金型に比べ、密度ムラや組成ムラがなく、不純物混入もなく、また大型化するための費用も少なくてすむ等の利点を有している。また、肉厚差を有する成形体を成形するに際しても同様の利点がある。
【0021】
【表1】

Figure 0003571540
【0022】
【実施例】
以下に、本発明を実施例と比較例によりさらに説明する。
実施例1
市販のローソーダアルミナ粉15000g、イオン交換水3450g、ポリカルボン酸系分散剤150g、ワックス系バインダー150gと鉄芯入り樹脂ボールを樹脂製ポットに入れ40時間ボールミル混合を行った。このスラリーの濃度は83%で、平均粒子径は0.76μm、粘度は105cpだった。
【0023】
スラリーを減圧脱気後、成形サイズ1050mm×1100mmの成形よう型枠がアルミニウム製で成形用下型が樹脂製の本発明成形型に注入し、フィルター面側より減圧排水し成形体を得た。
フィルターは、ゴアテックス湿式フィルタークロス、ジャパンゴアテックス株式会社製を用いた。このフィルターは織布またはフェルト上に多孔性の樹脂膜を片面側のみ付着させた構造で形成されており、樹脂の裏面側は織布またはフェルトからなり、通水空間を有し、多孔性の樹脂膜と下型との間には水が自由に移動できる通路が形成されている。
【0024】
成形体を自然乾燥後、脱脂処理を450℃で行なった。脱脂後の成形体には密度ムラによる反りやクラックは発生せず、寸法は1049mm×1099mm×10.2mmで、密度は55%(2.19g/cm)だった。
スラリー濃度の定義は次の通りである。
スラリー濃度(%)=溶質重量/(溶質重量+溶媒重量)×100
【0025】
実施例2
市販の酸化錫粉250g、イオン交換水1.25gとジルコニアボールを樹脂製ポットに入れ20時間ボールミル混合を行った。次にイオン交換水233gとポリカルボン酸系分散剤2gを入れ1時間ボールミル混合した。1時間後にワックス系バインダーを2.5g添加し、19時間ボールミル混合を行った。このスラリーの濃度は83%、平均粒径は1.1μm、粘度は71cpだった。
【0026】
スラリーを減圧脱気後、成形サイズ76mmφであること以外は実施例1と同様の材質、構造の成形型に注入し、減圧−760mmHgで減圧排水し成形体を得た。成形体を自然乾燥後、脱脂処理を600℃で3時間行った。その後、酸素雰囲気にて1500℃で8時間焼成し酸化錫焼結体を得た。焼結体に密度ムラによる反りやクラックは発生せず、密度は66.5%(4.6g/cm)であった。また不純物としてカルシュウムが混入しない高純度の焼結体が得られた。
【0027】
実施例3
酸化インジウム粉7200g、酸化錫粉800gとイオン交換水240gおよび直径5mmのジルコニアボールを樹脂製ポットに入れ、20時間ボールミル混合を行った。次に、イオン交換水1440gとポリカルボン酸系分散剤56gを入れ1時間ボールミル混合した。1時間後にワックス系バインダーを80g添加し19時間ボールミル混合を行った。
【0028】
次に、スラリーにアミド系消泡剤1.6gを添加し減圧脱気を行った。このスラリーの濃度は83%で、平均粒径は0.5μm、粘度は33cpだった。このスラリーを成形サイズ300mm×700mmで成形用下型がアルミニウム製であること以外は実施例1と同様の構造成形型に注入し、減圧−760mmHgで減圧排水し、成形体を得た。
【0029】
成形体を自然乾燥、脱脂処理を600℃で3時間行った。その後、酸素雰囲気にて1550℃で8時間焼成した。ITO焼結体には密度ムラによる反りやクラックは発生しなかった。また、酸化錫の偏析がなく、カルシウムの混入しない高純度ITO焼結体を得た。ITO焼結体の寸法は、247mm×578mm×7.3mmであり、密度は98.1%(7.01g/cm)であった。
【0030】
実施例4
酸化インジウム粉18000g、酸化錫粉2000gとイオン交換水600gおよび直径5mmのジルコニアボールを樹脂製ポットに入れ20時間ボールミル混合を行った。次に、イオン交換水3592gとポリカルボン酸系分散剤160gを入れ、1時間ボールミル混合した。1時間後にワックス系バインダーを200g添加し、19時間ボールミル混合を行った。
【0031】
スラリーにアミド系消泡剤4gを添加し減圧脱気を行った。このスラリーの濃度は83%で、平均粒径は0.5μm、粘度は40cpだった。このスラリーを成形サイズ375mm×1270mm成形用下型がアルミニウム製であること以外は実施例1と同様の構造成形型に注入し、減圧−760mmHgで減圧排水し成形体を得た。
【0032】
成形体を自然乾燥、脱脂処理を600℃で3時間行った。その後、酸素雰囲気にて1550℃で8時間焼成した。ITO焼結体には密度ムラによる反りやクラックは発生しなかった。また、酸化錫の偏析がなく、カルシウムの混入しない高純度ITO焼結体を得た。ITO焼結体の寸法は、308mm×1046mm×7.9mmであり、密度は98.8%(7.06g/cm)であった。
【0033】
実施例5
酸化インジウム粉900g、酸化錫粉100gとイオン交換水30gおよび直径5mmのジルコニアボールを樹脂製ポットに入れ、20時間ボールミル混合を行った。次に、イオン交換水178gとポリカルボン酸系分散剤7.9gを入れ、1時間ボールミル混合した。1時間後にワックス系バインダーを9.9g添加し、19時間ボールミル混合を行った。
