JP3569935B2 - Fluorotran derivative - Google Patents

Fluorotran derivative Download PDF

Info

Publication number
JP3569935B2
JP3569935B2 JP29976293A JP29976293A JP3569935B2 JP 3569935 B2 JP3569935 B2 JP 3569935B2 JP 29976293 A JP29976293 A JP 29976293A JP 29976293 A JP29976293 A JP 29976293A JP 3569935 B2 JP3569935 B2 JP 3569935B2
Authority
JP
Japan
Prior art keywords
compound
general formula
trans
liquid crystal
cyclohexyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29976293A
Other languages
Japanese (ja)
Other versions
JPH06279332A (en
Inventor
政志 大澤
貞夫 竹原
晴義 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP29976293A priority Critical patent/JP3569935B2/en
Publication of JPH06279332A publication Critical patent/JPH06279332A/en
Application granted granted Critical
Publication of JP3569935B2 publication Critical patent/JP3569935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電気光学的表示材料として有用な、新規なフルオロトラン誘導体である液晶化合物に関する。
【0002】
【従来の技術】
液晶表示素子は、時計、電卓をはじめとして、最近では、ワープロ、コンピュータ端末ディスプレイ等、情報表示素子として用いられ、電子装置と人とのインターフェースとして重要性を増してきている。
【0003】
液晶を用いた表示方式は、(1)電界効果(FEM)型、(2)動的散乱(DSM)型及び(3)熱効果(TEM)型の3つに大別される。これらの効果を利用して種々の表示方式が提案されているが、現在までのところ、実用化されているのは電界効果型を用いた表示方式である。また、電界効果型にはねじれネマチック(TN)型、超ねじれネマチック(STN)型、ゲスト−ホスト(GH)型、電界制御複屈折(ECB)型、コレステリック−ネマチック相転移(CN−PT)型、表面安定化強誘電性液晶(SSFLC)型等がある。この中で、現在主流となっているのはTN型及びSTN型である。このうち、STN型では駆動方式の改良等により、ある程度までは容量の増加は可能となったが、近年の大表示容量要求に対してはもはや限界となった。そこで、表示画素ごとに、しきい特性をもつ非線形素子を用いる表示方式、例えば、MIM(Metal Insurator Metal)方式、能動素子を用いたTFT(Thin Film Transistor)方式等のアクティブマトリックス方式が実用化され、大容量化に向けて急速に発展しつつある。
【0004】
これらの液晶表示方式に用いられる液晶材料には、各々の表示方式の特徴に応じて種々の特性が要求されているが、広い温度範囲で動作可能なこと、低電圧駆動が可能であること及び応答が高速であることは、共通して特に重要な要求特性である。低電圧駆動を満足させるためには、液晶組成物に混合した際に、しきい値電圧を低下させる化合物が必要であり、広い温度範囲で駆動を可能とするためには、ネマチック相−等方性液体相転移温度(以下、N−I点という。)を上昇させる化合物が必要である。
【0005】
応答時間を速くするためには、液晶組成物の粘度を低くすることが必要であるが、以下のような方法によっても応答時間を速くすることが可能である。
【0006】
液晶表示TN型セルにおいて、セルの厚さをd(μm)、応答時間をτとすると、d2とτとの間で比例関係があり、dの値を小さくすることにより応答時間の速い液晶セルを得ることができる。しかしながら、セル外観を損なう原因となるセル表面での干渉縞の発生を防止するために、セルに充填させる液晶材料の屈折率異方性(Δn)とセルの厚さ(d)μmの積(d・Δn)をある特定の値に設定する必要がある。実用的に使用される液晶セルでは、Δn・dの値が0.5、1.0、1.6又は2.2のいずれかに設定されている。このようにΔn・dの値が一定値に設定されているため、dを小さくして応答を高速化するためには、Δnの値の大きな液晶材料が必要である。
【0007】
また、強い白濁性を要求されるポリマー分散型液晶表示素子にも、Δnの大きな液晶材料が有効である。
【0008】
従って、N−I点が高く、Δnの値が大きく、且つ組成物のしきい値電圧を低下させることが可能な化合物は、上記要求を満足させる液晶組成物の調製のために非常に重要であることが理解できるが、しかしながら、そのような化合物は、ほとんど知られていなかった。
【0009】
このような点に基づいて検討を行った結果、最近本発明者らは、N−I点が高く、Δnの値が大きく、且つ組成物のしきい値電圧を低下させることが可能な式(a)及び式(b)
【0010】
【化4】

