JP3563094B2 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
JP3563094B2
JP3563094B2 JP25722693A JP25722693A JP3563094B2 JP 3563094 B2 JP3563094 B2 JP 3563094B2 JP 25722693 A JP25722693 A JP 25722693A JP 25722693 A JP25722693 A JP 25722693A JP 3563094 B2 JP3563094 B2 JP 3563094B2
Authority
JP
Japan
Prior art keywords
heat exchanger
valve
refrigerant
compressor
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25722693A
Other languages
Japanese (ja)
Other versions
JPH07108824A (en
Inventor
進 池田
敏美 礒部
敦雄 井上
満 石川
昭弘 田尻
長治 佐久間
信行 由利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Sanden Holdings Corp
Original Assignee
Honda Motor Co Ltd
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Sanden Corp filed Critical Honda Motor Co Ltd
Priority to JP25722693A priority Critical patent/JP3563094B2/en
Priority to US08/323,221 priority patent/US5598887A/en
Publication of JPH07108824A publication Critical patent/JPH07108824A/en
Application granted granted Critical
Publication of JP3563094B2 publication Critical patent/JP3563094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、車室内の冷・暖房を行う車両用空気調和装置、特に電気自動車等に有用な空気調和装置に関するものである。
【0002】
【従来の技術】
内燃機関等の熱源を有しない電気自動車等の車両には一般にヒートポンプ式の空気調和装置が用いられている。この空気調和装置は主に圧縮機,四方弁,室外熱交換器,2つの膨張手段及び室内熱交換器とから構成されており、四方弁による冷媒サイクルの切り換えで室内熱交換器を吸熱器または放熱器として使用し車室内の冷房と暖房を行っている。
【0003】
【発明が解決しようとする課題】
上記従来の空気調和装置では基本的に冷房モードと暖房モードでの運転しか行えないため、降雨,降雪時等の多湿下で暖房を行うと車室内の窓ガラスに曇りを生じ易く、また冷房から暖房に切り換えた際に室内熱交換器に付着していた結露水が蒸発して上記同様の曇りを生じる難点がある。また、除湿のみを行おうとしても吹出温度の低下が避けられず快適性を大きく損なう難点がある。
【0004】
本発明は上記事情に鑑みてなされたもので、暖房時に車室内の窓ガラスに曇りを生じることがなく、しかも吹出温度を低下させることなく除湿運転が行える車両用空気調和装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明では、圧縮機,室外熱交換器,第1の室内熱交換器,第1の膨張手段及び第2の膨張手段を備え、四方弁等による冷媒サイクルの切り換えで車室内の冷房と暖房を行うヒートポンプ式の車両用空気調和装置に、少なくとも暖房時に放熱器として使用される第2の室内熱交換器を設けると共に、第2の室内熱交換器を通過した冷媒を第2の膨張手段を通じて室外熱交換器に導く管路と、第2の室内熱交換器を通過した冷媒を第1の膨張手段を通じて第1の室内熱交換器に導く管路とを設けている。
【0006】
【作用】
本発明に係る車両用空気調和装置では、暖房時に第2の室内熱交換器を放熱器として使用する一方、該第2の室内熱交換器を通過した冷媒の全部または一部を第1の膨張手段を通じて第1の室内熱交換器に導くことができる。つまり、第2の室内熱交換器で放熱作用を、且つ第1の室内熱交換器で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことができる。
【0007】
【実施例】
図1及び図2には本発明の第1実施例を示してある。同図において、1は能力可変型の電動圧縮機、2は電磁式の四方弁、3は室外熱交換器、4は第1の室内熱交換器、5は第2の室内熱交換器、6は感熱式の第1の膨張弁、7は感熱式の第2の膨張弁、8は受液器、9はアキュムレータ、10〜13は逆止弁、14〜17は電磁式の開閉弁、Aは車室内空調用のダクト、Fは電動ファン、D1〜D4は電動ダンパであり、第1,第2の室内熱交換器4,5はダクトA内に配置されている。ここで、逆止弁10は特許請求の範囲の請求項3に記載された第1の制御弁に相当し、逆止弁11は特許請求の範囲の請求項3に記載された第3の制御弁に相当し、逆止弁12は特許請求の範囲の請求項3に記載された第2の制御弁に相当する。また、開閉弁14は特許請求の範囲の請求項7に記載された第2室内熱交換器用制御弁に相当し、開閉弁15は特許請求の範囲の請求項6に記載された第2膨張弁用制御弁に相当し、開閉弁16は特許請求の範囲の請求項5に記載された第1膨張弁用制御弁に相当し、開閉弁17は特許請求の範囲の請求項8に記載された室外熱交換器用制御弁に相当する。
【0008】
圧縮機1の吐出口は管路18を介して四方弁2の第1ポート2aに接続され、該四方弁2の第2ポート2bは開閉弁17を介装した管路19を介して室外熱交換器3の一端に接続されている。また、室外熱交換器3の他端は第2の膨張弁7,開閉弁15,16及び第1の膨張弁6を介装した管路20を介して第1の室内熱交換器4の入口に接続され、該第1の室内熱交換器4の出口は管路21を介してアキュムレータ9の入口に接続されている。更に、管路21の途中から分岐した管路22は四方弁2の第3ポート2cに接続され、アキュムレータ9の出口は管路23を介して圧縮機1の吸入口に接続されている。