【0034】
スラリーにアミド系消泡剤0.2gを添加し減圧脱気を行った。このスラリーの濃度は83%で、平均粒径は0.46μm、粘度は15cpだった。このスラリーを成形サイズ190mmφで成形用下型がアルミニウム製であること以外は実施例1と同様の構造成形型に注入し、減圧−760mmHgで減圧排水し成形体を得た。
【0035】
成形体を自然乾燥、脱脂処理を600℃で3時間行った。その後、酸素雰囲気にて1550℃で8時間焼成した。ITO焼結体には密度ムラによる反りやクラックは発生しなかった。また、酸化錫の偏析がなく、カルシウムの混入しない高純度ITO焼結体を得た。ITO焼結体の寸法は157mm×7.9mmであり、密度は99.5%(7.11g/cm)であった。
【0036】
実施例6
酸化インジウム粉720g、酸化錫粉80gとイオン交換水24gおよび直径10mmのジルコニアボールを樹脂製ポットに入れ、20時間ボールミル混合を行った。次に、イオン交換水128gとポリカルボン酸系分散剤6.4gを入れ、1時間ボールミル混合した。1時間後にワックス系バインダーを8.0g添加し、19時間ボールミル混合を行った。
【0037】
スラリーにアミド系消泡剤0.4gを添加し減圧脱気を行った。このスラリーの濃度は83%で、平均粒径は0.53μm、粘度は28cpだった。このスラリーを成形サイズ190mmφでフィルター面側に同心円状の深さ5mm幅30mmの凹部加工であること以外は実施例1と同様の構造の成形型に注入し、減圧−710mmHgで減圧排水し成形体を得た。
【0038】
成形体を自然乾燥、脱脂処理を600℃で3時間行った。その後、酸素雰囲気にて1550℃で8時間焼成した。ITO焼結体には密度ムラによる反りやクラックは発生しなかった。ITO焼結体の寸法は156.6mmφ×3.52(薄肉部)「6.56mm(厚肉部)」であり、密度は99.3%(7.10g/cm)だった。
【0039】
比較例1
酸化インジウム粉6930g、酸化錫粉770gとジルコニアボールを樹脂製ポットに入れ20時間ボールミル混合を行った。ポットから取り出した原料粉に濃度4重量%のポリビニルアルコール水溶液を6.0重量%添加して撹拌混合した。次に、この原料粉を圧力500kgf/cmでプレス後粉砕して60メッシュ以下に整粒した。この整粒粉を成形サイズ200×980の金型に入れ圧力1000kgf/cmで成形した。
【0040】
成形体には密度ムラによると思われるクラックが発生した。成形体の寸法は201.0mm×982.0×9.26mmであり、密度は61.0%(4.36g/cm)だった。
【0041】
比較例2
実施例5のスラリーを成形サイズ190mmφ×8.5mmの石膏型に圧力1.0kg/cmで鋳込み、成形体を得た。成形体を自然乾燥後、600℃で3時間脱脂した。
【0042】
その後、酸素雰囲気にて1550℃で8時間焼成しITO焼結体を得た。このときITO焼結体の密度は97.2%(6.95g/cm)だった。ITO焼結体内部の中央部分にはスジ状の欠陥が見られEPMA分析により酸化錫の偏析が観察された。また、不純物としてカルシウムが35ppm検出された。
【0043】
【発明の効果】
本発明の成形型を用いることにより、スラリー中の水分を片側からのみ減圧排水する濾過方式で成形体を製作するため着肉が一方向にのみ起こり、成形体内部に密度ムラや組成ムラなど欠陥が発生しない。また鋳込み用型材料からの不純物混入がなく高純度の成形体が得られる。さらに、本発明の成形型を用いることにより、肉厚差のある成形体を得ることができる。
【0044】
また従来法のプレス成形や加圧鋳込みでは成形サイズの大型化に伴い成形型材やプレス機などの設備強度を上げる必要があり設備費が高価になるが、本発明の成形型では減圧排水時にかかる圧力はフィルターと成形用下型間のみにかかるので、比較的強度の低い材料を成形用下型として使用でき、成形サイズが大型化しても材料費は安価にできる。
【図面の簡単な説明】
【図1】本発明に係る濾過式成形型(平板成形型)の構造を示す説明図である。
【図2】本発明に係る濾過式成形型(凹凸形状成形型)の構造を示す説明図である。
【図3】本発明に係る濾過式成形法によるセラミックス焼結体の製造工程を示す説明図である。
【図4】本発明に係る濾過式成形法によるITO焼結体の製造工程を示す説明図である。
【符号の説明】
1 スラリー
2 成形用型枠
3 成形用下型
4 フィルター
5 シール材
6 水抜き孔[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a filtration mold used for molding a ceramic molded body, a high-purity sputtering target used in a sputtering method, and a ceramic sintered body having a thickness difference with high use efficiency suitable for use as a sputtering target. And a method for producing the same.