Figure 0003569935
【0011】
の化合物を見いだした。(特願平4−192065号)しかしながら、上記の式(a)及び式(b)の化合物は、現在汎用されている母体液晶に混合した際、Δn及びN−I点を十分に上昇させるものの、しきい値電圧については、決して充分満足できるものとはいえず、更に改良が必要であった。
【0012】
【発明が解決しようとする問題点】
本発明が解決しようとする課題は、液晶組成物に混合した際に、N−I点を上昇させ、Δnを大きくし、且つしきい値電圧を効果的に低下させる新規化合物、及びこの化合物を含有する液晶組成物を提供することにあり、また、その化合物の合成中間体として有用な化合物を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、上記課題を解決するために、一般式(I)
【0014】
【化5】
Figure 0003569935
【0015】
(式中、Rは炭素原子数1〜10の直鎖状アルキル基又は炭素原子数2〜17の直鎖状アルコキシアルキルを表わし、好ましくは炭素原子数2〜5の直鎖状アルキル基又は一般式(Ia)
【0016】
【化6】
Figure 0003569935
で表わされる直鎖状アルコキシアルキル基を表わし、一般式(Ia)においてRは炭素原子数1〜10の直鎖状アルキル基を表わし、nは1〜7の整数を表わすが、一般式(Ia)において特に好ましくは、Rがメチル基であり、nが1〜4の整数を表わす。Jは単結合又は−CHCH−を表わす。mは0又は1の整数を表わし、X及びYは各々独立的に、水素原子又はフッ素原子を表わすが、Rが炭素原子数1〜10の直鎖状アルキル基である場合には、X及びYのうち、少なくとも一方はフッ素原子を表わす。Zはフッ素原子又はトリフルオロメチル基を表わし、シクロヘキサン環はトランス配置を表わす。)で表わされる化合物を提供する。
【0017】
更に、本発明の一般式(I)の化合物を製造するための中間体として一般式(II)
【0018】
【化7】
Figure 0003569935
【0019】
(式中、Rは炭素原子数1〜10の直鎖状アルキル基又は炭素原子数2〜17の直鎖状アルコキシアルキル基を表わし、Jは単結合又は−CHCH−を表わし、mは0又は1の整数を表わし、X及びYは各々独立的に、水素原子又はフッ素原子を表わすが、Rが炭素原子数1〜10の直鎖状アルキル基である場合には、X及びYのうち、少なくとも一方はフッ素原子を表わし、Qは臭素原子又は沃素原子を表わし、シクロヘキサン環はトランス配置を表わす。)で表わされる化合物を提供する。
【0020】
本発明の一般式(I)で表わされる化合物は、例えば、次の製造方法に従って製造することができる。
【0021】
【化8】
Figure 0003569935
【0022】
(上記中、R、J、m、X、Y、Z及びシクロヘキサン環の配置は一般式(I)におけると同じ意味を表わし、Q及びQ’は各々独立的に、沃素原子又は臭素原子を表わす。)
【0023】
第1段階:一般式(II)の化合物を銅とパラジウム等触媒の存在下、2−メチル−3−ブチン−2−オールと反応させることにより、一般式(III)の化合物を製造する。
第2段階:一般式(III)の化合物を水素化ナトリウム等の強塩基と反応させ、一般式(IV)の化合物を製造する。
第3段階:一般式(IV)の化合物を銅とパラジウム等触媒の存在下、一般式(V)の化合物と反応させ、本発明の一般式(I)の化合物を製造する。
【0024】
また、本発明の一般式(I)で表わされる化合物は、次の製造方法に従っても製造することができる。
【0025】
【化9】
Figure 0003569935
【0026】
(上記中、R、J、m、X、Y、Z及びシクロヘキサン環の配置は一般式(I)におけると同じ意味を表わし、Q及びQ’は各々独立的に、沃素原子又は臭素原子を表わす。)
【0027】
第1段階:一般式(V)の化合物を銅とパラジウム等触媒の存在下、2−メチル−3−ブチン−2−オールと反応させることにより、一般式(VI)の化合物を製造する。
第2段階:一般式(VI)の化合物を水酸化ナトリウム等の塩基と反応させ、一般式(VII)の化合物を製造する。
第3段階:一般式(VII)の化合物を銅とパラジウム等触媒の存在下、一般式(II)の化合物と反応させ、本発明の一般式(I)の化合物を製造する。
【0028】
ここで、一般式(II)の化合物は、例えば、次の製造方法に従って製造することができる。
【0029】
【化10】
Figure 0003569935
【0030】
(上記中、R、J、m、X、Y及びシクロヘキサン環の配置は一般式(I)におけると同じ意味を表わし、Q、Q’は前述と同じ意味を表わす。)
【0031】
第1段階:一般式(VIII)の化合物をマグネシウムと反応させてグリニャール試剤とした後、一般式(IX)の化合物と反応させ、一般式(X)の化合物を製造する。
第2段階:一般式(X)の化合物を酸触媒の存在下に脱水し、一般式(XI)の化合物を製造する。
第3段階:一般式(XI)の化合物をパラジウムカーボン等の触媒の存在下に接触還元した後、塩基の存在下に異性化し、一般式(XII)の化合物を製造する。
第4段階:一般式(XII)の化合物を過沃素酸の存在下、沃素と反応させるか、鉄の存在下、臭素と反応させるか、あるいは、ニトロ化し、還元してアミノ基とした後、ジアゾ分解により、沃素又は臭素化することにより、一般式(II)の化合物を製造する。また、特に、X及びYが共にフッ素原子である場合には、一般式(XII)の化合物をブチルリチウム等を用いてリチオ化した後、沃素等のハロゲンと反応させることにより、一般式(II)の化合物を製造する。
【0032】
本発明の一般式(I)で表わされる化合物の優れた特徴は、後述の実施例にも示したが、例えば、以下の例からも明らかである。下記第1表は、現在汎用されている低いしきい値電圧を有する母体液晶(A)80重量%及び本発明に係わる(No.1)〜(No.6)の化合物各20重量%からなる各混合液晶について測定した、N−I点、20℃におけるΔn及びしきい値電圧を掲示したものである。ただし、(No.7)の化合物については(No.7)の化合物10重量%及び母体液晶(A)90重量%からなるものである。また、比較のために母体液晶(A)80重量%及び式(a)の化合物20重量%、母体液晶(A)80重量%及び式(b)の化合物20重量%からなる各混合液晶、更に母体液晶(A)自体についても同様に測定した、N−I点、20℃におけるΔn及びしきい値電圧を掲示したものである。
【0033】
尚、母体液晶(A)は、
【0034】
【化11】
Figure 0003569935
【0035】
からなるものであり、(No.1)〜(No.7)の化合物は、
【0036】
【化12】
Figure 0003569935
【0037】
で表わされるものである。
【0038】
【表1】
Figure 0003569935
【0039】
上記第1表から、本発明の(No.1)〜(No.7)の各化合物は、母体液晶のN−I点及びΔnを上昇させ、しかもしきい値電圧を低下あるいは大きく低下させる効果を有することが明らかである。
【0040】
これに対して、式(a)及び式(b)の化合物は、N−I点及びΔnを大きく上昇させるものの、しきい値電圧を大きく低下させることはできないことが明らかである。
【0041】
このような違いは、本発明の一般式(I)の化合物と従来化合物との構造の違い、即ち、本発明の一般式(I)の化合物は、中央のベンゼン環がフッ素原子によって置換されており、あるいは、シクロヘキサン環側の末端基がアルコキシアルキル基であることにより、誘電率異方性が上昇するとともに、弾性定数が変化しており、これらの相乗効果によって得られるものと考えられる。
【0042】
本発明の一般式(I)で表わされる化合物と混合して使用することのできるネマチック液晶化合物の好ましい代表例としては、例えば、4−置換安息香酸4−置換フェニルエステル、4−置換シクロヘキサンカルボン酸4−置換フェニルエステル、4−置換シクロヘキサンカルボン酸4’−置換ビフェニリルエステル、4−(4−置換シクロヘキサンカルボニルオキシ)安息香酸4−置換フェニルエステル、4−(4−置換シクロヘキシル)安息香酸4−置換フェニルエステル、4−(4−置換シクロヘキシル)安息香酸4−置換シクロヘキシルエステル、4,4’−置換ビフェニル、1−(4−置換フェニル)−4−置換シクロヘキサン、4,4”−置換ターフェニル、1−(4’−置換ビフェニリル)−4−置換シクロヘキサン、1−(4−置換シクロヘキシル)−4−(4−置換フェニル)シクロヘキサン、2−(4−置換フェニル)−5−置換ピリミジン、2−(4−置換ビフェニリル)−5−置換ピリミジン、1−(4−置換シクロヘキシル)−2−(4−置換シクロヘキシル)エタン、1−(4−置換シクロヘキシル)−2−(4−置換フェニル)エタン、1−[4−(4−置換シクロヘキシル)シクロヘキシル]−2−(4−置換フェニル)エタン、1−[4−(4−置換フェニル)シクロヘキシル]−2−(4−置換シクロヘキシル)エタン、1−(4−置換フェニル)−2−(4−置換フェニル)エチン、1−[4−(4−置換シクロヘキシル)シクロヘキシル]−2−(4−置換フェニル)エチンなどを挙げることができる。
【0043】
特に、アクティブマトリックス用としては、4,4’−置換ビフェニル、1−(4−置換フェニル)−4−置換シクロヘキサン、4,4”−置換ターフェニル、1−(4’−置換ビフェニリル)−4−置換シクロヘキサン、1−(4−置換シクロヘキシル)−4−(4−置換フェニル)シクロヘキサン、1−(4−置換シクロヘキシル)−2−(4−置換シクロヘキシル)エタン、1−(4−置換シクロヘキシル)−2−(4−置換フェニル)エタン、1−[4−(4−置換シクロヘキシル)シクロヘキシル]−2−(4−置換フェニル)エタン、1−[4−(4−置換フェニル)シクロヘキシル]−2−(4−置換シクロヘキシル)エタン、1−(4−置換フェニル)−2−(4−置換フェニル)エチン、1−[4−(4−置換シクロヘキシル)シクロヘキシル]−2−(4−置換フェニル)エチンなどを挙げることができる。
【0044】
【実施例】
以下に本発明の実施例を示し、本発明を更に説明する。また、実施例中に使用した化合物 (No.1) (No.7) の合成方法を 合成例 として示す。しかしながら、本発明はこれらの実施例に限定されるものではない。
【0045】
合成例 1) 2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)−1−ヨードベンゼンの合成
(1) 1−(3−フルオロフェニル)−4−プロピルシクロヘキセンの合成
【0046】
【化13】
Figure 0003569935
【0047】
マグネシウム3.6gをテトラヒドロフラン10mlに懸濁し、これに3−フルオロ−1−ブロモベンゼン25.7g(0.148モル)のテトラヒドロフラン120ml溶液を、テトラヒドロフランが穏やかに還流を続ける速度で滴下した。滴下終了後、更に1時間室温で攪拌した。この溶液に、4−プロピルシクロヘキサノン18.7g(0.134モル)のテトラヒドロフラン100ml溶液を室温で30分間滴下し、更に室温で1時間攪拌した。反応終了後、反応液が弱酸性になるまで10%塩酸を加え、反応生成物をトルエン200mlで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を溜去した。得られた油状物をトルエン200mlに溶解し、硫酸水素カリウム3.0gを加え、1時間加熱還流させた。室温まで放冷し、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を溜去して、1−(3−フルオロフェニル)−4−プロピルシクロヘキセン30.3g(0.140モル)を得た。
【0048】
(2) 1−(トランス−4−プロピルシクロヘキシル)−3−フルオロベンゼンの合成
【0049】
【化14】
Figure 0003569935
【0050】
上記(1)で得られた1−(3−フルオロフェニル)−4−プロピルシクロヘキセン30.3g(0.14モル)を酢酸エチル300mlに溶解し、5%パラジウムカーボン3.0gを加え、水素圧3気圧で、3時間反応させた。反応終了後、触媒を濾別し、溶媒を溜去した後、N,N−ジメチルホルムアミド150mlに溶解し、t−ブトキシカリウム3.0gを加え、80℃で4時間攪拌した。水150mlを加え、反応生成物をヘキサン150mlで抽出し、有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を溜去し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)を用いて精製して、1−(トランス−4−プロピルシクロヘキシル)−3−フルオロベンゼン26.0g(0.120モル)を得た。
【0051】
(3) 2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)−1−ヨードベンゼンの合成
【0052】
【化15】
Figure 0003569935
【0053】
上記(2)で得られた1−(トランス−4−プロピルシクロヘキシル)−3−フルオロベンゼン5.0g(23ミリモル)を酢酸25mlに溶解し、これに沃素5.7g、水5ml、過沃素酸二水和物4.3gを加えて3時間加熱還流させた。室温まで放冷し、反応生成物をヘキサン50mlで抽出した。有機層を10%亜硫酸ナトリウム水溶液、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を溜去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)を用いて精製して、2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)−1−ヨードベンゼン2.6g(7.5ミリモル)を得た。
【0054】
合成例 ) 1−(トランス−4−プロピルシクロヘキシル)−3,5−ジフルオロ−4−ヨードベンゼンの合成
(1) 1−(3,5−ジフルオロフェニル)−4−プロピルシクロヘキセンの合成
【0055】
【化16】
Figure 0003569935
【0056】
マグネシウム6.9gをテトラヒドロフラン10mlに懸濁し、これに3,5−ジフルオロ−1−ブロモベンゼン50.0g(0.259モル)のテトラヒドロフラン200ml溶液を、テトラヒドロフランが穏やかに還流を続ける速度で滴下した。滴下終了後、更に1時間室温で攪拌した。この溶液に、4−プロピルシクロヘキサノン29.0g(0.207モル)のテトラヒドロフラン80ml溶液を室温で30分間滴下し、更に室温で1時間攪拌した。反応終了後、反応液が弱酸性になるまで10%塩酸を加え、反応生成物をトルエン300mlで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を溜去した。得られた油状物をトルエン300mlに溶解し、p−トルエンスルホン酸1水和物2.0gを加え、3時間加熱還流させた。室温まで放冷し、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を溜去して、1−(3,5−ジフルオロフェニル)−4−プロピルシクロヘキセン48.0g(0.203モル)を得た。
【0057】
(2) 1−(トランス−4−プロピルシクロヘキシル)−3,5−ジフルオロベンゼンの合成
【0058】
【化17】
Figure 0003569935
【0059】
上記(1)で得られた1−(3,5−ジフルオロフェニル)−4−プロピルシクロヘキセン48.6g(0.203モル)を酢酸エチル250mlに溶解し、5%パラジウムカーボン5gを加え、水素圧3気圧で、3時間反応させた。触媒を濾別し、溶媒を溜去した後、N,N−ジメチルホルムアミド250mlに溶解し、t−ブトキシカリウム24.3gを加え、室温で3時間攪拌した。水250mlを加え、反応生成物をヘキサン200mlで抽出し、有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を溜去し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)を用いて精製して、1−(トランス−4−プロピルシクロヘキシル)−3,5−ジフルオロベンゼン30.2g(0.127モル)を得た。
【0060】
(3) 1−(トランス−4−プロピルシクロヘキシル)−3,5−ジフルオロ−4−ヨードベンゼンの合成
【0061】
【化18】
Figure 0003569935
【0062】
上記(2)で得られた1−(トランス−4−プロピルシクロヘキシル)−3,5−ジフルオロベンゼン14.8g(62.2ミリモル)をテトラヒドロフラン80mlに溶解し、−50℃以下に冷却した。−50℃以下の温度を保つ速度でn−ブチルリチウムヘキサン溶液(1.68mol/l)45mlを滴下した。次に、沃素17.4gのテトラヒドロフラン180ml溶液を−50℃以下の温度を保つ速度で滴下し、更に−50℃以下で30分間攪拌した。水50mlを加えて室温に戻し、反応生成物をヘキサン200mlで抽出した。有機層を10%亜硫酸ナトリウム水溶液、水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を溜去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)を用いて精製して、1−(トランス−4−プロピルシクロヘキシル)−3,5−ジフルオロ−4−ヨードベンゼン22.0g(60.4ミリモル)を得た。
【0063】
合成例 ) 1−[トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル]−3,5−ジフルオロ−4−ヨードベンゼンの合成
【0064】
【化19】
Figure 0003569935
【0065】
合成例 において、4−プロピルシクロヘキサノンに代えて4−(トランス−4−プロピルシクロヘキシル)シクロヘキサノンを用いた以外は合成例 と同様にして、1−[トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル]−3,5−ジフルオロ−4−ヨードベンゼンを得た。
【0066】
合成例 ) 4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−1−ヨードベンゼンの合成
合成例 において、3−フルオロ−1−ブロモベンゼンに代えて、ブロモベンゼンを用い、4−プロピルシクロヘキサノンに代えて4−(3−メトキシプロピル)シクロヘキサノンを用いた以外は合成例 と同様にして、4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−1−ヨードベンゼンを得た。
【0067】
合成例 ) 2−フルオロ−4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−1−ヨードベンゼンの合成
合成例 において、4−プロピルシクロヘキサノンに代えて4−(3−メトキシプロピル)シクロヘキサノンを用いた以外は合成例 と同様にして、2−フルオロ−4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−1−ヨードベンゼンを得た。
【0068】
合成例 ) 1−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−3,5−ジフルオロ−4−ヨードベンゼンの合成
合成例 において、3−フルオロ−1−ブロモベンゼンに代えて、3,5−ジフルオロ−1−ブロモベンゼンを用い、4−プロピルシクロヘキサノンに代えて4−(3−メトキシプロピル)シクロヘキサノンを用いた以外は合成例 と同様にして、1−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−3,5−ジフルオロ−4−ヨードベンゼンを得た。
【0069】
実施例 ) 1−[2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチニル]−3,4,5−トリフルオロベンゼン(No.1の化合物)の合成
(1) 4−[2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニル]−2−メチル−3−ブチン−2−オールの合成
【0070】
【化20】
Figure 0003569935
【0071】
合成例 で得られた2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)−1−ヨードベンゼン7.40g(18.8ミリモル)及び2−メチル−3−ブチン−2−オール2.36g(25.1ミリモル)をトリエチルアミン30mlに溶解した。この溶液にヨウ化銅(I)0.1gとジクロロ−ビス(トリフェニルホスフィン)パラジウム(II)0.1gを加え、1時間室温で攪拌した。反応終了後、水100mlを加え、反応生成物を酢酸エチル100mlで抽出し、有機層を水、飽和食塩水で順次洗浄し、更に無水硫酸ナトリウムで乾燥した。溶媒を溜去して、4−[2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニル]−2−メチル−3−ブチン−2−オール6.49g(18.4ミリモル)を得た。
【0072】
(2) 2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチンの合成
【0073】
【化21】
Figure 0003569935
【0074】
水素化ナトリウム1gをトルエン20mlに懸濁し、上記(1)で得られた4−[2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニル]−2−メチル−3−ブチン−2−オール6.49g(18.4ミリモル)のトルエン40ml溶液を室温で30分間滴下した。滴下終了後、更に1時間加熱還流させた。室温まで放冷し、水100mlに加え、有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を溜去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)を用いて精製して、2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチン2.60g(10.7ミリモル)を得た。
【0075】
(3) 1−[2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチニル]−3,4,5−トリフルオロベンゼンの合成
【0076】
【化22】
Figure 0003569935
【0077】
上記(2)で得た2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチン2.08g(8.52ミリモル)及び1−ブロモ−3,4,5−トリフルオロベンゼン1.80g(8.53ミリモル)を、トリエチルアミン10ml及びジメチルホルムアミド10mlに溶解した。ヨウ化銅(I)0.1gとジクロロ−ビス(トリフェニルホスフィン)パラジウム(II)0.1gを加え、30分間室温で攪拌し、更に1時間加熱還流させた。反応終了後、水100mlを加え、反応生成物をトルエン100mlで抽出し、更に有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を溜去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)を用いて精製して、1−[2−フルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチニル]−3,4,5−トリフルオロベンゼン2.10g(5.61ミリモル)を得た。更に、これをエタノールから再結晶させて精製物を得た。この化合物は、70.5℃で結晶相からネマチック相に、91.6℃でネマチック相から等方性液体相に相転移した。
【0078】
合成例 ) 1−[2,6−ジフルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチニル]−3,4,5−トリフルオロベンゼン(No.2の化合物)の合成
(1) 4−(3,4,5−トリフルオロフェニル)−2−メチル−3−ブチン−2−オールの合成
【0079】
【化23】
Figure 0003569935
【0080】
1−ブロモ−3,4,5−トリフルオロベンゼン300g(1.42モル)と2−メチル−3−ブチン−2−オール144g(1.71モル)をN,N−ジメチルホルムアミド900ml及びトリエチルアミン300mlに溶解した。この溶液にヨウ化銅(I)1.4g及びジクロロ−ビス(トリフェニルホスフィン)パラジウム(II)5.0gを加え、80℃で30分加熱攪拌した。室温まで放冷し、水1.2lを加え、反応生成物をヘキサン1.4lで抽出し、有機層を水、飽和食塩水で順次洗浄し、更に無水硫酸ナトリウムで乾燥した。溶媒を溜去し、蒸留により精製(b.p.94〜100℃/1mmHg)して、4−(3,4,5−トリフルオロフェニル)−2−メチル−3−ブチン−2−オール275g(1.29モル)を得た。
【0081】
(2) 3,4,5−トリフルオロフェニルエチンの合成
【0082】
【化24】
Figure 0003569935
【0083】
上記(1)で得られた4−(3,4,5−トリフルオロフェニル)−2−メチル−3−ブチン−2−オール50g(0.234モル)に水酸化カリウム0.23gを加えて80℃で3時間加熱攪拌した。室温まで放冷し、そのまま蒸留により精製(b.p.138℃/760mmHg)して、3,4,5−トリフルオロフェニルエチン22.2g(0.142モル)を得た。
【0084】
(3) 1−[2,6−ジフルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチニル]−3,4,5−トリフルオロベンゼンの合成
【0085】
【化25】
Figure 0003569935
【0086】
上記(2)で得られた3,4,5−トリフルオロフェニルエチン5.2g(33.3ミリモル)及び合成例 で得られた1−(トランス−4−プロピルシクロヘキシル)−3,5−ジフルオロ−4−ヨードベンゼン10.0g(27.5ミリモル)を、トリエチルアミン30ml及びジメチルホルムアミド30mlに溶解した。ヨウ化銅(I)0.1gとジクロロ−ビス(トリフェニルホスフィン)パラジウム(II)0.4gを加え、3時間加熱還流させた。室温まで放冷した後、水100mlを加え、反応生成物をトルエン100mlで抽出し、更に有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を溜去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)を用いて精製して、1−[2,6−ジフルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチニル]−3,4,5−トリフルオロベンゼン10.4g(26.5ミリモル)を得た。更に、これをエタノールから再結晶させて精製物を得た。この化合物は、92℃で結晶相からネマチック相に、102℃でネマチック相から等方性液体相に相転移した。