【0009】
管路20の室外熱交換器3の他端と第2の膨張弁7との間には逆止弁10,13を対向して介装した管路24の一端が接続され、該管路24の他端は第2の室内熱交換器5の出口に接続されている。受液器8の入口は管路24の逆止弁10と13の間に、また出口は管路20の開閉弁15と16の間に夫々接続されている。また、第2の室内熱交換器5の入口には開閉弁14を介装した管路25の一端が接続され、該管路25の他端は逆方向の逆止弁11,12を夫々介装した2つの管路25a,25bに分岐され、一方の管路25aは管路19の途中に、他方の管路25bは四方弁2の第4ポート2dに夫々接続されている。尚、第2の室内熱交換器5における冷媒流れ方向は管路25a,25bの逆止弁11,12によって制御できるため、管路24側の逆止弁13は必ずしも必要なものではない。また、開閉弁14の介装位置は第2の室内熱交換器5の出口側であってもよい。
【0010】
ダクトAのダンパD1,D2は吹出口A1,A2の選択を行うためのもので、各吹出口A1,A2の内側に回動自在に配置されている。ダンパD3は第2の室内熱交換器5への通風量を調整するためのもので、該室内熱交換器5の上流側に回動自在に配置されている。ダンパD4は吸気口A3,A4(室内空気と室外空気)の選択を行うためのもので、両吸気口A3,A4の内側に回動自在に配置されている。
【0011】
この空気調和装置は四方弁2及び開閉弁14〜17による冷媒サイクルの切り換えで、冷房・除霜モード,ドライ・除霜モード,除湿・暖房モード(パラレル),除湿・暖房モード(シングル)及び暖房モードの5つのモードでの運転が可能である。以下に各モードにおける冷媒サイクル及び機能に説明する。
【0012】
冷房・除霜モードの運転は、四方弁2を図1の実線位置に切り換え、開閉弁14,15を閉じ開閉弁16,17を開いた状態で、圧縮機1を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒は室外熱交換器3に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この冷房・除霜モードの冷媒サイクルでは、第1の室内熱交換器4で吸熱作用を発揮させて車室内の冷房を行うことができる。また、室外熱交換器3で生じる放熱作用を利用して該熱交換器3の急速除霜を行うことができる。
【0013】
ドライ・除霜モードの運転は、四方弁2を図1の実線位置に切り換え、開閉弁15を閉じ開閉弁14,16,17を開けた状態で、圧縮機1を作動させることによって行われる。同図に破線矢印で示すように、圧縮機1から吐出した冷媒の一部分は室外熱交換器3に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。冷媒の残り部分は第2の室内熱交換器5に流れ込んで凝縮され、受液器8の手前で上記の冷媒と合流する。つまり、このドライ・除霜モードの冷媒サイクルでは、第1の室内熱交換器4で吸熱作用を、且つ第2の室内熱交換器5で放熱作用を夫々発揮させて吹出温度を低下させることなく車室内の除湿を行うことができる。ちなみに、ドライ時における温度及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。また、室外熱交換器3で生じる放熱作用を利用して該室外熱交換器3の除霜を行うことができ、しかも該除霜時における吹出温度の低下も防止できる。
【0014】
除湿・暖房モード(パラレル)の運転は、四方弁2を図2の線位置に切り換え、開閉弁14,15,16,17を開けた状態で、圧縮機1を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒は第2の室内熱交換器5に流れ込んで凝縮され、受液器8を通過した後に分流され、冷媒の一部分は第2の膨張弁7及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。冷媒の残り部分は第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9の手前で上記の冷媒と合流する。つまり、この除湿・暖房モード(パラレル)の冷媒サイクルでは、室外熱交換器3で吸熱作用を発揮させ、さらに第2の室内熱交換器5で放熱作用を、且つ第1の室内熱交換器4で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。
【0015】
除湿・暖房モード(シングル)の運転は、四方弁2を図2の線位置に切り換え、開閉弁15,17を閉じ開閉弁14,16を開けた状態で、圧縮機1を作動させることによって行われる。同図に一点鎖線矢印で示すように、圧縮機1から吐出した冷媒は第2の室内熱交換器5に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この除湿・暖房モード(シングル)の冷媒サイクルでは、第2の室内熱交換器5で放熱作用を、且つ第1の室内熱交換器4で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。
【0016】
暖房モードの運転は、四方弁2を図2の線位置に切り換え、開閉弁16を閉じ開閉弁14,15,17を開けた状態で、圧縮機1を作動させることによって行われる。同図に破線矢印で示すように、圧縮機1から吐出した冷媒は第2の室内熱交換器5に流れ込んで凝縮され、受液器8を通じて第2の膨張弁7及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、暖房モードの冷媒サイクルでは、第2の室内熱交換器5で放熱作用を発揮させて車室内の暖房を行うことができる。ちなみに、同モード運転時における暖房能力は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。
【0017】
このように第1実施例の空気調和装置によれば、四方弁2及び開閉弁14〜17による冷媒サイクルの切り換えで5つのモードでの運転が可能であり、内燃機関等の熱源を有しない電気自動車等の車両において空調を好適に行える利点がある。
【0018】
また、ドライ・除霜モードの運転時には第2の室内熱交換器5で放熱作用を発揮させて吹出温度を調整できるので、ドライまたは除霜最中に車室内に冷風が吹き出されることがない。