[0002]
[Prior art]
Slurry cast molding, which is one of the ceramic molding methods, is a method in which a slurry is injected under pressure into a water-absorbing porous closed mold such as gypsum, and water is absorbed from the entire surface or two surfaces of the mold (Japanese Patent Publication No. No. 659) is common. However, when water is absorbed from the entire surface or two surfaces of the molding die, defects such as density unevenness and composition unevenness are likely to occur because the central portion of the molded body is finally deposited.
[0003]
Further, since gypsum used in the slip casting is water-soluble, it is not possible to prevent calcium from being mixed into the molded body. It is desirable that the ceramic sintered body such as a sputtering gate has high purity. However, if calcium is mixed into the ceramic sintered body, it adversely affects the conductivity, transparency, and etching properties of a thin film formed by sputtering.
[0004]
Further, in a dry press molding method using a mold, a molded article having a difference in wall thickness is difficult to have a uniform molding density, and the molded article is likely to be warped or cracked. In addition, there is a feature that the mold and the press equipment become expensive as the molding size increases.
[Problems to be solved by the invention]
[0005]
An object of the present invention is to provide an inexpensive filtration molding method for obtaining a molded body having less internal impurities and having no density unevenness or composition unevenness, or a molded body having a difference in wall thickness, in the production of a ceramic sintered body. An object of the present invention is to provide a mold and a method for producing a ceramic sintered body using the mold.
[0006]
Another object of the present invention is to form a slurry containing indium oxide and tin oxide using the above-mentioned filtration mold, sinter the obtained compact, and form a high-purity ITO sintered compact or An object of the present invention is to provide a method of manufacturing an ITO sintered body having a thickness difference with high use efficiency as a gate.
[0007]
[Means for Solving the Problems]
The present inventors use a filtration mold made of a water-insoluble material as a mold instead of a gypsum mold for slip casting to cause one-way inking, so that there is no density unevenness or composition unevenness and impurities It has been found that a high-purity ceramics sintered body free from contamination can be obtained. At the same time, in the structure of the molding die described above, the load on the lower molding die is small, so that a material having a relatively low strength can be used as the material, so that the molding die can be manufactured at a low cost even if the molding size is increased. Can be provided. Furthermore, it has been found that a molded body having a difference in wall thickness can be obtained by processing the lower mold for molding into an uneven shape.
[0008]
The present invention has the following features.
(1) A filtration mold made of a water-insoluble material for obtaining a compact by draining water from a ceramic raw material slurry under reduced pressure, comprising a lower mold having at least one drain hole, A filter having water permeability placed on the lower mold, and a molding mold sandwiched from the upper side via a sealing material for sealing the filter, wherein the lower mold for molding, the molding mold , A sealing material, and a filter are assembled so that they can be disassembled, and water in the slurry is drained under reduced pressure only from the filter surface side.
(2) The filtration molding die according to the above (1), wherein the filter surface side of the molding lower die has an uneven shape.
(3) A slurry composed of ceramic raw material powder, ion-exchanged water and an organic additive is prepared, and the slurry is poured into the filtration mold according to claim (1), and the water content in the slurry is only from the filter surface side. A high-purity ceramic sintered body, characterized in that a molded body is produced by draining water under reduced pressure, and the obtained ceramic molded body is dried, degreased, and fired.
(4) A slurry comprising a ceramic raw material powder, ion-exchanged water and an organic additive is prepared, and the slurry is poured into the filtration mold according to claim (2), and the water content in the slurry is only from the filter surface side. A method for producing a ceramic sintered body having a thickness difference, characterized by producing a molded body by draining water under reduced pressure, drying and degreasing the obtained ceramic molded body, and then firing.
(5) A slurry composed of indium oxide powder, tin oxide powder, ion-exchanged water and an organic additive is poured into the filtration mold described in (1) above, and the water in the slurry is drained under reduced pressure only from the filter surface side. A method for producing a high-purity ITO sintered body, characterized in that a molded body is manufactured by drying, the obtained ITO molded body is dried and degreased, and then fired.
(6) A slurry composed of indium oxide powder, tin oxide powder, ion-exchanged water and an organic additive is prepared, and this slurry is poured into the filtration mold described in the above (2), and the slurry is contained only from the filter surface side. A method for producing an ITO sintered body having a difference in thickness, characterized in that a molded body is manufactured by draining the water under reduced pressure, and the obtained ITO molded body is dried, degreased, and fired.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the filtration mold of the present invention injects a ceramic raw material slurry 1 into a molding frame 2 from an upper portion, and drains the water under reduced pressure through one or more drain holes 6 arranged at a lower portion. To obtain a molded body.