【0087】
合成例 ) 1−[2,6−ジフルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチニル]−3,5−ジフルオロ−4−トリフルオロメチルベンゼン(No.3の化合物)の合成
【0088】
【化26】
Figure 0003569935
【0089】
合成例 において、1−ブロモ−3,4,5−トリフルオロベンゼンに代えて、1−ブロモ−3,5−ジフルオロ−4−トリフルオロメチルベンゼンを用いた以外は合成例 と同様にして、1−[2,6−ジフルオロ−4−(トランス−4−プロピルシクロヘキシル)フェニルエチニル]−3,5−ジフルオロ−4−トリフルオロメチルベンゼンを得た。この化合物の融点は81.0℃であった。
【0090】
合成例 ) 1−[4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチニル]−3,4,5−トリフルオロベンゼン(No.4の化合物)の合成
(1) 4−[4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニル]−2−メチル−3−ブチン−2−オールの合成
【0091】
【化27】
Figure 0003569935
【0092】
合成例 で得られた4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−1−ヨードベンゼン30.0g(83.8ミリモル)と2−メチル−3−ブチン−2−オール11.0g(131ミリモル)をトリエチルアミン90mlに溶解した。この溶液にヨウ化銅(I)0.2gとジクロロ−ビス(トリフェニルホスフィン)パラジウム(II)0.2gを加え、1時間室温で攪拌した。反応終了後、水200mlを加え、反応生成物を酢酸エチル200mlで抽出し、有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を溜去し、ヘキサンから再結晶させて精製して、4−[4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニル]−2−メチル−3−ブチン−2−オール22.1g(70.4ミリモル)を得た。
【0093】
(2) 4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチンの合成
【0094】
【化28】
Figure 0003569935
【0095】
水素化ナトリウム1gをトルエン20mlに懸濁し、上記(1)で得た4−[4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニル]−2−メチル−3−ブチン−2−オール22.1g(70.4ミリモル)のトルエン200ml溶液を、室温で30分間滴下した。滴下終了後、更に1時間加熱還流させた。室温まで放冷し、水100mlに加え、有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を溜去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)を用いて精製して、4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチン13.0g(50.8ミリモル)を得た。
【0096】
(3) 1−[4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチニル]−3,4,5−トリフルオロベンゼンの合成
【0097】
【化29】
Figure 0003569935
【0098】
上記(2)で得られた4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチン9.40g(36.7ミリモル)及び1−ブロモ−3,4,5−トリフルオロベンゼン7.80g(37.0ミリモル)を、トリエチルアミン20ml及びジメチルホルムアミド50mlに溶解した。この溶液にヨウ化銅(I)0.1gとジクロロ−ビス)トリフェニルホスフィン)パラジウム(II)0.1gを加え、30分間室温で攪拌し、更に1時間加熱還流させた。反応終了後、水100mlを加え、反応生成物をトルエン100mlで抽出し、有機層を水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を溜去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)を用いて精製して、1−[4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチニル]−3,4,5−トリフルオロベンゼン9.10g(23.6ミリモル)を得た。更に、これをメタノールから再結晶させて精製物を得た。この化合物は、63.5℃で結晶相からネマチック相に、108.6℃でネマチック相から等方性液体相に相転移した。
【0099】
(実施例) 1−[2−フルオロ−4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチニル]−3,5−ジフルオロ−4−トリフルオロメチルベンゼン(No.5の化合物)の合成
【0100】
【化30】
Figure 0003569935
【0101】
合成例 において、4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−1−ヨードベンゼンに代えて合成例 で得られた2−フルオロ−4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−1−ヨードベンゼンを用い、1−ブロモ−3,4,5−トリフルオロベンゼンに代えて、1−ブロモ−3,5−ジフルオロ−4−トリフルオロメチルベンゼンを用いた以外は合成例 と同様にして、1−[2−フルオロ−4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチニル]−3,5−ジフルオロ−4−トリフルオロメチルベンゼンを得た。
【0102】
合成例 10) 1−[2,6−ジフルオロ−4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチニル]−3,4,5−トリフルオロベンゼン(No.6の化合物)の合成
【0103】
【化31】
Figure 0003569935
【0104】
合成例 において、4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−1−ヨードベンゼンに代えて合成例 で得られた1−[トランス−4−(3−メトキシプロピル)シクロヘキシル]−3,5−ジフルオロ−4−ヨードベンゼンを用いた以外は合成例 と同様にして、1−[2,6−ジフルオロ−4−[トランス−4−(3−メトキシプロピル)シクロヘキシル]フェニルエチニル]−3,4,5−トリフルオロベンゼンを得た。
【0105】
合成例 11) 1−[2,6−ジフルオロ−4−[トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル]フェニルエチニル]−3,4,5−トリフルオロベンゼン(No.7の化合物)の合成
【0106】
【化32】
Figure 0003569935
【0107】
合成例 において、1−(トランス−4−プロピルシクロヘキシル)−3,5ジフルオロ−4−ヨードベンゼンに代えて、合成例 で得られた1−[トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル]−3,5−ジフルオロ−4−ヨードベンゼンを用いた以外は合成例 と同様にして、1−[2,6−ジフルオロ−4−[トランス−4−(トランス−4−プロピルシクロヘキシル)シクロヘキシル]フェニルエチニル]−3,4,5−トリフルオロベンゼンを得た。この化合物は、155℃で結晶相からネマチック相に相転移し、ネマチック相−等方性液体相転移温度は300℃以上であった。
【0108】
(実施例) 液晶組成物の調製(1)
【0109】
【化33】
Figure 0003569935
【0110】
からなる母体液晶(A)を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
この母体液晶(A)80重量%及び実施例の(No.1)
【0111】
【化34】
Figure 0003569935
【0112】
の化合物20重量%からなる混合液晶を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
このことから、(No.1)の化合物は、母体液晶のΔnを大きく上昇させ、N−I点を上昇させ、同時にしきい値電圧を大きく低下させる効果を有することが理解できる。
【0113】
(実施例) 液晶組成物の調製(2)
実施例と同様に、母体液晶(A)80重量%及び合成例 の(No.2)
【0114】
【化35】
Figure 0003569935
【0115】
の化合物20重量%からなる混合液晶を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
このことから、(No.2)の化合物は、母体液晶のΔnを大きく上昇させ、N−I点をやや上昇させ、同時にしきい値電圧を大きく低下させる効果を有することが理解できる。
【0116】
(実施例) 液晶組成物の調製(3)
実施例と同様に、母体液晶(A)80重量%及び合成例 の(No.3)
【0117】
【化36】
Figure 0003569935
【0118】
の化合物20重量%からなる混合液晶を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
このことから、(No.3)の化合物は、母体液晶のΔn、N−I点を大きく上昇させ、同時にしきい値電圧を大きく低下させる効果を有することが理解できる。
【0119】
(実施例) 液晶組成物の調製(4)
実施例と同様に、母体液晶(A)80重量%及び合成例 の(No.4)
【0120】
【化37】
Figure 0003569935
【0121】
の化合物20重量%からなる混合液晶を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
このことから、(No.4)の化合物は、母体液晶のΔn、N−I点を大きく上昇させ、同時にしきい値電圧を低下させる効果を有することが理解できる。
【0122】
(実施例) 液晶組成物の調製(5)
実施例と同様に、母体液晶(A)80重量%及び実施例の(No.5)
【0123】
【化38】
Figure 0003569935
【0124】
の化合物20重量%からなる混合液晶を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
このことから、(No.5)の化合物は、母体液晶のΔnを大きく上昇させ、N−I点を上昇させ、同時にしきい値電圧を大きく低下させる効果を有することが理解できる。
【0125】
(実施例) 液晶組成物の調製(6)
実施例と同様に、母体液晶(A)80重量%及び合成例 10の(No.6)
【0126】
【化39】
Figure 0003569935
【0127】
の化合物20重量%からなる混合液晶を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
このことから、(No.6)の化合物は、母体液晶のΔnを大きく上昇させ、N−I点をやや上昇させ、同時にしきい値電圧を大きく低下させる効果を有することが理解できる。
【0128】
(実施例) 液晶組成物の調製(7)
実施例と同様に、母体液晶(A)90重量%及び合成例 11の(No.7)
【0129】
【化40】
Figure 0003569935
【0130】
の化合物10重量%からなる混合液晶を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
このことから、(No.7)の化合物は、小量の添加で母体液晶のΔn、N−I点を大きく上昇させ、同時にしきい値電圧をやや低下させる効果を有することが理解できる。
【0131】
(比較例1)実施例と同様に、母体液晶(A)80重量%及び式(a)
【0132】
【化41】
Figure 0003569935
【0133】
の化合物20重量%からなる混合液晶を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
このことから、式(a)の化合物は、母体液晶のΔn、N−I点を大きく上昇させるが、しきい値電圧の低下はわずかであることが明らかである。
【0134】
(比較例2)実施例と同様に、母体液晶(A)80重量%及び式(b)
【0135】
【化42】
Figure 0003569935
【0136】
の化合物20重量%からなる混合液晶を調製し、N−I点、20℃におけるΔn及びしきい値電圧を測定したところ、次の通りであった。
Figure 0003569935
このことから、式(b)の化合物も、母体液晶のΔn、N−I点を大きく上昇させるが、しきい値電圧はあまり大きく低下できないことが明らかである。
【0137】
【発明の効果】
本発明の一般式(I)で表わされる化合物は、ネマチック液晶として現在汎用されている母体液晶との相溶性に優れており、母体液晶のΔn、N−I点を上昇させ、同時にしきい値電圧を大きく低下させることができる。
【0138】
従って、本発明の一般式(I)で表わされる化合物を用いた液晶組成物は、ワープロ、液晶テレビ等の高速応答性を重視する液晶表示に有用な液晶材料である。[0001]
[Industrial applications]
The present invention relates to a liquid crystal compound which is a novel fluorotolan derivative useful as an electro-optical display material.
[0002]
[Prior art]
The liquid crystal display element is used as an information display element such as a clock, a calculator, and recently, a word processor, a computer terminal display, and the like, and is increasingly important as an interface between an electronic device and a person.
[0003]
Display methods using liquid crystals are roughly classified into three types: (1) a field effect (FEM) type, (2) a dynamic scattering (DSM) type, and (3) a thermal effect (TEM) type. Various display systems have been proposed utilizing these effects, but the display systems using the field effect type have been put to practical use so far. The field effect type is a twisted nematic (TN) type, a super twisted nematic (STN) type, a guest-host (GH) type, an electric field controlled birefringence (ECB) type, a cholesteric-nematic phase transition (CN-PT) type. And a surface stabilized ferroelectric liquid crystal (SSFLC) type. Among them, TN type and STN type are currently the mainstream. Among these, in the STN type, it is possible to increase the capacity to some extent due to improvement of the driving method and the like, but it has reached the limit to recent demand for large display capacity. Therefore, a display method using a non-linear element having a threshold characteristic for each display pixel, for example, an active matrix method such as an MIM (Metal Insulator Metal) method or a TFT (Thin Film Transistor) method using an active element has been put to practical use. , Is rapidly developing toward higher capacity.
[0004]
The liquid crystal materials used in these liquid crystal display systems are required to have various characteristics according to the characteristics of each display system, but can operate in a wide temperature range, can be driven at a low voltage, and Fast response is a common and particularly important requirement. In order to satisfy low-voltage driving, a compound that lowers the threshold voltage when mixed with a liquid crystal composition is required. To enable driving in a wide temperature range, a nematic phase isotropic A compound that raises the ionic liquid phase transition temperature (hereinafter referred to as the NI point) is required.
[0005]
In order to increase the response time, it is necessary to lower the viscosity of the liquid crystal composition. However, the response time can be increased by the following method.
[0006]
In a liquid crystal display TN type cell, if the cell thickness is d (μm) and the response time is τ, there is a proportional relationship between d2 and τ. Can be obtained. However, in order to prevent the occurrence of interference fringes on the cell surface, which may impair the appearance of the cell, the product of the refractive index anisotropy (Δn) of the liquid crystal material filled in the cell and the cell thickness (d) μm ( d.Δn) must be set to a specific value. In a practically used liquid crystal cell, the value of Δn · d is set to 0.5, 1.0, 1.6, or 2.2. Since the value of Δn · d is set to a constant value in this manner, a liquid crystal material having a large value of Δn is required to reduce d and increase the response speed.
[0007]
Also, a liquid crystal material having a large Δn is effective for a polymer-dispersed liquid crystal display element requiring strong white turbidity.
[0008]
Therefore, a compound having a high NI point, a large value of Δn, and capable of lowering the threshold voltage of the composition is very important for preparing a liquid crystal composition satisfying the above requirements. It can be seen, however, that such compounds were largely unknown.
[0009]
As a result of studies based on such points, the present inventors recently found that the NI point is high, the value of Δn is large, and the threshold voltage of the composition can be lowered ( a) and equation (b)
[0010]
Embedded image
Figure 0003569935
[0011]
Was found. (Japanese Patent Application No. 4-192065) However, the compounds of the above formulas (a) and (b) sufficiently increase the Δn and the NI point when mixed with a currently used base liquid crystal. On the other hand, the threshold voltage was not sufficiently satisfactory, and further improvement was required.
[0012]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a novel compound which, when mixed with a liquid crystal composition, raises the NI point, increases Δn, and effectively lowers the threshold voltage, and It is an object of the present invention to provide a liquid crystal composition containing the compound, and to provide a compound useful as a synthetic intermediate of the compound.
[0013]
[Means for Solving the Problems]
The present invention provides a compound represented by the general formula (I):
[0014]
Embedded image
Figure 0003569935
[0015]
(Wherein, R represents a linear alkyl group having 1 to 10 carbon atoms or a linear alkoxyalkyl having 2 to 17 carbon atoms, preferably a linear alkyl group having 2 to 5 carbon atoms or a general alkyl group) Formula (Ia)
[0016]
Embedded image
Figure 0003569935