【0019】
更に、2つの除湿・暖房モードの運転時には除湿しながら車室内の暖房を行うことができるので、降雨,降雪時等の多湿下であっても窓ガラスに曇りを生じることなく、また冷房から暖房に切り換えた際における曇り発生を防止して快適な暖房を実現できる。
【0020】
更にまた、除湿・暖房モード(パラレル)の運転時には室外熱交換器3と第1の室内熱交換器4の両方で吸熱作用を発揮させているので、寒冷地等で暖房運転を行う場合における室外熱交換器3の着霜を抑制して暖房能力の低下を防止することができる。
【0021】
尚、第1実施例に示した空気調和装置は、全ての開閉弁14〜17を除外した回路構成でも、四方弁2による冷媒サイクルの切り換えで、第1実施例同様のドライ・除霜モードと除湿・暖房モード(パラレル)の2つのモードでの運転が可能である。ドライ・除霜モードでは第2の室内熱交換器5への通風量をダンパD3で調整することにより冷房運転とドライ運転を選択でき、除霜時における吹出温度の低下も防止できる。また、開閉弁17をオン・オフ制御することで室外熱交換器3と第2の室内熱交換器5への冷媒流量を調整することもできる。
【0022】
また、開閉弁14,15,17を除外し開閉弁16のみを残した回路構成とすれば、四方弁2と開閉弁16による冷媒サイクルの切り換えで、上記の2モードに第1実施例同様の暖房モードを加えた3つのモードでの運転が可能となる。
【0023】
更に、開閉弁14,16,17を除外し開閉弁15のみを残した回路構成とすれば、四方弁2と開閉弁15による冷媒サイクルの切り換えで、上記の2モードに第1実施例同様の除湿・暖房モード(シングル)を加えた3つのモードでの運転が可能となる。
【0024】
更にまた、開閉弁15,16,17を除外し開閉弁14のみを残した回路構成とすれば、四方弁2と開閉弁14による冷媒サイクルの切り換えで、上記の2モードに第1実施例同様の冷房・除霜モードを加えた3つのモードでの運転が可能となる。
【0025】
更にまた、開閉弁14,15,16を除外し開閉弁17のみを残した回路構成とすれば、四方弁2と開閉弁17による冷媒サイクルの切り換えで、上記のドライ・除霜モードに第1実施例同様の除湿・暖房モード(シングル)を加えた2つのモードでの運転が可能となる。
【0026】
この他にも、開閉弁14〜17のうち2つまたは3つを適宜組み合わせることにより、第1実施例の空気調和装置で得られる5つの運転モードから必要モードのみを選択し設定することができる。
【0027】
図3及び図4には本発明の第2実施例を示してある。本第2実施例は第1実施例の空気調和装置を簡略化したもので、第1実施例とは、管路20から開閉弁15,16を除外した点と、第1,第2の膨張弁として開度及び閉動作を遠隔操作可能な電子式のもの(6′,7′)を用いた点で異なる。両膨張弁6′,7′における開度は感熱式のものと同様に熱交換器からの冷媒吐出温度等に基づいてコントロールされる。また、図3及び図4で示されている、逆止弁10は特許請求の範囲の請求項3に記載された第1の制御弁に相当し、逆止弁11は特許請求の範囲の請求項3に記載された第3の制御弁に相当し、逆止弁12は特許請求の範囲の請求項3に記載された第2の制御弁に相当する。また、開閉弁14は特許請求の範囲の請求項7に記載された第2室内熱交換器用制御弁に相当し、開閉弁17は特許請求の範囲の請求項8に記載された室外熱交換器用制御弁に相当する。尚、第1実施例と同様、管路24側の逆止弁13は必ずしも必要なものではなく、また開閉弁14の介装位置は第2の室内熱交換器5の出口側であってもよい。他の構成は第1実施例と同じであるため同一符号を用いその説明を省略する。
【0028】
この空気調和装置は四方弁2と第1,第2の膨張弁6′,7′と開閉弁14,17による冷媒サイクルの切り換えで、冷房・除霜モード,ドライ・除霜モード,除湿・暖房モード(パラレル),除湿・暖房モード(シングル)及び暖房モードの5つのモードでの運転が可能である。以下に各モードにおける冷媒サイクル及び機能を説明する。
【0029】
冷房・除霜モードの運転は、四方弁2を図3の実線位置に切り換え、第2の膨張弁7′及び開閉弁14を閉じ開閉弁17を開いた状態で、圧縮機1を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒は室外熱交換器3に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6′及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この冷房・除霜モードの冷媒サイクルでは、第1の室内熱交換器4で吸熱作用を発揮させて車室内の冷房を行うことができる。また、室外熱交換器3で生じる放熱作用を利用して該熱交換器3の急速除霜を行うことができる。
【0030】
ドライ・除霜モードの運転は、四方弁2を図3の実線位置に切り換え、第2の膨張弁7′を閉じ開閉弁14,17を開いた状態で、圧縮機1を作動させることによって行われる。同図に破線矢印で示すように、圧縮機1から吐出した冷媒の一部分は室外熱交換器3に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6′及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。冷媒の残り部分は第2の室内熱交換器5に流れ込んで凝縮され、受液器8の手前で上記の冷媒と合流する。つまり、このドライ・除霜モードの冷媒サイクルでは、第1の室内熱交換器4で吸熱作用を、且つ第2の室内熱交換器5で放熱作用を夫々発揮させて吹出温度を低下させることなく車室内の除湿を行うことができる。ちなみに、ドライ時における温度及び除湿量は圧縮機の吐出能力調整及びダンパD3の開度によってコントロール可能である。また、室外熱交換器3で生じる放熱作用を利用して該室外熱交換器3の除霜を行うことができ、しかも該除霜時における吹出温度の低下も防止できる。
【0031】