[0010]
The filtration type mold is provided with a filter 4 (for example, Gore-Tech) having water permeability through which ceramic powder in the slurry 1 does not pass through a lower mold 3 made of aluminum or resin (polypropylene, nylon, etc.) having a drain hole 6. (A wet-type filter cloth, manufactured by Japan Gore-Tex Co., Ltd.), and a lower mold 3 for forming a mold, made of aluminum, with a sealing material 5 interposed therebetween.
[0011]
In the molding die of the present invention, the pressure applied at the time of draining under reduced pressure is applied only between the filter and the lower molding die, so that a material having relatively low strength can be used as the lower molding die.
[0012]
Next, a method for producing the ceramic and the ITO sintered body of the present invention will be described. The manufacturing process of the ceramic sintered body is as shown in FIG. 3, and the manufacturing process of the ITO sintered body is as shown in FIG.
[0013]
(A) Adjustment of Raw Material Powder Sintering can be facilitated by adjusting the primary particle diameter and the specific surface area by performing calcination treatment or pulverization treatment on the ceramic raw material powder.
In the case of the ITO sintered body, commercially available indium oxide powder and tin oxide powder can be used. However, it is preferable that a commercially available indium oxide powder is previously grown by a treatment such as calcination. If the primary particle size of the indium oxide powder is inappropriate, the molding density decreases, degreasing due to density unevenness, cracks, cracks, and warpage during sintering increase, so that the range is 0.1 to 0.5 μm. preferable.
[0014]
(B) Preparation of Slurry A single or several types of ceramic raw material powder are added to ion-exchanged water and an organic additive (dispersant, binder, defoaming agent) and mixed in a ball mill to prepare a slurry. In the case of an ITO sintered body, raw materials of indium oxide powder and tin oxide powder are mixed and pulverized in advance by a dry ball mill. The composition of tin oxide is preferably 5 to 10% by weight. At this time, if 1 to 5% by weight of ion-exchanged water is added, the effect of reducing the adhesion of the raw material powder to the pot wall and sufficiently mixing can be expected. It is preferable to use a resin pot as the ball mill pot. The material of the ball is preferably zirconia having a large specific gravity and excellent wear resistance. A dry ball mill has the effect of breaking up agglomerated particles and increasing the bulk density of the powder.
[0015]
Next, 10 to 25% by weight of ion-exchanged water and an organic additive (dispersant) are added to the ball mill pot, and the mixture is mixed in a resin pot to disperse the raw material powder. As the dispersant, a polycarboxylic acid-based dispersant can be used, and the addition amount is preferably 0.2 to 1.0% by weight.
[0016]
Further, an organic additive (binder) is added and mixed to obtain a slurry. As the binder, a wax-based binder can be used, and the addition amount is preferably 0.3 to 1.0% by weight. It is preferable to prepare a slurry having a slurry viscosity of 100 cp or less. If the slurry viscosity is high, deaeration becomes difficult, and the slurry recovery rate decreases due to adhesion to containers and balls.
Finally, an organic additive (antifoaming agent) is added to the slurry, and the slurry is degassed under reduced pressure. As the antifoaming agent, an amide-based antifoaming agent can be used, and the addition amount is preferably 0.01 to 0.5% by weight.
[0017]
(C) Production of a molded body by a filtration molding die The degassed slurry is poured into a molding die, the lower surface of the filter is depressurized, and the water in the slurry is depressurized and drained from the filter surface. . The reduced pressure is preferably larger than -700 mmHg. A vacuum pump or the like can be used for pressure reduction.
The decompression drainage time is preferably from about 30 minutes after the end of the molding. If the decompression drainage time is short, the releasability of the molded body from the molding frame is deteriorated, and cracks may occur. If the decompression drainage time is too long, the molded product is released from the molding frame during the decompression drainage, and air is sucked from the gap, and only the release part of the molded product is rapidly dried and cracks may occur. is there.
[0018]
(D) Drying and Degreasing of the Molded Article It is preferable to naturally dry the molded article obtained as described above. The molded body contains about 10% by weight of water at the time of release from the mold, and if the molded body is rapidly dried using a dryer or the like, the molded body may warp or crack due to uneven drying.
Further, the dried molded body is degreased. If the molded body is not degreased, the molded body is likely to be warped, cracked, or cracked during firing. Degreasing is preferably performed by heating at 400 to 600 ° C. using a hot air circulation type degreasing furnace or the like to remove residual moisture and binder.
[0019]
(E) Firing of the molded body A high-purity ceramic sintered body is obtained by firing the molded body. In the case of an ITO sintered body, the firing temperature is preferably 1400 to 1600 ° C. As the firing atmosphere, air and oxygen can be used, but it is preferable to use an oxygen atmosphere in order to obtain a high-density sintered body.