And represents a linear alkoxyalkyl group represented by the general formula (Ia)1Represents a linear alkyl group having 1 to 10 carbon atoms, and n represents an integer of 1 to 7. In the general formula (Ia), R is particularly preferably1Is a methyl group, and n represents an integer of 1 to 4. J is a single bond or -CH2CH2Represents-. m represents an integer of 0 or 1, X and Y each independently represent a hydrogen atom or a fluorine atom, and when R is a linear alkyl group having 1 to 10 carbon atoms, X and Y At least one of Y represents a fluorine atom. Z represents a fluorine atom or a trifluoromethyl group, and the cyclohexane ring represents a trans configuration. ) Is provided.
[0017]
Further, as an intermediate for producing the compound of the general formula (I) of the present invention, a compound of the general formula (II)
[0018]
Embedded image
Figure 0003569935
[0019]
(Wherein, R represents a linear alkyl group having 1 to 10 carbon atoms or a linear alkoxyalkyl group having 2 to 17 carbon atoms, and J represents a single bond or -CH2CH2Represents-, m represents an integer of 0 or 1, X and Y each independently represent a hydrogen atom or a fluorine atom, and when R is a linear alkyl group having 1 to 10 carbon atoms, Represents at least one of X and Y represents a fluorine atom, Q represents a bromine atom or iodine atom, and the cyclohexane ring represents a trans configuration. ) Is provided.
[0020]
The compound represented by the general formula (I) of the present invention can be produced, for example, according to the following production method.
[0021]
Embedded image
Figure 0003569935
[0022]
(In the above, the arrangement of R, J, m, X, Y, Z and the cyclohexane ring has the same meaning as in the general formula (I), and Q and Q ′ each independently represent an iodine atom or a bromine atom. .)
[0023]
First step: A compound of the general formula (III) is produced by reacting a compound of the general formula (II) with 2-methyl-3-butyn-2-ol in the presence of copper and a catalyst such as palladium.
Second step: reacting the compound of the general formula (III) with a strong base such as sodium hydride to produce a compound of the general formula (IV).
Third step: reacting the compound of the general formula (IV) with the compound of the general formula (V) in the presence of copper and a catalyst such as palladium to produce the compound of the general formula (I) of the present invention.
[0024]
Further, the compound represented by the general formula (I) of the present invention can also be produced according to the following production method.
[0025]
Embedded image
Figure 0003569935
[0026]
(In the above, the arrangement of R, J, m, X, Y, Z and the cyclohexane ring has the same meaning as in the general formula (I), and Q and Q ′ each independently represent an iodine atom or a bromine atom. .)
[0027]
First step: A compound of the general formula (VI) is produced by reacting a compound of the general formula (V) with 2-methyl-3-butyn-2-ol in the presence of copper and a catalyst such as palladium.
Second step: reacting the compound of the general formula (VI) with a base such as sodium hydroxide to produce a compound of the general formula (VII).
Third step: reacting the compound of the general formula (VII) with the compound of the general formula (II) in the presence of copper and a catalyst such as palladium to produce the compound of the general formula (I) of the present invention.
[0028]
Here, the compound of the general formula (II) can be produced, for example, according to the following production method.
[0029]
Embedded image
Figure 0003569935
[0030]
(In the above, the arrangement of R, J, m, X, Y and the cyclohexane ring has the same meaning as in the general formula (I), and Q and Q 'have the same meanings as described above.)
[0031]
First step: The compound of the general formula (VIII) is reacted with magnesium to form a Grignard reagent, and then reacted with the compound of the general formula (IX) to produce a compound of the general formula (X).
Second step: The compound of general formula (XI) is dehydrated in the presence of an acid catalyst to produce a compound of general formula (XI).
Third step: The compound of the general formula (XII) is catalytically reduced in the presence of a catalyst such as palladium carbon and then isomerized in the presence of a base to produce a compound of the general formula (XII).
Fourth step: reacting the compound of the general formula (XII) with iodine in the presence of periodic acid, reacting with bromine in the presence of iron, or nitrating and reducing to an amino group; The compound of the general formula (II) is produced by iodine or bromination by diazo decomposition. In particular, when X and Y are both fluorine atoms, the compound of the general formula (XII) is lithiated using butyllithium or the like and then reacted with a halogen such as iodine to obtain the compound represented by the general formula (II) ) Is produced.
[0032]
The excellent characteristics of the compound represented by the general formula (I) of the present invention are shown in Examples described later, and are evident, for example, from the following examples. Table 1 below comprises 80% by weight of a base liquid crystal (A) having a low threshold voltage and 20% by weight of each of the compounds (No. 1) to (No. 6) according to the present invention. It shows the NI point, Δn at 20 ° C., and the threshold voltage measured for each mixed liquid crystal. However, the compound of (No. 7) is composed of 10% by weight of the compound of (No. 7) and 90% by weight of the parent liquid crystal (A). For comparison, each mixed liquid crystal comprising 80% by weight of the base liquid crystal (A) and 20% by weight of the compound of the formula (a), 80% by weight of the base liquid crystal (A) and 20% by weight of the compound of the formula (b), It shows the NI point, Δn at 20 ° C., and the threshold voltage measured in the same manner for the parent liquid crystal (A) itself.
[0033]
The mother liquid crystal (A) is
[0034]
Embedded image
Figure 0003569935
[0035]
Wherein the compounds of (No. 1) to (No. 7) are:
[0036]
Embedded image
Figure 0003569935
[0037]
Is represented by
[0038]
[Table 1]
Figure 0003569935
[0039]
From the above Table 1, the compounds of (No. 1) to (No. 7) of the present invention have the effect of increasing the NI point and Δn of the base liquid crystal, and lowering or greatly lowering the threshold voltage. It is clear that
[0040]
On the other hand, it is clear that the compounds of the formulas (a) and (b) greatly increase the NI point and Δn, but cannot significantly lower the threshold voltage.
[0041]
Such a difference is due to the difference in structure between the compound of the general formula (I) of the present invention and the conventional compound, that is, the compound of the general formula (I) of the present invention has a structure in which the central benzene ring is substituted by a fluorine atom. In addition, since the terminal group on the cyclohexane ring side is an alkoxyalkyl group, the dielectric constant anisotropy increases and the elastic constant changes, which is considered to be obtained by a synergistic effect of these.
[0042]
Preferred representative examples of the nematic liquid crystal compound which can be used as a mixture with the compound represented by formula (I) of the present invention include, for example, 4-substituted benzoic acid 4-substituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4-substituted phenyl ester, 4-substituted cyclohexanecarboxylic acid 4'-substituted biphenylyl ester, 4- (4-substituted cyclohexanecarbonyloxy) benzoic acid 4-substituted phenyl ester, 4- (4-substituted cyclohexyl) benzoic acid 4- Substituted phenyl ester, 4- (4-substituted cyclohexyl) benzoic acid 4-substituted cyclohexyl ester, 4,4′-substituted biphenyl, 1- (4-substituted phenyl) -4-substituted cyclohexane, 4,4 ″ -substituted terphenyl , 1- (4′-substituted biphenylyl) -4-substituted cyclohexane, 1- ( -Substituted cyclohexyl) -4- (4-substituted phenyl) cyclohexane, 2- (4-substituted phenyl) -5-substituted pyrimidine, 2- (4-substituted biphenylyl) -5-substituted pyrimidine, 1- (4-substituted cyclohexyl) ) -2- (4-Substituted cyclohexyl) ethane, 1- (4-substituted cyclohexyl) -2- (4-substituted phenyl) ethane, 1- [4- (4-substituted cyclohexyl) cyclohexyl] -2- (4- Substituted phenyl) ethane, 1- [4- (4-substituted phenyl) cyclohexyl] -2- (4-substituted cyclohexyl) ethane, 1- (4-substituted phenyl) -2- (4-substituted phenyl) ethyne, 1- [4- (4-substituted cyclohexyl) cyclohexyl] -2- (4-substituted phenyl) ethyne and the like can be mentioned.
[0043]
Particularly, for active matrix, 4,4′-substituted biphenyl, 1- (4-substituted phenyl) -4-substituted cyclohexane, 4,4 ″ -substituted terphenyl, 1- (4′-substituted biphenylyl) -4 -Substituted cyclohexane, 1- (4-substituted cyclohexyl) -4- (4-substituted phenyl) cyclohexane, 1- (4-substituted cyclohexyl) -2- (4-substituted cyclohexyl) ethane, 1- (4-substituted cyclohexyl) -2- (4-substituted phenyl) ethane, 1- [4- (4-substituted cyclohexyl) cyclohexyl] -2- (4-substituted phenyl) ethane, 1- [4- (4-substituted phenyl) cyclohexyl] -2 -(4-substituted cyclohexyl) ethane, 1- (4-substituted phenyl) -2- (4-substituted phenyl) ethyne, 1- [4- (4-substituted cyclohexene) Le) cyclohexyl] -2- (4-substituted phenyl), and the like ethyne.
[0044]
【Example】
Hereinafter, examples of the present invention are shown, and the present invention is further described.Compounds used in Examples (No.1) ~ (No. 7) Synthesis method ( Synthesis example ) Shown asHowever, the invention is not limited to these examples.
[0045]
( Synthesis example 1)    Synthesis of 2-fluoro-4- (trans-4-propylcyclohexyl) -1-iodobenzene
(1) Synthesis of 1- (3-fluorophenyl) -4-propylcyclohexene
[0046]
Embedded image
Figure 0003569935
[0047]
3.6 g of magnesium was suspended in 10 ml of tetrahydrofuran, and a solution of 25.7 g (0.148 mol) of 3-fluoro-1-bromobenzene in 120 ml of tetrahydrofuran was added dropwise thereto at such a rate that tetrahydrofuran continued to reflux gently. After completion of the dropwise addition, the mixture was further stirred at room temperature for 1 hour. To this solution, a solution of 18.7 g (0.134 mol) of 4-propylcyclohexanone in 100 ml of tetrahydrofuran was added dropwise at room temperature for 30 minutes, and further stirred at room temperature for 1 hour. After completion of the reaction, 10% hydrochloric acid was added until the reaction solution became weakly acidic, and the reaction product was extracted with 200 ml of toluene. The organic layer was washed with saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained oil was dissolved in 200 ml of toluene, 3.0 g of potassium hydrogen sulfate was added, and the mixture was heated under reflux for 1 hour. The mixture was allowed to cool to room temperature, washed sequentially with a saturated aqueous solution of sodium hydrogencarbonate, water and saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off to give 1- (3-fluorophenyl) -4-propylcyclohexene 30. 0.3 g (0.140 mol) were obtained.
[0048]
(2) Synthesis of 1- (trans-4-propylcyclohexyl) -3-fluorobenzene
[0049]
Embedded image
Figure 0003569935
[0050]
30.3 g of 1- (3-fluorophenyl) -4-propylcyclohexene obtained in the above (1) (0.14MoleWas dissolved in 300 ml of ethyl acetate, 3.0 g of 5% palladium carbon was added, and the mixture was reacted at a hydrogen pressure of 3 atm for 3 hours. After completion of the reaction, the catalyst was filtered off and the solvent was distilled off. The residue was dissolved in 150 ml of N, N-dimethylformamide, 3.0 g of potassium t-butoxide was added, and the mixture was stirred at 80 ° C. for 4 hours. 150 ml of water was added, the reaction product was extracted with 150 ml of hexane, and the organic layer was washed successively with water and saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified using silica gel column chromatography (developing solvent: hexane) to obtain 26.0 g (0.120 mol) of 1- (trans-4-propylcyclohexyl) -3-fluorobenzene. .