除湿・暖房モード(パラレル)の運転は、四方弁2を図4の線位置に切り換え、開閉弁14,17を開いた状態で、圧縮機1を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒は第2の室内熱交換器5に流れ込んで凝縮され、受液器8を通過した後に分流され、冷媒の一部分は第2の膨張弁7′及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。冷媒の残り部分は第1の膨張弁6′及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9の手前で上記の冷媒と合流する。つまり、この除湿・暖房モード(パラレル)の冷媒サイクルでは、室外熱交換器3で吸熱作用を発揮させ、さらに第2の室内熱交換器5で放熱作用を、且つ第1の室内熱交換器4で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。
【0032】
除湿・暖房モード(シングル)の運転は、四方弁2を図4の線位置に切り換え、第2の膨張弁7′及び開閉弁17を閉じ開閉弁14を開いた状態で、圧縮機1を作動させることによって行われる。同図に一点鎖線矢印で示すように、圧縮機1から吐出した冷媒は第2の室内熱交換器5に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6′及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この除湿・暖房モード(シングル)の冷媒サイクルでは、第2の室内熱交換器5で放熱作用を、且つ第1の室内熱交換器4で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。
【0033】
暖房モードの運転は、四方弁2を図4の線位置に切り換え、第1の膨張弁6′を閉じ開閉弁14,17を開いた状態で、圧縮機1を作動させることによって行われる。同図に破線矢印で示すように、圧縮機1から吐出した冷媒は第2の室内熱交換器5に流れ込んで凝縮され、受液器8を通じて第2の膨張弁7′及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この暖房モードの冷媒サイクルでは、第2の室内熱交換器5で放熱作用を発揮させて車室内の暖房を行うことができる。ちなみに、同モード運転時における暖房能力は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。
【0034】
このように第2実施例の空気調和装置によれば、四方弁2と第1,第2の膨張弁6′,7′と開閉弁14,17による冷媒サイクルの切り換えで5つのモードでの運転が可能であり、内燃機関等の熱源を有しない電気自動車等の車両において空調を好適に行える利点がある。また、第1実施例の空気調和装置における開閉弁15,16の役割を両膨張弁6′,7′で代用して回路構成を簡略化することができる。他の効果は第1実施例と同様である。
【0035】
尚、第2実施例に示した空気調和装置は、全ての開閉弁14,17を除外した回路構成でも、四方弁2及び第1,第2の膨張弁6′,7′による冷媒サイクルの切り換えで、第2実施例同様のドライ・除霜モードと除湿・暖房モード(パラレル)と除湿・暖房モード(シングル)と暖房モードの4つのモードでの運転が可能である。ドライ・除霜モードでは第2の室内熱交換器5への通風量をダンパD3で調整することにより冷房運転とドライ運転を選択でき、除霜時における吹出温度の低下も防止できる。また、開閉弁17をオン・オフ制御することで室外熱交換器3と第2の室内熱交換器5への冷媒流量を調整することもできる。
【0036】
また、開閉弁17を除外し開閉弁14のみを残した回路構成とすれば、四方弁2と第1,第2の膨張弁6′,7′と開閉弁14による冷媒サイクルの切り換えで、第2実施例同様の5つのモードでの運転が可能となる。
【0037】
更に、開閉弁14を除外し開閉弁17のみを残した回路構成とすれば、四方弁2と第1,第2の膨張弁6′,7′と開閉弁17による冷媒サイクルの切り換えで、第2実施例同様のドライ・除霜モードと除湿・暖房モード(パラレル)と除湿・暖房モード(シングル)と暖房モードの4つのモードでの運転が可能である。
【0038】
図5及び図6には本発明の第3実施例を示してある。本第3実施例は第1実施例の空気調和装置を簡略化したもので、第1実施例とは、管路19から開閉弁17を除外した点と、逆止弁11,12及び管路25a,25bを除外した点と、管路25から開閉弁14を除外し該管路25を四方弁2の第4ポート2dに接続した点で異なる。また、図5及び図6で示されている、逆止弁10は特許請求の範囲の請求項9に記載された第1の制御弁に相当し、逆止弁13は特許請求の範囲の請求項9に記載された第2の制御弁に相当する。また、開閉弁15は特許請求の範囲の請求項9に記載された第2膨張弁用制御弁に相当し、開閉弁16は特許請求の範囲の請求項11に記載された第1膨張弁用制御弁に相当する。尚、第2の室内熱交換器5における冷媒流れ方向を制御する逆止弁13は管路25側に介装されていてもよい。他の構成は第1実施例と同じであるため同一符号を用いその説明を省略する。
【0039】
この空気調和装置は四方弁2及び開閉弁15,16による冷媒サイクルの切り換えで、冷房・除霜モード,除湿・暖房モード(パラレル),除湿・暖房モード(シングル)及び暖房モードの4つのモードでの運転が可能である。以下に各モードにおける冷媒サイクル及び機能を説明する。
【0040】
冷房・除霜モードの運転は、四方弁2を図5の実線位置に切り換え、開閉弁15を閉じ開閉弁16を開いた状態で、圧縮機1を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒は室外熱交換器3に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この冷房・除霜モードの冷媒サイクルでは、第1の室内熱交換器4で吸熱作用を発揮させて車室内の冷房を行うことができる。また、室外熱交換器3で生じる放熱作用を利用して該熱交換器3の急速除霜を行うことができる。
【0041】
除湿・暖房モード(パラレル)の運転は、四方弁2を図6の線位置に切り換え、開閉弁15,16を開けた状態で、圧縮機1を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒は第2の室内熱交換器5に流れ込んで凝縮され、受液器8を通過した後に分流され、冷媒の一部分は第2の膨張弁7及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。冷媒の残り部分は第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9の手前で上記の冷媒と合流する。つまり、この除湿・暖房モード(パラレル)の冷媒サイクルでは、室外熱交換器3で吸熱作用を発揮させ、さらに第2の室内熱交換器5で放熱作用を、且つ第1の室内熱交換器4で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。