[0020]
Table 1 shows the advantages of the mold of the present invention as compared with the conventional mold. The molding die of the present invention has advantages such as non-uniform density and non-uniform composition, no contamination of impurities, and low cost for upsizing, as compared with the conventional gypsum die and press die. Further, there is a similar advantage when molding a molded body having a difference in wall thickness.
[0021]
[Table 1]
Figure 0003571540
[0022]
【Example】
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.
Example 1
15000 g of commercially available low soda alumina powder, 3450 g of ion-exchanged water, 150 g of a polycarboxylic acid-based dispersant, 150 g of a wax-based binder, and a resin ball containing an iron core were placed in a resin pot and mixed with a ball mill for 40 hours. The concentration of this slurry was 83%, the average particle size was 0.76 μm, and the viscosity was 105 cp.
[0023]
After the slurry was degassed under reduced pressure, it was poured into a molding die of the present invention in which a molding frame having a molding size of 1050 mm × 1100 mm was formed of aluminum and the lower molding die was formed of resin, and drained under reduced pressure from the filter side to obtain a molded product.
The filter used was Gore-Tex wet filter cloth, manufactured by Japan Gore-Tex Corporation. This filter is formed with a structure in which a porous resin film is adhered on one side only on a woven fabric or felt, and the back surface of the resin is made of a woven fabric or felt, has a water passage space, A passage through which water can freely move is formed between the resin film and the lower mold.
[0024]
After the molded body was naturally dried, a degreasing treatment was performed at 450 ° C. The molded article after degreasing did not generate warpage or crack due to density unevenness, the dimensions were 1049 mm × 1099 mm × 10.2 mm, and the density was 55% (2.19 g / cm 3 ).
The definition of the slurry concentration is as follows.
Slurry concentration (%) = solute weight / (solute weight + solvent weight) × 100
[0025]
Example 2
250 g of commercially available tin oxide powder, 1.25 g of ion-exchanged water and zirconia balls were placed in a resin pot and mixed with a ball mill for 20 hours. Next, 233 g of ion-exchanged water and 2 g of a polycarboxylic acid-based dispersant were added and mixed in a ball mill for 1 hour. One hour later, 2.5 g of a wax-based binder was added, and ball mill mixing was performed for 19 hours. The concentration of this slurry was 83%, the average particle size was 1.1 μm, and the viscosity was 71 cp.
[0026]
After the slurry was degassed under reduced pressure, it was poured into a molding die having the same material and structure as in Example 1 except that the molding size was 76 mmφ, and the slurry was drained under reduced pressure at -760 mmHg to obtain a molded product. After the molded body was naturally dried, a degreasing treatment was performed at 600 ° C. for 3 hours. Then, it was baked at 1500 ° C. for 8 hours in an oxygen atmosphere to obtain a tin oxide sintered body. No warpage or cracks due to density unevenness occurred in the sintered body, and the density was 66.5% (4.6 g / cm 3 ). A high-purity sintered body in which calcium was not mixed as an impurity was obtained.
[0027]
Example 3
7,200 g of indium oxide powder, 800 g of tin oxide powder, 240 g of ion-exchanged water, and zirconia balls having a diameter of 5 mm were placed in a resin pot, and mixed in a ball mill for 20 hours. Next, 1440 g of ion-exchanged water and 56 g of a polycarboxylic acid-based dispersant were added and mixed in a ball mill for 1 hour. One hour later, 80 g of a wax-based binder was added, and ball mill mixing was performed for 19 hours.
[0028]
Next, 1.6 g of an amide-based antifoaming agent was added to the slurry, and deaeration was performed under reduced pressure. The concentration of this slurry was 83%, the average particle size was 0.5 μm, and the viscosity was 33 cp. This slurry was poured into a structural mold similar to that in Example 1 except that the mold was 300 mm × 700 mm and the lower mold was made of aluminum, and was drained under reduced pressure at −760 mmHg to obtain a molded article.
[0029]
The molded body was naturally dried and degreased at 600 ° C. for 3 hours. Then, it was baked at 1550 ° C. for 8 hours in an oxygen atmosphere. No warpage or crack due to density unevenness occurred in the ITO sintered body. In addition, a high-purity ITO sintered body free from segregation of tin oxide and containing no calcium was obtained. The dimensions of the ITO sintered body were 247 mm × 578 mm × 7.3 mm, and the density was 98.1% (7.01 g / cm 3 ).
[0030]
Example 4
18000 g of indium oxide powder, 2000 g of tin oxide powder, 600 g of ion-exchanged water, and zirconia balls having a diameter of 5 mm were placed in a resin pot and mixed with a ball mill for 20 hours. Next, 3592 g of ion-exchanged water and 160 g of a polycarboxylic acid-based dispersant were added and mixed for 1 hour with a ball mill. One hour later, 200 g of a wax-based binder was added, and ball mill mixing was performed for 19 hours.
[0031]
4 g of an amide-based antifoaming agent was added to the slurry, and deaeration was performed under reduced pressure. The concentration of this slurry was 83%, the average particle size was 0.5 μm, and the viscosity was 40 cp. This slurry was poured into a structural mold similar to that of Example 1 except that the lower mold for molding was 375 mm × 1270 mm made of aluminum, and drained under reduced pressure at −760 mmHg to obtain a molded article.