[0051]
(3) Synthesis of 2-fluoro-4- (trans-4-propylcyclohexyl) -1-iodobenzene
[0052]
Embedded image
Figure 0003569935
[0053]
5.0 g (23 mmol) of 1- (trans-4-propylcyclohexyl) -3-fluorobenzene obtained in the above (2) was dissolved in 25 ml of acetic acid, and 5.7 g of iodine, 5 ml of water, and periodic acid 4.3 g of dihydrate was added, and the mixture was heated under reflux for 3 hours. After cooling to room temperature, the reaction product was extracted with 50 ml of hexane. The organic layer was washed successively with a 10% aqueous solution of sodium sulfite, water and saturated saline, dried over anhydrous sodium sulfate, the solvent was distilled off, and the residue was purified using silica gel column chromatography (developing solvent: hexane). 2.6 g (7.5 mmol) of 2-fluoro-4- (trans-4-propylcyclohexyl) -1-iodobenzene were obtained.
[0054]
(Synthesis example 2) Synthesis of 1- (trans-4-propylcyclohexyl) -3,5-difluoro-4-iodobenzene
(1) Synthesis of 1- (3,5-difluorophenyl) -4-propylcyclohexene
[0055]
Embedded image
Figure 0003569935
[0056]
6.9 g of magnesium was suspended in 10 ml of tetrahydrofuran, and a solution of 50.0 g (0.259 mol) of 3,5-difluoro-1-bromobenzene in 200 ml of tetrahydrofuran was added dropwise to the suspension at a rate at which tetrahydrofuran continued gentle reflux. After completion of the dropwise addition, the mixture was further stirred at room temperature for 1 hour. To this solution, a solution of 29.0 g (0.207 mol) of 4-propylcyclohexanone in 80 ml of tetrahydrofuran was added dropwise at room temperature for 30 minutes, and further stirred at room temperature for 1 hour. After completion of the reaction, 10% hydrochloric acid was added until the reaction solution became weakly acidic, the reaction product was extracted with 300 ml of toluene, the organic layer was washed with saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off. . The obtained oil was dissolved in 300 ml of toluene, 2.0 g of p-toluenesulfonic acid monohydrate was added, and the mixture was refluxed for 3 hours. The mixture was allowed to cool to room temperature, washed successively with a saturated aqueous solution of sodium hydrogen carbonate, water and saturated saline, dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain 1- (3,5-difluorophenyl) -4-propyl. 48.0 g (0.203 mol) of cyclohexene were obtained.
[0057]
(2) Synthesis of 1- (trans-4-propylcyclohexyl) -3,5-difluorobenzene
[0058]
Embedded image
Figure 0003569935
[0059]
48.6 g (0.203 mol) of 1- (3,5-difluorophenyl) -4-propylcyclohexene obtained in the above (1) was dissolved in 250 ml of ethyl acetate, 5 g of 5% palladium carbon was added, and hydrogen pressure was increased. The reaction was performed at 3 atm for 3 hours. After the catalyst was filtered off and the solvent was distilled off, the catalyst was dissolved in 250 ml of N, N-dimethylformamide, 24.3 g of potassium t-butoxide was added, and the mixture was stirred at room temperature for 3 hours. 250 ml of water was added, the reaction product was extracted with 200 ml of hexane, and the organic layer was washed successively with water and saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was purified using silica gel column chromatography (developing solvent: hexane) to give 30.2 g (0.127 mol) of 1- (trans-4-propylcyclohexyl) -3,5-difluorobenzene. Obtained.
[0060]
(3) Synthesis of 1- (trans-4-propylcyclohexyl) -3,5-difluoro-4-iodobenzene
[0061]
Embedded image
Figure 0003569935
[0062]
14.8 g (62.2 mmol) of 1- (trans-4-propylcyclohexyl) -3,5-difluorobenzene obtained in the above (2) was dissolved in 80 ml of tetrahydrofuran and cooled to −50 ° C. or lower. 45 ml of an n-butyllithium hexane solution (1.68 mol / l) was added dropwise at a rate keeping the temperature at -50 ° C or lower. Next, a solution of 17.4 g of iodine in 180 ml of tetrahydrofuran was added dropwise at a rate keeping the temperature at -50 ° C or lower, and the mixture was further stirred at -50 ° C or lower for 30 minutes. 50 ml of water was added to return to room temperature, and the reaction product was extracted with 200 ml of hexane. The organic layer was washed successively with a 10% aqueous solution of sodium sulfite, water and saturated saline, dried over anhydrous sodium sulfate, the solvent was distilled off, and the residue was purified using silica gel column chromatography (developing solvent: hexane). 22.0 g (60.4 mmol) of 1- (trans-4-propylcyclohexyl) -3,5-difluoro-4-iodobenzene were obtained.
[0063]
(Synthesis example 3) Synthesis of 1- [trans-4- (trans-4-propylcyclohexyl) cyclohexyl] -3,5-difluoro-4-iodobenzene
[0064]
Embedded image
Figure 0003569935
[0065]
Synthesis example 2Except that 4- (trans-4-propylcyclohexyl) cyclohexanone was used in place of 4-propylcyclohexanoneSynthesis example 21- [trans-4- (trans-4-propylcyclohexyl) cyclohexyl] -3,5-difluoro-4-iodobenzene was obtained in the same manner as described above.
[0066]
(Synthesis example 4) Synthesis of 4- [trans-4- (3-methoxypropyl) cyclohexyl] -1-iodobenzene
Synthesis example 1Wherein bromobenzene was used in place of 3-fluoro-1-bromobenzene and 4- (3-methoxypropyl) cyclohexanone was used in place of 4-propylcyclohexanoneSynthesis example 1In the same manner as in the above, 4- [trans-4- (3-methoxypropyl) cyclohexyl] -1-iodobenzene was obtained.
[0067]
(Synthesis example 5) Synthesis of 2-fluoro-4- [trans-4- (3-methoxypropyl) cyclohexyl] -1-iodobenzene
Synthesis example 1Except that 4- (3-methoxypropyl) cyclohexanone was used instead of 4-propylcyclohexanoneSynthesis example 1In the same manner as in the above, 2-fluoro-4- [trans-4- (3-methoxypropyl) cyclohexyl] -1-iodobenzene was obtained.
[0068]
(Synthesis example 6) Synthesis of 1- [trans-4- (3-methoxypropyl) cyclohexyl] -3,5-difluoro-4-iodobenzene
Synthesis example 1Wherein 3,5-difluoro-1-bromobenzene was used in place of 3-fluoro-1-bromobenzene and 4- (3-methoxypropyl) cyclohexanone was used in place of 4-propylcyclohexanoneSynthesis example 11- [trans-4- (3-methoxypropyl) cyclohexyl] -3,5-difluoro-4-iodobenzene was obtained in the same manner as described above.
[0069]
(Example 1) Synthesis of 1- [2-fluoro-4- (trans-4-propylcyclohexyl) phenylethynyl] -3,4,5-trifluorobenzene (Compound No. 1)
(1) Synthesis of 4- [2-fluoro-4- (trans-4-propylcyclohexyl) phenyl] -2-methyl-3-butyn-2-ol
[0070]
Embedded image
Figure 0003569935
[0071]
Synthesis example 17.40 g (18.8 mmol) of 2-fluoro-4- (trans-4-propylcyclohexyl) -1-iodobenzene and 2.36 g of 2-methyl-3-butyn-2-ol (25. (1 mmol) was dissolved in 30 ml of triethylamine. 0.1 g of copper (I) iodide and 0.1 g of dichloro-bis (triphenylphosphine) palladium (II) were added to this solution, and the mixture was stirred at room temperature for 1 hour. After the completion of the reaction, 100 ml of water was added, the reaction product was extracted with 100 ml of ethyl acetate, and the organic layer was washed with water and saturated saline in this order, and dried over anhydrous sodium sulfate. The solvent was distilled off to obtain 6.49 g (18.4 mmol) of 4- [2-fluoro-4- (trans-4-propylcyclohexyl) phenyl] -2-methyl-3-butyn-2-ol. .
[0072]
(2) Synthesis of 2-fluoro-4- (trans-4-propylcyclohexyl) phenylethyne
[0073]
Embedded image
Figure 0003569935
[0074]
1 g of sodium hydride is suspended in 20 ml of toluene, and 4- [2-fluoro-4- (trans-4-propylcyclohexyl) phenyl] -2-methyl-3-butyn-2-ol obtained in the above (1) is suspended. A solution of 6.49 g (18.4 mmol) in 40 ml of toluene was added dropwise at room temperature for 30 minutes. After the completion of the dropwise addition, the mixture was further heated under reflux for 1 hour. The mixture was allowed to cool to room temperature, added to 100 ml of water, and the organic layer was washed with water and saturated brine in that order, and dried over anhydrous sodium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography (developing solvent: hexane) to give 2.60 g (10.7 mmol) of 2-fluoro-4- (trans-4-propylcyclohexyl) phenylethyne. Obtained.
[0075]
(3) Synthesis of 1- [2-fluoro-4- (trans-4-propylcyclohexyl) phenylethynyl] -3,4,5-trifluorobenzene
[0076]
Embedded image
Figure 0003569935
[0077]
2.08 g (8.52 mmol) of 2-fluoro-4- (trans-4-propylcyclohexyl) phenylethyne obtained in the above (2) and 1.80 g of 1-bromo-3,4,5-trifluorobenzene ( 8.53 mmol) was dissolved in 10 ml of triethylamine and 10 ml of dimethylformamide. 0.1 g of copper (I) iodide and 0.1 g of dichloro-bis (triphenylphosphine) palladium (II) were added, the mixture was stirred at room temperature for 30 minutes, and further heated under reflux for 1 hour. After completion of the reaction, 100 ml of water was added, the reaction product was extracted with 100 ml of toluene, and the organic layer was further washed with water and saturated saline in that order, and dried over anhydrous sodium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography (developing solvent: hexane) to give 1- [2-fluoro-4- (trans-4-propylcyclohexyl) phenylethynyl] -3,4,5. 2.10 g (5.61 mmol) of trifluorobenzene were obtained. Further, this was recrystallized from ethanol to obtain a purified product. This compound underwent a phase transition from a crystalline phase to a nematic phase at 70.5 ° C., and from a nematic phase to an isotropic liquid phase at 91.6 ° C.
[0078]
(Synthesis example 7Synthesis of 1- [2,6-difluoro-4- (trans-4-propylcyclohexyl) phenylethynyl] -3,4,5-trifluorobenzene (compound of No. 2)
(1) Synthesis of 4- (3,4,5-trifluorophenyl) -2-methyl-3-butyn-2-ol
[0079]
Embedded image
Figure 0003569935
[0080]
300 g (1.42 mol) of 1-bromo-3,4,5-trifluorobenzene and 144 g (1.71 mol) of 2-methyl-3-butyn-2-ol were combined with 900 ml of N, N-dimethylformamide and 300 ml of triethylamine. Was dissolved. To this solution, 1.4 g of copper (I) iodide and 5.0 g of dichloro-bis (triphenylphosphine) palladium (II) were added, followed by heating and stirring at 80 ° C. for 30 minutes. The mixture was allowed to cool to room temperature, 1.2 l of water was added, the reaction product was extracted with 1.4 l of hexane, and the organic layer was washed with water and saturated brine in that order, and dried over anhydrous sodium sulfate. The solvent was distilled off and the residue was purified by distillation (bp 94 to 100 ° C / 1 mmHg) to give 275 g of 4- (3,4,5-trifluorophenyl) -2-methyl-3-butyn-2-ol. (1.29 mol).
[0081]
(2) Synthesis of 3,4,5-trifluorophenylethyne
[0082]
Embedded image
Figure 0003569935
[0083]
0.23 g of potassium hydroxide was added to 50 g (0.234 mol) of 4- (3,4,5-trifluorophenyl) -2-methyl-3-butyn-2-ol obtained in the above (1). The mixture was heated and stirred at 80 ° C for 3 hours. The mixture was allowed to cool to room temperature and purified by distillation (bp 138 ° C / 760 mmHg) as it was to obtain 22.2 g (0.142 mol) of 3,4,5-trifluorophenylethyne.
[0084]
(3) Synthesis of 1- [2,6-difluoro-4- (trans-4-propylcyclohexyl) phenylethynyl] -3,4,5-trifluorobenzene
[0085]
Embedded image
Figure 0003569935
[0086]
5.2 g (33.3 mmol) of 3,4,5-trifluorophenylethyne obtained in the above (2) andSynthesis example 21- (trans-4-propylcyclohexyl) -3,5-difluoro-4-iodobenzene 10.0 g (27.5 mmol) obtained in was dissolved in 30 ml of triethylamine and 30 ml of dimethylformamide. 0.1 g of copper (I) iodide and 0.4 g of dichloro-bis (triphenylphosphine) palladium (II) were added, and the mixture was heated under reflux for 3 hours. After cooling to room temperature, 100 ml of water was added, the reaction product was extracted with 100 ml of toluene, and the organic layer was further washed with water and saturated saline in that order, and dried over anhydrous sodium sulfate. After evaporating the solvent, the residue is purified by silica gel column chromatography (developing solvent: hexane) to give 1- [2,6-difluoro-4- (trans-4-propylcyclohexyl) phenylethynyl] -3,4. 10.4 g (26.5 mmol) of 5,5-trifluorobenzene were obtained. Further, this was recrystallized from ethanol to obtain a purified product. The compound underwent a phase transition from a crystalline phase to a nematic phase at 92 ° C. and a phase transition from a nematic phase to an isotropic liquid phase at 102 ° C.