【0042】
除湿・暖房モード(シングル)の運転は、四方弁2を図6の線位置に切り換え、開閉弁15を閉じ開閉弁16を開けた状態で、圧縮機1を作動させることによって行われる。同図に一点鎖線矢印で示すように、圧縮機1から吐出した冷媒は第2の室内熱交換器5に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この除湿・暖房モード(シングル)の冷媒サイクルでは、第2の室内熱交換器5で放熱作用を、且つ第1の室内熱交換器4で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。
【0043】
暖房モードの運転は、四方弁2を図6の線位置に切り換え、開閉弁16を閉じ開閉弁15を開けた状態で、圧縮機1を作動させることによって行われる。同図に破線矢印で示すように、圧縮機1から吐出した冷媒は第2の室内熱交換器5に流れ込んで凝縮され、受液器8を通じて第2の膨張弁7及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この暖房モードの冷媒サイクルでは、第2の室内熱交換器5で放熱作用を発揮させて車室内の暖房を行うことができる。ちなみに、同モード運転時における暖房能力は圧縮機1の吐出能力調整及びダンパD3の開度によってコントロール可能である。
【0044】
このように第3実施例の空気調和装置によれば、四方弁2及び開閉弁15,16による冷媒サイクルの切り換えで4つのモードでの運転があり、内燃機関等の熱源を有しない電気自動車等の車両において空調を好適に行える利点がある。他の効果は第1実施例と同様である。
【0045】
尚、第3実施例に示した空気調和装置は、全ての開閉弁15,16を除外した回路構成でも、四方弁2による冷媒サイクルの切り換えで、第3実施例同様の冷房・除霜モードと除湿・暖房モード(パラレル)の2つのモードでの運転が可能である。
【0046】
また、開閉弁15を除外し開閉弁16のみを残した回路構成とすれば、四方弁2と開閉弁16による冷媒サイクルの切り換えで、上記の2モードに第3実施例同様の暖房モードを加えた3つのモードでの運転が可能となる。
【0047】
更に、開閉弁16を除外し開閉弁15のみを残した回路構成とすれば、四方弁2と開閉弁15による冷媒サイクルの切り換えで、上記の2モードに第1実施例同様の除湿・暖房モード(シングル)を加えた3つのモードでの運転が可能となる。
【0048】
図7及び図8には本発明の第4実施例を示してある。本第4実施例は第1実施例の空気調和装置にブライン・冷媒熱交換器を利用したもので、第1実施例とは、管路24,25を第2の室内熱交換器5から離し両者間にブライン・冷媒熱交換器(以下単にブライン熱交換器と言う)26の冷媒路を接続した点と、ブライン熱交換器26のブライン路一端を電動ポンプ27を介装した管路28を介して第2の室内熱交換器5の一端に接続した点と、ブライン熱交換器26のブライン路他端を管路29を介して第2の室内熱交換器5の他端に接続した点で異なる。また、図7及び図8で示されている、逆止弁10は特許請求の範囲の請求項16に記載された第1の制御弁に相当し、逆止弁11は特許請求の範囲の請求項16に記載された第3の制御弁に相当し、逆止弁12は特許請求の範囲の請求項16に記載された第2の制御弁に相当する。また、開閉弁14は特許請求の範囲の請求項20に記載されたブライン・冷媒熱交換器用制御弁に相当し、開閉弁15は特許請求の範囲の請求項19に記載された第2膨張弁用制御弁に相当し、開閉弁16は特許請求の範囲の請求項18に記載された第1膨張弁用制御弁に相当し、開閉弁17は特許請求の範囲の請求項21に記載された室外熱交換器用制御弁に相当する。尚、第1実施例と同様、管路24側の逆止弁13は必ずしも必要なものではなく、また開閉弁14の介装位置はブライン熱交換器26の冷媒路出口側であってもよい。他の構成は第1実施例と同じであるため同一符号を用いその説明を省略する。
【0049】
この空気調和装置は四方弁2及び開閉弁14〜17による冷媒サイクルの切り換えで、冷房・除霜モード,ドライ・除霜モード,除湿・暖房モード(パラレル),除湿・暖房モード(シングル)及び暖房モードの5つのモードでの運転が可能である。以下に各モードにおける冷媒サイクル及び機能を説明する。
【0050】
冷房・除霜モードの運転は、四方弁2を図7の実線位置に切り換え、開閉弁14,15を閉じ開閉弁16,17を開いた状態で、圧縮機1を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒は室外熱交換器3に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この冷房・除霜モードの冷媒サイクルでは、第1の室内熱交換器4で吸熱作用を発揮させて車室内の冷房を行うことができる。また、室外熱交換器3で生じる放熱作用を利用して該熱交換器3の急速除霜を行うことができる。
【0051】
ドライ・除霜モードの運転は、四方弁2を図7の実線位置に切り換え、開閉弁15を閉じ開閉弁14,16,17を開けた状態で、圧縮機1及びポンプ27を作動させることによって行われる。同図に破線矢印で示すように、圧縮機1から吐出した冷媒の一部分は室外熱交換器3に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。冷媒の残り部分はブライン熱交換器26に流れ込んでブラインと熱交換され、受液器8の手前で上記の冷媒と合流する。つまり、このドライ・除霜モードの冷媒サイクルでは、第1の室内熱交換器4で吸熱作用を、且つ第2の室内熱交換器5で放熱作用を夫々発揮させて吹出温度を低下させることなく車室内の除湿を行うことができる。ちなみに、ドライ時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度並びにポンプ27の能力調整等によってコントロール可能である。また、室外熱交換器3で生じる放熱作用を利用して該室外熱交換器3の除霜を行うことができ、しかも該除霜時における吹出温度の低下も防止できる。