[0032]
The molded body was naturally dried and degreased at 600 ° C. for 3 hours. Then, it was baked at 1550 ° C. for 8 hours in an oxygen atmosphere. No warpage or crack due to density unevenness occurred in the ITO sintered body. In addition, a high-purity ITO sintered body free from segregation of tin oxide and containing no calcium was obtained. The dimensions of the ITO sintered body were 308 mm × 1046 mm × 7.9 mm, and the density was 98.8% (7.06 g / cm 3 ).
[0033]
Example 5
900 g of indium oxide powder, 100 g of tin oxide powder, 30 g of ion-exchanged water, and zirconia balls having a diameter of 5 mm were placed in a resin pot, and mixed in a ball mill for 20 hours. Next, 178 g of ion-exchanged water and 7.9 g of a polycarboxylic acid-based dispersant were added and mixed for 1 hour with a ball mill. One hour later, 9.9 g of a wax-based binder was added, and ball mill mixing was performed for 19 hours.
[0034]
0.2 g of an amide-based antifoaming agent was added to the slurry, and deaeration was performed under reduced pressure. The concentration of this slurry was 83%, the average particle size was 0.46 μm, and the viscosity was 15 cp. This slurry was poured into a structural mold in the same manner as in Example 1 except that the lower mold for molding was made of aluminum with a mold size of 190 mmφ, and was drained under reduced pressure at -760 mmHg to obtain a molded article.
[0035]
The molded body was naturally dried and degreased at 600 ° C. for 3 hours. Then, it was baked at 1550 ° C. for 8 hours in an oxygen atmosphere. No warpage or crack due to density unevenness occurred in the ITO sintered body. In addition, a high-purity ITO sintered body free from segregation of tin oxide and containing no calcium was obtained. The dimensions of the ITO sintered body were 157 mm × 7.9 mm, and the density was 99.5% (7.11 g / cm 3 ).
[0036]
Example 6
720 g of indium oxide powder, 80 g of tin oxide powder, 24 g of ion-exchanged water, and zirconia balls having a diameter of 10 mm were placed in a resin pot and mixed with a ball mill for 20 hours. Next, 128 g of ion-exchanged water and 6.4 g of a polycarboxylic acid-based dispersant were added, and mixed with a ball mill for 1 hour. One hour later, 8.0 g of a wax-based binder was added, and ball mill mixing was performed for 19 hours.
[0037]
0.4 g of an amide-based antifoaming agent was added to the slurry, and deaeration was performed under reduced pressure. The concentration of this slurry was 83%, the average particle size was 0.53 μm, and the viscosity was 28 cp. This slurry was poured into a mold having the same structure as in Example 1 except that a concavity of 5 mm in depth and 30 mm in width was concentrically formed on the filter surface side with a molding size of 190 mmφ, and drained under reduced pressure at -710 mmHg. Got.
[0038]
The molded body was naturally dried and degreased at 600 ° C. for 3 hours. Then, it was baked at 1550 ° C. for 8 hours in an oxygen atmosphere. No warpage or crack due to density unevenness occurred in the ITO sintered body. The dimensions of the ITO sintered body were 156.6 mmφ × 3.52 (thin part) and “6.56 mm (thick part)”, and the density was 99.3% (7.10 g / cm 3 ).
[0039]
Comparative Example 1
6930 g of indium oxide powder, 770 g of tin oxide powder and zirconia balls were placed in a resin pot and mixed with a ball mill for 20 hours. An aqueous solution of polyvinyl alcohol having a concentration of 4% by weight was added to the raw material powder taken out of the pot at a concentration of 6.0% by weight, followed by stirring and mixing. Next, this raw material powder was pressed at a pressure of 500 kgf / cm 2 and then pulverized and sized to 60 mesh or less. The sized powder was placed in a mold having a molding size of 200 × 980 and molded at a pressure of 1000 kgf / cm 2 .
[0040]
Cracks occurred in the molded article, which were considered to be due to uneven density. The dimensions of the molded body were 201.0 mm × 982.0 × 9.26 mm, and the density was 61.0% (4.36 g / cm 3 ).
[0041]
Comparative Example 2
The slurry of Example 5 was cast into a gypsum mold having a molding size of 190 mmφ × 8.5 mm at a pressure of 1.0 kg / cm 2 to obtain a molded body. After the molded body was naturally dried, it was degreased at 600 ° C. for 3 hours.
[0042]
Then, it was baked at 1550 ° C. for 8 hours in an oxygen atmosphere to obtain an ITO sintered body. At this time, the density of the ITO sintered body was 97.2% (6.95 g / cm 3 ). Streak-like defects were observed in the central portion inside the ITO sintered body, and segregation of tin oxide was observed by EPMA analysis. Also, 35 ppm of calcium was detected as an impurity.