[0087]
(Synthesis example 8Synthesis of 1- [2,6-difluoro-4- (trans-4-propylcyclohexyl) phenylethynyl] -3,5-difluoro-4-trifluoromethylbenzene (compound of No. 3)
[0088]
Embedded image
Figure 0003569935
[0089]
Synthesis example 7Except that 1-bromo-3,5-difluoro-4-trifluoromethylbenzene was used instead of 1-bromo-3,4,5-trifluorobenzeneSynthesis example 7In the same manner as in the above, 1- [2,6-difluoro-4- (trans-4-propylcyclohexyl) phenylethynyl] -3,5-difluoro-4-trifluoromethylbenzene was obtained. The melting point of this compound was 81.0 ° C.
[0090]
(Synthesis example 9) Synthesis of 1- [4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethynyl] -3,4,5-trifluorobenzene (Compound No. 4)
(1) Synthesis of 4- [4- [trans-4- (3-methoxypropyl) cyclohexyl] phenyl] -2-methyl-3-butyn-2-ol
[0091]
Embedded image
Figure 0003569935
[0092]
Synthesis example 430.0 g (83.8 mmol) of 4- [trans-4- (3-methoxypropyl) cyclohexyl] -1-iodobenzene and 11.0 g of 2-methyl-3-butyn-2-ol (131) Mmol) was dissolved in 90 ml of triethylamine. To this solution, 0.2 g of copper (I) iodide and 0.2 g of dichloro-bis (triphenylphosphine) palladium (II) were added, followed by stirring at room temperature for 1 hour. After completion of the reaction, 200 ml of water was added, the reaction product was extracted with 200 ml of ethyl acetate, and the organic layer was sequentially washed with water and saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off and the residue was purified by recrystallization from hexane to give 4- [4- [trans-4- (3-methoxypropyl) cyclohexyl] phenyl] -2-methyl-3-butyn-2-ol. 1 g (70.4 mmol) were obtained.
[0093]
(2) Synthesis of 4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethyne
[0094]
Embedded image
Figure 0003569935
[0095]
1 g of sodium hydride is suspended in 20 ml of toluene, and 4- [4- [trans-4- (3-methoxypropyl) cyclohexyl] phenyl] -2-methyl-3-butyn-2-ol obtained in the above (1) is suspended. A solution of 22.1 g (70.4 mmol) in 200 ml of toluene was added dropwise at room temperature for 30 minutes. After the completion of the dropwise addition, the mixture was further heated under reflux for 1 hour. The mixture was allowed to cool to room temperature, added to 100 ml of water, and the organic layer was washed with water and saturated brine in that order, and dried over anhydrous sodium sulfate. After distilling off the solvent, the residue was purified using silica gel column chromatography (developing solvent: toluene) to obtain 13.0 g (50.8 mmol) of 4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethyne. Got.
[0096]
(3) Synthesis of 1- [4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethynyl] -3,4,5-trifluorobenzene
[0097]
Embedded image
Figure 0003569935
[0098]
9.40 g (36.7 mmol) of 4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethyne obtained in (2) above and 1-bromo-3,4,5-trifluorobenzene 7. 80 g (37.0 mmol) were dissolved in 20 ml of triethylamine and 50 ml of dimethylformamide. To this solution, 0.1 g of copper (I) iodide and 0.1 g of dichloro-bis) triphenylphosphine) palladium (II) were added, and the mixture was stirred at room temperature for 30 minutes, and further heated under reflux for 1 hour. After completion of the reaction, 100 ml of water was added, the reaction product was extracted with 100 ml of toluene, and the organic layer was sequentially washed with water and saturated saline, and dried over anhydrous sodium sulfate. After evaporating the solvent, the residue was purified using silica gel column chromatography (developing solvent: toluene) to give 1- [4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethynyl] -3,4,4. 9.10 g (23.6 mmol) of 5-trifluorobenzene were obtained. Further, this was recrystallized from methanol to obtain a purified product. This compound underwent a phase transition from a crystalline phase to a nematic phase at 63.5 ° C., and from a nematic phase to an isotropic liquid phase at 108.6 ° C.
[0099]
(Example2Synthesis of 1- [2-fluoro-4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethynyl] -3,5-difluoro-4-trifluoromethylbenzene (compound of No. 5)
[0100]
Embedded image
Figure 0003569935
[0101]
Synthesis example 9Wherein, instead of 4- [trans-4- (3-methoxypropyl) cyclohexyl] -1-iodobenzene,Synthesis example 5Using 2-fluoro-4- [trans-4- (3-methoxypropyl) cyclohexyl] -1-iodobenzene obtained in the above in place of 1-bromo-3,4,5-trifluorobenzene. Except that bromo-3,5-difluoro-4-trifluoromethylbenzene was used.Synthesis example 9In the same manner as in the above, 1- [2-fluoro-4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethynyl] -3,5-difluoro-4-trifluoromethylbenzene was obtained.
[0102]
(Synthesis example 10) Synthesis of 1- [2,6-difluoro-4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethynyl] -3,4,5-trifluorobenzene (Compound No. 6)
[0103]
Embedded image
Figure 0003569935
[0104]
Synthesis example 9Wherein, instead of 4- [trans-4- (3-methoxypropyl) cyclohexyl] -1-iodobenzene,Synthesis example 6Except that the 1- [trans-4- (3-methoxypropyl) cyclohexyl] -3,5-difluoro-4-iodobenzene obtained in the above was used.Synthesis example 91- [2,6-Difluoro-4- [trans-4- (3-methoxypropyl) cyclohexyl] phenylethynyl] -3,4,5-trifluorobenzene was obtained in the same manner as described above.
[0105]
(Synthesis example 11Synthesis of 1- [2,6-difluoro-4- [trans-4- (trans-4-propylcyclohexyl) cyclohexyl] phenylethynyl] -3,4,5-trifluorobenzene (compound of No. 7)
[0106]
Embedded image
Figure 0003569935
[0107]
Synthesis example 7Wherein 1- (trans-4-propylcyclohexyl) -3,5Instead of difluoro-4-iodobenzene,Synthesis example 3Except that the 1- [trans-4- (trans-4-propylcyclohexyl) cyclohexyl] -3,5-difluoro-4-iodobenzene obtained in the above was used.Synthesis example 7In the same manner as in the above, 1- [2,6-difluoro-4- [trans-4- (trans-4-propylcyclohexyl) cyclohexyl] phenylethynyl] -3,4,5-trifluorobenzene was obtained. This compound underwent a phase transition from a crystalline phase to a nematic phase at 155 ° C., and the nematic phase-isotropic liquid phase transition temperature was 300 ° C. or higher.
[0108]
(Example3) Preparation of liquid crystal composition (1)
[0109]
Embedded image
Figure 0003569935
[0110]
Was prepared and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
80% by weight of the base liquid crystal (A) and Examples1(No.1)
[0111]
Embedded image
Figure 0003569935
[0112]
Was prepared, and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
From this, it can be understood that the compound of (No. 1) has an effect of greatly increasing Δn of the base liquid crystal, increasing the NI point, and at the same time, greatly reducing the threshold voltage.
[0113]
(Example4) Preparation of liquid crystal composition (2)
Example3Similarly to the above, 80% by weight of the base liquid crystal (A) andSynthesis example 7(No. 2)
[0114]
Embedded image
Figure 0003569935
[0115]
Was prepared, and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
From this, it can be understood that the compound of (No. 2) has an effect of greatly increasing Δn of the base liquid crystal, slightly increasing the NI point, and at the same time, greatly reducing the threshold voltage.
[0116]
(Example5) Preparation of liquid crystal composition (3)
Example3Similarly to the above, 80% by weight of the base liquid crystal (A) andSynthesis example 8(No.3)
[0117]
Embedded image
Figure 0003569935
[0118]
Was prepared, and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
From this, it can be understood that the compound of (No. 3) has an effect of greatly increasing the Δn and NI points of the base liquid crystal, and at the same time, greatly reducing the threshold voltage.
[0119]
(Example6) Preparation of liquid crystal composition (4)
Example3Similarly to the above, 80% by weight of the base liquid crystal (A) andSynthesis example 9(No. 4)
[0120]
Embedded image
Figure 0003569935
[0121]
Was prepared, and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
From this, it can be understood that the compound of (No. 4) has an effect of greatly increasing the Δn and NI points of the base liquid crystal, and at the same time, lowering the threshold voltage.
[0122]
(Example7) Preparation of liquid crystal composition (5)
Example380% by weight of the base liquid crystal (A) and2(No. 5)
[0123]
Embedded image
Figure 0003569935
[0124]
Was prepared, and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
From this, it can be understood that the compound of (No. 5) has an effect of greatly increasing Δn of the base liquid crystal, increasing the NI point, and at the same time, greatly reducing the threshold voltage.
[0125]
(Example8) Preparation of liquid crystal composition (6)
Example3Similarly to the above, 80% by weight of the base liquid crystal (A) andSynthesis example 10(No. 6)
[0126]
Embedded image
Figure 0003569935
[0127]
Was prepared, and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
From this, it can be understood that the compound of (No. 6) has an effect of greatly increasing Δn of the base liquid crystal, slightly increasing the NI point, and at the same time, greatly reducing the threshold voltage.
[0128]
(Example9) Preparation of liquid crystal composition (7)
Example390% by weight of the base liquid crystal (A) andSynthesis example 11(No. 7)
[0129]
Embedded image
Figure 0003569935
[0130]
Was prepared, and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
From this, it can be understood that the compound of (No. 7) has the effect of increasing the Δn and NI points of the base liquid crystal greatly by adding a small amount thereof, and at the same time, slightly reducing the threshold voltage.
[0131]
(Comparative Example 1) Example3Similarly to the above, 80% by weight of the base liquid crystal (A) and the formula (a)
[0132]
Embedded image
Figure 0003569935
[0133]
Was prepared, and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
From this, it is clear that the compound of the formula (a) greatly increases the Δn and NI points of the base liquid crystal, but slightly reduces the threshold voltage.
[0134]
(Comparative Example 2) Example3Similarly to the above, 80% by weight of the base liquid crystal (A) and the formula (b)
[0135]
Embedded image
Figure 0003569935
[0136]
Was prepared, and the NI point, Δn at 20 ° C. and the threshold voltage were measured. The results were as follows.
Figure 0003569935
From this, it is clear that the compound of the formula (b) also greatly increases the Δn and NI points of the base liquid crystal, but cannot decrease the threshold voltage so much.
[0137]
【The invention's effect】
The compound represented by the general formula (I) of the present invention has excellent compatibility with a base liquid crystal which is currently widely used as a nematic liquid crystal, increases the Δn and the NI point of the base liquid crystal, and simultaneously increases the threshold value. The voltage can be greatly reduced.
[0138]
Therefore, the liquid crystal composition using the compound represented by the general formula (I) of the present invention is a useful liquid crystal material for a liquid crystal display, such as a word processor or a liquid crystal television, which emphasizes high-speed response.