【0052】
除湿・暖房モード(パラレル)の運転は、四方弁2を図8の線位置に切り換え、開閉弁14,15,16,17を開けた状態で、圧縮機1及びポンプ27を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒はブライン熱交換器26に流れ込んでブラインと熱交換され、受液器8を通過した後に分流され、冷媒の一部分は第2の膨張弁7及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。加熱されたブラインは、同図に実線矢印で示すようにブライン熱交換器27と第2の室内熱交換器5の間を循環する。冷媒の残り部分は第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9の手前で上記の冷媒と合流する。つまり、この除湿・暖房モード(パラレル)の冷媒サイクルでは、室外熱交換器3で吸熱作用を発揮させ、さらに第2の室内熱交換器5で放熱作用を発揮させ、且つ第1の室内熱交換器4で吸熱作用を発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度並びにポンプ27の能力調整等によってコントロール可能である。
【0053】
除湿・暖房モード(シングル)の運転は、四方弁2を図8の線位置に切り換え、開閉弁15,17を閉じ開閉弁14,16を開けた状態で、圧縮機1及びポンプ27を作動させることによって行われる。同図に一点鎖線矢印で示すように、圧縮機1から吐出した冷媒はブライン熱交換器26に流れ込んでブラインと熱交換され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。加熱されたブラインは、同図に一点鎖線矢印で示すようにブライン熱交換器26と第2の室内熱交換器5の間を循環する。つまり、この除湿・暖房モード(シングル)の冷媒サイクルでは、第2の室内熱交換器5で放熱作用を、且つ第1の室内熱交換器4で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度並びにポンプ27の能力調整等によってコントロール可能である。
【0054】
暖房モードの運転は、四方弁2を図8の線位置に切り換え、開閉弁16を閉じ開閉弁14,15,17を開けた状態で、圧縮機1及びポンプ27を作動させることによって行われる。同図に破線矢印で示すように、圧縮機1から吐出した冷媒はブライン熱交換器26に流れ込んでブラインと熱交換され、受液器8を通じて第2の膨張弁7及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。加熱されたブラインは、同図に破線矢印で示すようにブライン熱交換器26と第2の室内熱交換器5の間を循環する。つまり、この暖房モードの冷媒サイクルでは、第2の室内熱交換器5で放熱作用を発揮させて車室内の暖房を行うことができる。ちなみに、同モード運転時における暖房能力は圧縮機1の吐出能力調整及びダンパD3の開度並びにポンプ27の能力調整等によってコントロール可能である。
【0055】
このように第4実施例の空気調和装置によれば、四方弁2及び開閉弁14〜17による冷媒サイクルの切り換えで5つのモードでの運転が可能であり、内燃機関等の熱源を有しない電気自動車等の車両において空調を好適に行える利点がある。他の効果は第1実施例と同様である。
【0056】
尚、第4実施例に示した空気調和装置は、全ての開閉弁14〜17を除外した回路構成でも、四方弁2による冷媒サイクルの切り換えで、第4実施例同様のドライ・除霜モードと除湿・暖房モード(パラレル)の2つのモードでの運転が可能である。ドライ・除霜モードでは第2の室内熱交換器5への通風量をダンパD3で調整することにより冷房運転とドライ運転を選択でき、除霜時における吹出温度の低下も防止できる。また、開閉弁17をオン・オフ制御することで室外熱交換器3と第2の室内熱交換器5への冷媒流量を調整することもできる。
【0057】
また、開閉弁14,15,17を除外し開閉弁16のみを残した回路構成とすれば、四方弁2と開閉弁16による冷媒サイクルの切り換えで、上記の2モードに第4実施例同様の暖房モードを加えた3つのモードでの運転が可能となる。
【0058】
更に、開閉弁14,16,17を除外し開閉弁15のみを残した回路構成とすれば、四方弁2と開閉弁15による冷媒サイクルの切り換えで、上記の2モードに第4実施例同様の除湿・暖房モード(シングル)を加えた3つのモードでの運転が可能となる。
【0059】
更にまた、開閉弁15,16,17を除外し開閉弁14のみを残した回路構成とすれば、四方弁2と開閉弁14による冷媒サイクルの切り換えで、上記の2モードに第4実施例同様の冷房・除霜モードを加えた3つのモードでの運転が可能となる。
【0060】
更にまた、開閉弁14,15,16を除外し開閉弁17のみを残した回路構成とすれば、四方弁2と開閉弁17による冷媒サイクルの切り換えで、上記のドライ・除霜モードに第4実施例同様の除湿・暖房モード(シングル)を加えた2つのモードでの運転が可能となる。
【0061】
この他にも、開閉弁14〜17のうち2つまたは3つを適宜組み合わせることにより、第4実施例の空気調和装置で得られる5つの運転モードから必要モードのみを選択し設定することができる。
【0062】
更にまた、第1,第2の膨張弁6,7として第2実施例で例示した閉動作可能な膨張弁6′,7′を用いれば、開閉弁15,16の役割を両膨張弁6′,7′で代用して回路構成を簡略化することができる。
【0063】
図9及び図10には本発明の第5実施例を示してある。本第5実施例は第3実施例の空気調和装置にブライン・冷媒熱交換器を利用したもので、第3実施例とは、管路24,25を第2の室内熱交換器5から離し両者間にブライン熱交換器26の冷媒路を接続した点と、ブライン熱交換器26のブライン路一端を電動ポンプ27を介装した管路28を介して第2の室内熱交換器5の一端に接続した点と、ブライン熱交換器26のブライン路他端を管路29を介して第2の室内熱交換器5の他端に接続した点で異なる。また、図9及び図10で示されている、逆止弁10は特許請求の範囲の請求項22に記載された第1の制御弁に相当し、逆止弁13は特許請求の範囲の請求項22に記載された第2の制御弁に相当する。また、開閉弁15は特許請求の範囲の請求項25に記載された第2膨張弁用制御弁に相当し、開閉弁16は特許請求の範囲の請求項24に記載された第1膨張弁用制御弁に相当する。尚、第3実施例と同様、逆止弁13は管路25側に介装されていてもよい。他の構成は第3実施例と同じであるため同一符号を用いその説明を省略する。