[0043]
【The invention's effect】
By using the molding die of the present invention, in order to produce a molded body by a filtration method in which the water in the slurry is drained under reduced pressure only from one side, inking occurs only in one direction, and defects such as density unevenness and composition unevenness occur inside the molded body. Does not occur. In addition, a molded product of high purity can be obtained without impurities from the casting mold material. Further, by using the mold of the present invention, a molded body having a difference in wall thickness can be obtained.
[0044]
In addition, in conventional press molding and pressure casting, it is necessary to increase the strength of equipment such as a molding material and a press machine due to the increase in molding size, and equipment costs are expensive. Since pressure is applied only between the filter and the lower molding die, a material having relatively low strength can be used as the lower molding die, and the material cost can be reduced even if the molding size is increased.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing the structure of a filtration mold (flat mold) according to the present invention.
FIG. 2 is an explanatory view showing a structure of a filtration mold (a mold having an uneven shape) according to the present invention.
FIG. 3 is an explanatory view showing a manufacturing process of a ceramic sintered body by a filtration molding method according to the present invention.
FIG. 4 is an explanatory view showing a production process of an ITO sintered body by a filtration molding method according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Slurry 2 Mold frame 3 Mold lower mold 4 Filter 5 Sealing material 6 Drainage hole

Claims (6)

セラミックス原料スラリーから水分を減圧排水してスパッタリングターゲット用セラミックス成形体を得るための非水溶性材料からなる濾過式成形型であって、
1個以上の水抜き孔を有する成形用下型と、
この成形用下型の上に載置した通水性を有する、織布またはフェルト上に多孔性の樹脂膜を片面側のみ付着させたフィルターと、
このフィルターをシールするためのシール材を介して上面側から挟持する成形用型枠からなり、
前記成形用下型、成形用型枠、シール材、およびフィルターが各々分解できるように組立てられており、該フィルター面側からのみスラリー中の水分を減圧排水することを特徴とする濾過式成形型。
A filtration mold made of a water-insoluble material for obtaining a ceramic molded body for a sputtering target by draining water under reduced pressure from a ceramic raw material slurry,
And the lower mold for forming shapes that have a one or more drain holes,
A filter having a water-permeable material placed on the lower mold for molding , a porous resin film adhered to only one side on a woven fabric or felt ,
It consists of a molding frame that is clamped from the top side via a sealing material to seal this filter,
The lower mold for molding, the mold for molding, the sealing material, and the filter are assembled so that they can be disassembled, and the filtration mold is characterized in that the water in the slurry is drained under reduced pressure only from the filter surface side. .
成形用下型のフィルター面側が、凹凸形状を有することを特徴とする請求項1に記載の濾過式成形型。The filter-type mold according to claim 1, wherein the filter surface side of the lower mold has an uneven shape. セラミックス原料粉、イオン交換水と有機添加剤からなるスラリーを調製し、
このスラリーを請求項1に記載の濾過式成形型に注入し、
該フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、
得られたセラミックス成形体を乾燥脱脂後、焼成すること
を特徴とする高純度セラミックス焼結体スパッタリングターゲットの製造方法。
Prepare a slurry consisting of ceramic raw material powder, ion-exchanged water and organic additives,
Injecting the slurry into the filtration mold according to claim 1,
A compact is manufactured by draining the water in the slurry under reduced pressure only from the filter surface side,
A method for producing a sputtering target of a high-purity ceramic sintered body, comprising drying and degreasing the obtained ceramic molded body, followed by firing.
セラミックス原料粉、イオン交換水と有機添加剤からなるスラリーを調製し、
このスラリーを請求項2に記載の濾過式成形型に注入し、
該フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、
得られたセラミックス成形体を乾燥脱脂後、焼成すること
を特徴とする肉厚差を有するセラミックス焼結体スパッタリングターゲットの製造方法。
Prepare a slurry consisting of ceramic raw material powder, ion-exchanged water and organic additives,
Injecting the slurry into the filtration mold according to claim 2,
A compact is manufactured by draining the water in the slurry under reduced pressure only from the filter surface side,
A method for producing a ceramic sintered body sputtering target having a thickness difference, wherein the obtained ceramic molded body is dried, degreased, and fired.
酸化インジウム粉、酸化錫粉、イオン交換水および有機添加剤からなるスラリーを調製し、
このスラリーを請求項1に記載の濾過式成形型に注入し、
フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、
得られたITO成形体を乾燥脱脂後、焼成すること
を特徴とする高純度ITO焼結体スパッタリングターゲットの製造方法。
Prepare a slurry composed of indium oxide powder, tin oxide powder, ion-exchanged water and organic additives,
Injecting the slurry into the filtration mold according to claim 1,
A compact is manufactured by draining the water in the slurry under reduced pressure only from the filter side.
A method for producing a sputtering target of a high-purity ITO sintered body, comprising drying and degreasing the obtained ITO molded body and then firing.