Claims (10)

一般式(I)
Figure 0003569935
(式中、Rは炭素原子数1〜10の直鎖状アルキル基又は炭素原子数2〜17の直鎖状アルコキシアルキル基を表し、Jは単結合又は-CH2CH2-を表し、mは0又は1の整数を表し、X は水素原子又はフッ素原子を表し、 Y は水素原子表すが、 R が炭素原子数 1 10 の直鎖状アルキル基である場合には、 X はフッ素原子を表し、Zはフッ素原子又はトリフルオロメチル基を表し、シクロヘキサン環はトランス配置を表す。)で表される化合物を含有する液晶組成物。
General formula (I)
Figure 0003569935
(Wherein, R represents a linear alkoxyalkyl group linear alkyl group carbon atoms or 2 to 17 of 1 to 10 carbon atoms, J is a single bond or represents -CH 2 CH 2 -, m Represents an integer of 0 or 1, X represents a hydrogen atom or a fluorine atom, Y represents a hydrogen atom, and when R is a linear alkyl group having 1 to 10 carbon atoms , X represents a fluorine atom And Z represents a fluorine atom or a trifluoromethyl group, and the cyclohexane ring represents a trans configuration.).
一般式General formula (I)(I)
Figure 0003569935
Figure 0003569935
(( 式中、Where: RR は炭素原子数Is the number of carbon atoms 1One ~ 10Ten の直鎖状アルキル基又は炭素原子数Linear alkyl group or number of carbon atoms 2Two ~ 1717 の直鎖状アルコキシアルキル基を表し、Represents a linear alkoxyalkyl group of JJ は単結合又はIs a single bond or -CH-CH 2Two CHCH 2Two -- を表し、Represents mm Is 00 又はOr 1One の整数を表し、Represents the integer of XX はフッ素原子を表し、Represents a fluorine atom, YY は水素原子表し、Represents a hydrogen atom, ZZ はフッ素原子又はトリフルオロメチル基を表し、シクロヘキサン環はトランス配置を表す。Represents a fluorine atom or a trifluoromethyl group, and the cyclohexane ring represents a trans configuration. )) で表される化合物。A compound represented by the formula:
一般式(I)において、Rが炭素原子数1〜10の直鎖状アルキル基である請求項2記載の化合物。The compound according to claim 2, wherein in the general formula (I), R is a linear alkyl group having 1 to 10 carbon atoms. 一般式(I)において、Rが一般式(Ia)
Figure 0003569935
(式中、R1は炭素原子数1〜10の直鎖状アルキル基を表わし、nは1〜7の整数を表わす。)で表されるアルコキシアルキル基である請求項2記載の化合物。
In the general formula (I), R is the general formula (Ia)
Figure 0003569935
(In the formula, R 1 represents a linear alkyl group having 1 to 10 carbon atoms, n represents. An integer of 1-7) compound according to claim 2, wherein the alkoxyalkyl group represented by.
一般式(I)において、Zがフッ素原子である請求項2記載の化合物。3. The compound according to claim 2, wherein in the general formula (I), Z is a fluorine atom. 一般式(I)において、Zがトリフルオロメチル基である請求項2記載の化合物。3. The compound according to claim 2, wherein in the general formula (I), Z is a trifluoromethyl group. 一般式(I)において、Jが単結合である請求項2からのいずれかの請求項に記載の化合物。The compound according to any one of claims 2 to 6 , wherein in the general formula (I), J is a single bond. 式(No.1)または式(NO.5)に記載の一般式(I)で表される化合物。
Figure 0003569935
A compound represented by the general formula (I) described in the formula (No. 1) or (NO. 5).
Figure 0003569935
請求項2から8のいずれかの請求項に記載の化合物を含有することを特徴とする液晶組成物。A liquid crystal composition comprising the compound according to any one of claims 2 to 8. アクティブマトリクス用であることを特徴とする請求項1又は9記載の液晶組成物。The liquid crystal composition according to claim 1, which is for an active matrix.
JP29976293A 1993-01-28 1993-11-30 Fluorotran derivative Expired - Lifetime JP3569935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29976293A JP3569935B2 (en) 1993-01-28 1993-11-30 Fluorotran derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1253693 1993-01-28
JP5-12536 1993-01-28
JP29976293A JP3569935B2 (en) 1993-01-28 1993-11-30 Fluorotran derivative