【0064】
この空気調和装置は四方弁2及び開閉弁15,16による冷媒サイクルの切り換えで冷房・除霜モード,除湿・暖房モード(パラレル),除湿・暖房モード(シングル)及び暖房モードの4つのモードでの運転が可能である。以下に各モードにおける冷媒サイクル及び機能を説明する。
【0065】
冷房・除霜モードの運転は、四方弁2を図9の実線位置に切り換え、開閉弁15を閉じ開閉弁16を開いた状態で、圧縮機1を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒は室外熱交換器3に流れ込んで凝縮され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。つまり、この冷房・除霜モードの冷媒サイクルでは、第1の室内熱交換器4で吸熱作用を発揮させて車室内の冷房を行うことができる。また、室外熱交換器3で生じる放熱作用を利用して該熱交換器3の急速除霜を行うことができる。
【0066】
除湿・暖房モード(パラレル)の運転は、四方弁2を図10の実線位置に切り換え、開閉弁15,16を開けた状態で、圧縮機1及びポンプ27を作動させることによって行われる。同図に実線矢印で示すように、圧縮機1から吐出した冷媒はブライン熱交換器26に流れ込んでブラインと熱交換され、受液器8を通過した後に分流され、冷媒の一部分は第2の膨張弁7及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。加熱されたブラインは、同図に実線矢印で示すようにブライン熱交換器26と第2の室内熱交換器5の間を循環する。冷媒の残り部分は第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9の手前で上記の冷媒と合流する。つまり、この除湿・暖房モード(パラレル)の冷媒サイクルでは、室外熱交換器3で吸熱作用を発揮させ、さらに第2の室内熱交換器5で放熱作用を発揮させ、且つ第1の室内熱交換器4で吸熱作用を発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度並びにポンプ27の能力調整等によってコントロール可能である。
【0067】
除湿・暖房モード(シングル)の運転は、四方弁2を図10の実線位置に切り換え、開閉弁15を閉じ開閉弁16を開けた状態で、圧縮機1及びポンプ27を作動させることによって行われる。同図に一点鎖線矢印で示すように、圧縮機1から吐出した冷媒はブライン熱交換器26に流れ込んでブラインと熱交換され、受液器8を通じて第1の膨張弁6及び第1の室内熱交換器4に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。加熱されたブラインは、同図に一点鎖線矢印で示すようにブライン熱交換器26と第2の室内熱交換器5の間を循環する。つまり、この除湿・暖房モード(シングル)の冷媒サイクルでは、第2の室内熱交換器5で放熱作用を、且つ第1の室内熱交換器4で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことができる。ちなみに、同モード運転時における暖房能力及び除湿量は圧縮機1の吐出能力調整及びダンパD3の開度並びにポンプ27の能力調整等によってコントロール可能である。
【0068】
暖房モードの運転は、四方弁2を図10の実線位置に切り換え、開閉弁16を閉じ開閉弁15を開けた状態で、圧縮機1及びポンプ27を作動させることによって行われる。同図に破線矢印で示すように、圧縮機1から吐出した冷媒はブライン熱交換器26に流れ込んでブラインと熱交換され、受液器8を通じて第2の膨張弁7及び室外熱交換器3に流れ込んで蒸発し、アキュムレータ9を通じて圧縮機1に吸入される。加熱されたブラインは、同図に破線矢印で示すようにブライン熱交換器26と第2の室内熱交換器5の間を循環する。つまり、この暖房モードの冷媒サイクルでは、第2の室内熱交換器5で放熱作用を発揮させて車室内の暖房を行うことができる。ちなみに、同モード運転時における暖房能力は圧縮機1の吐出能力調整及びダンパD3の開度並びにポンプ27の能力調整等によってコントロール可能である。
【0069】
このように第5実施例の空気調和装置によれば、四方弁2及び開閉弁15,16による冷媒サイクルの切り換えで4つのモードでの運転が可能であり、内燃機関等の熱源を有しない電気自動車等の車両において空調を好適に行える利点がある。他の効果は第3実施例と同様である。
【0070】
尚、第5実施例に示した空気調和装置は、全ての開閉弁15,16を除外した回路構成でも、四方弁2による冷媒サイクルの切り換えで、第5実施例同様の冷房・除霜モードと除湿・暖房モード(パラレル)の2つのモードでの運転が可能である。
【0071】
また、開閉弁15を除外し開閉弁16のみを残した回路構成とすれば、四方弁2と開閉弁16による冷媒サイクルの切り換えで、上記の2モードに第5実施例同様の暖房モードを加えた3つのモードでの運転が可能となる。
【0072】
更に、開閉弁16を除外し開閉弁15のみを残した回路構成とすれば、四方弁2と開閉弁15による冷媒サイクルの切り換えで、上記の2モードに第5実施例同様の除湿・暖房モード(シングル)を加えた3つのモードでの運転が可能となる。
【0073】
更にまた、第1,第2の膨張弁6,7として第2実施例で例示した閉動作可能な膨張弁6′,7′を用いれば、開閉弁15,16の役割を両膨張弁6′,7′で代用して回路構成を簡略化することができる。
【0074】
図11には本発明の第6実施例を示してある。本第6実施例は第4実施例の空気調和装置にブライン加熱用の補助熱源を設けたもので、第4実施例とは、ブライン熱交換器26内に電熱ヒータ30を配置した点と、該電熱ヒータ30に電源回路31を接続した点で異なる。また、図11で示されている、逆止弁10は特許請求の範囲の請求項16に記載された第1の制御弁に相当し、逆止弁11は特許請求の範囲の請求項16に記載された第3の制御弁に相当し、逆止弁12は特許請求の範囲の請求項16に記載された第2の制御弁に相当する。また、開閉弁14は特許請求の範囲の請求項20に記載されたブライン・冷媒熱交換器用制御弁に相当し、開閉弁15は特許請求の範囲の請求項19に記載された第2膨張弁用制御弁に相当し、開閉弁16は特許請求の範囲の請求項18に記載された第1 膨張弁用制御弁に相当し、開閉弁17は特許請求の範囲の請求項21に記載された室外熱交換器用制御弁に相当する。