酸化インジウム粉、酸化錫粉、イオン交換水および有機添加剤からなるスラリーを調製し、
このスラリーを請求項2に記載の濾過式成形型に注入し、
フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、
得られたITO成形体を乾燥脱脂後、焼成すること
を特徴とする肉厚差を有するITO焼結体スパッタリングターゲットの製造方法。
Prepare a slurry composed of indium oxide powder, tin oxide powder, ion-exchanged water and organic additives,
Injecting the slurry into the filtration mold according to claim 2,
A compact is manufactured by draining the water in the slurry under reduced pressure only from the filter side.
A method for producing an ITO sintered body sputtering target having a thickness difference, wherein the obtained ITO molded body is dried and degreased and then fired.
JP24490098A 1998-02-04 1998-08-31 Filtration mold and method for producing ceramic sintered body using the mold Expired - Lifetime JP3571540B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24490098A JP3571540B2 (en) 1998-02-04 1998-08-31 Filtration mold and method for producing ceramic sintered body using the mold
TW088101590A TW548256B (en) 1998-02-04 1999-02-02 Filtration-type mold and method for producing ceramic sintered body using the mold
KR10-1999-0003841A KR100453621B1 (en) 1998-02-04 1999-02-04 Filtration forming mold and method for producing ceramics sintered body using the same
CN99100765A CN1121358C (en) 1998-02-04 1999-02-04 Filtration-type mold and mehtod for producing ceramic sintered body using the mold

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2325798 1998-02-04
JP10-23257 1998-02-04
JP24490098A JP3571540B2 (en) 1998-02-04 1998-08-31 Filtration mold and method for producing ceramic sintered body using the mold

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004006953A Division JP2004155202A (en) 1998-02-04 2004-01-14 Filter type mold and method for manufacturing ceramic sintered body using the mold

Publications (2)

Publication Number Publication Date
JPH11286002A JPH11286002A (en) 1999-10-19
JP3571540B2 true JP3571540B2 (en) 2004-09-29

Family

ID=26360575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24490098A Expired - Lifetime JP3571540B2 (en) 1998-02-04 1998-08-31 Filtration mold and method for producing ceramic sintered body using the mold

Country Status (1)

Country Link
JP (1) JP3571540B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2349601A (en) * 1999-05-07 2000-11-08 Secr Defence Boron carbide cast bodies
TWI385139B (en) * 2005-02-01 2013-02-11 Tosoh Corp A sintered body, a sputtering target and a forming die, and a sintered body manufacturing method using the same
CN101142066A (en) * 2005-03-14 2008-03-12 皇家飞利浦电子股份有限公司 Method of producing a component with a surface structure, ceramic component and application of such a method
JP4295811B1 (en) 2008-09-17 2009-07-15 三井金属鉱業株式会社 Zinc oxide target
JP2011179056A (en) * 2010-02-26 2011-09-15 Taiheiyo Cement Corp Sputtering target
JP5497479B2 (en) * 2010-02-26 2014-05-21 太平洋セメント株式会社 Sputtering target
SG11201504191RA (en) 2011-06-08 2015-07-30 Semiconductor Energy Lab Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US9885108B2 (en) * 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
US10557192B2 (en) 2012-08-07 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for using sputtering target and method for forming oxide film
JP6141777B2 (en) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH11286002A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
JP3571540B2 (en) Filtration mold and method for producing ceramic sintered body using the mold
US5433901A (en) Method of manufacturing an ITO sintered body
CN108748611B (en) Method for forming ceramic body
CN101181798A (en) Multi-gradient porous ceramic mold for ceramic injection forming and making method
KR20130099032A (en) Manufacture of high density indium tin oxide (ito) sputtering target
CN115521158B (en) Preparation method of high-air-permeability ceramic fiber filter tube
JP2004155202A (en) Filter type mold and method for manufacturing ceramic sintered body using the mold
CN113563103A (en) Method for preparing gradient alumina porous ceramic by tape casting forming method
CN106588073A (en) Process for preparing novel laminated porous ceramic
US6528214B1 (en) Ceramic membrane
CN1151094C (en) Method and special mold for preparing unfired ceramic element sheet
DE68927185T2 (en) Molding process and device for manufacturing ceramic objects
CN109079963B (en) Single-side pressure grouting forming mold and manufacturing method of ITO (indium tin oxide) plane target
JP2022114211A (en) Inorganic fiber molded body, and furnace
Kim et al. Fabrication of porous SiC ceramics by partial sintering and their properties
KR100453621B1 (en) Filtration forming mold and method for producing ceramics sintered body using the same
JP4095149B2 (en) Method for producing high-density ITO sintered body using ITO recycled powder
KR100915432B1 (en) manufacture method brick of permeability a utilization zincslag
CN110511005A (en) A kind of preparation method of axis disk rotary ceramic supporting body
JP2007009268A (en) Method for manufacturing sputtering target
KR20130013903A (en) Alumina ceramics fabrication method using filter press
CN114644525A (en) Composite sagger added with waste materials and preparation method thereof
KR20190033527A (en) Low cost transparent spinel manufacturing method
CN108479419A (en) Ceramic membrane and preparation method thereof
JPH11228220A (en) Production of ito sintered compact by slurry casting process

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term