Publications (2)

Publication Number Publication Date
JPH06279332A JPH06279332A (en) 1994-10-04
JP3569935B2 true JP3569935B2 (en) 2004-09-29

Family

ID=26348165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29976293A Expired - Lifetime JP3569935B2 (en) 1993-01-28 1993-11-30 Fluorotran derivative

Country Status (1)

Country Link
JP (1) JP3569935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429705A (en) * 2011-03-24 2013-12-04 默克专利股份有限公司 Compounds having a C-C-triple bond

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255131B2 (en) * 2018-10-23 2023-04-11 Dic株式会社 liquid crystal compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429705A (en) * 2011-03-24 2013-12-04 默克专利股份有限公司 Compounds having a C-C-triple bond
US9777217B2 (en) 2011-03-24 2017-10-03 Merck Patent Gmbh Compounds having a C—C triple bond

Also Published As

Publication number Publication date
JPH06279332A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
JPH1045642A (en) Liquid crystal compound with extremely high dielectric constant anisotropy
JP3569935B2 (en) Fluorotran derivative
JP3783248B2 (en) 4- (2-Cyclohexyl) propyl-p-terphenyl derivative
JP4193075B2 (en) Alkenyl terphenyl derivatives
JPH1143450A (en) New alkenylbiphenyl derivative
JPH10114693A (en) Alkenylbiphenyl derivative
JP3331654B2 (en) Fluorotran derivative
JP3899557B2 (en) Fluorobibiphenyl derivatives
JP3673873B2 (en) Biphenyl derivatives
JP3360314B2 (en) Fluorotran derivative
JP3716436B2 (en) 5-substituted alkylbenzene derivatives
JP3937185B2 (en) 2-fluorobiphenyl derivatives
JP3360316B2 (en) 3,4,5-trifluorophenylbutane derivative
JPH07179374A (en) Production of fluorobiphenyl derivative
JP4193077B2 (en) 1,3-phenylene derivatives
JPH09328443A (en) Dialkenylbiphenyl derivative
JP3433756B2 (en) Difluorocyclopropane derivative
JPH11335307A (en) Dialkenylnaphthalene derivative
JPH08157396A (en) (2-cyclohexyl)propylbenzene derivative
JPH0565236A (en) Fluorotolan alkenyl compound
JP4019327B2 (en) 2-fluorobiphenyl derivatives
JPH06206836A (en) Fluoroalkylcyclohexane derivative
JP3994460B2 (en) Novel compound and liquid crystal composition using the same
JPH0656718A (en) Fluorocyclohexane derivative
JP3668991B2 (en) Alkylbenzene derivatives

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term