【0075】
この空気調和装置では、2つの除湿・暖房モード及び暖房モードの運転時にブラインを電熱ヒータ30の熱で補助的に加熱し、第2の室内熱交換器5における放熱能力を向上させることができる。また、冷房・除霜モードで室外熱交換器3の除霜を行う際に電熱ヒータ30で加熱されたブラインを第2の室内熱交換器5に循環させれば、該熱交換器5で放熱作用を発揮させて吹出温度を調整できるので室外熱交換器3の除霜最中に車室内に冷風が吹き出されることがない。更に、外気温度が低くヒートポンプが正常に作動しない場合、或いは圧縮機1の作動が強制的に停止された場合でも、電熱ヒータ30で加熱されたブラインを第2の室内熱交換器5に循環させ該熱交換器5で放熱作用を発揮させることで車室内の暖房を行える利点がある。他の作用,効果は第4実施例と同様である。
【0076】
図12には本発明の第7実施例を示してある。本第7実施例は第4実施例の空気調和装置にブライン加熱用の補助熱源を設けたもので、第4実施例とは、ブラインが流れる一方の管路28に空気・ブライン熱交換器(以下単に空気熱交換器と言う)32を介装した点と、該空気熱交換器32に灯油等の液体燃料で燃焼するバーナ33を連設した点で異なる。また、図12で示されている、逆止弁10は特許請求の範囲の請求項16に記載された第1の制御弁に相当し、逆止弁11は特許請求の範囲の請求項16に記載された第3の制御弁に相当し、逆止弁12は特許請求の範囲の請求項16に記載された第2の制御弁に相当する。また、開閉弁14は特許請求の範囲の請求項20に記載されたブライン・冷媒熱交換器用制御弁に相当し、開閉弁15は特許請求の範囲の請求項19に記載された第1膨張弁用制御弁に相当し、開閉弁16は特許請求の範囲の請求項18に記載された第2膨張弁用制御弁に相当し、開閉弁17は特許請求の範囲の請求項21に記載された室外熱交換器用制御弁に相当する。
【0077】
この空気調和装置では、2つの除湿・暖房モード及び暖房モードの運転時にブラインをバーナ33の熱で補助的に加熱し、第2の室内熱交換器5における放熱能力を向上させることができる。また、冷房・除霜モードで室外熱交換器3の除霜を行う際にバーナ33で加熱されたブラインを第2の室内熱交換器5に循環させれば、該熱交換器5で放熱作用を発揮させて吹出温度を調整できるので室外熱交換器3の除霜最中に車室内に冷風が吹き出されることがない。更に、外気温度が低くヒートポンプが正常に作動しない場合、或いは圧縮機1の作動が強制的に停止された場合でも、バーナ33で加熱されたブラインを第2の室内熱交換器5に循環させ該熱交換器5で放熱作用を発揮させることで車室内の暖房を行える利点がある。他の作用,効果は第4実施例と同様である。
【0078】
図13には本発明の第8実施例を示してある。本第8実施例は第5実施例の空気調和装置にブライン加熱用の補助熱源を設けたもので、第5実施例とは、ブライン熱交換器26内に電熱ヒータ30を配置した点と、該電熱ヒータ30に電源回路31を接続した点で異なる。また、図13で示されている、逆止弁10は特許請求の範囲の請求項22に記載された第1の制御弁に相当し、逆止弁13は特許請求の範囲の請求項22に記載された第2の制御弁に相当する。また、開閉弁15は特許請求の範囲の請求項25に記載された第2膨張弁用制御弁に相当し、開閉弁16は特許請求の範囲の請求項24に記載された第1膨張弁用制御弁に相当する。
【0079】
この空気調和装置では、2つの除湿・暖房モード及び暖房モードの運転時にブラインを電熱ヒータ30の熱で補助的に加熱し、第2の室内熱交換器5における放熱能力を向上させることができる。また、冷房・除霜モードで室外熱交換器3の除霜を行う際に電熱ヒータ30で加熱されたブラインを第2の室内熱交換器5に循環させれば、該熱交換器5で放熱作用を発揮させて吹出温度を調整できるので室外熱交換器3の除霜最中に車室内に冷風が吹き出されることがない。更に、外気温度が低くヒートポンプが正常に作動しない場合、或いは圧縮機1の作動が強制的に停止された場合でも、電熱ヒータ30で加熱されたブラインを第2の室内熱交換器5に循環させ該熱交換器5で放熱作用を発揮させることで車室内の暖房を行える利点がある。他の作用,効果は第5実施例と同様である。
【0080】
図14には本発明の第9実施例を示してある。本第9実施例は第5実施例の空気調和装置にブライン加熱用の補助熱源を設けたもので、第5実施例とは、ブラインが流れる一方の管路28に空気熱交換器32を介装した点と、該空気熱交換器32に灯油等の液体燃料で燃焼するバーナ33を連設した点で異なる。また、図14で示されている、逆止弁10は特許請求の範囲の請求項22に記載された第1の制御弁に相当し、逆止弁13は特許請求の範囲の請求項22に記載された第2の制御弁に相当する。また、開閉弁15は特許請求の範囲の請求項25に記載された第2膨張弁用制御弁に相当し、開閉弁16は特許請求の範囲の請求項24に記載された第1膨張弁用制御弁に相当する。
【0081】
この空気調和装置では、2つの除湿・暖房モード及び暖房モードの運転時にブラインをバーナ33の熱で補助的に加熱し、第2の室内熱交換器5における放熱能力を向上させることができる。また、冷房・除霜モードで室外熱交換器3の除霜を行う際にバーナ33で加熱されたブラインを第2の室内熱交換器5に循環させれば、該熱交換器5で放熱作用を発揮させて吹出温度を調整できるので室外熱交換器3の除霜最中に車室内に冷風が吹き出されることがない。更に、外気温度が低くヒートポンプが正常に作動しない場合、或いは圧縮機1の作動が強制的に停止された場合でも、バーナ33で加熱されたブラインを第2の室内熱交換器5に循環させ該熱交換器5で放熱作用を発揮させることで車室内の暖房を行える利点がある。他の作用,効果は第5実施例と同様である。
【0082】
尚、第6乃至第9実施例ではブライン熱交換器26を備えた実施例4または6の空気調和装置に補助熱源を組み込んだ例を示したが、同補助熱源は冷媒加熱用として実施例1乃至3の空気調和装置に用いることもできる。即ち、暖房時に第2の室内熱交換器5に流入する冷媒を上記同様の補助熱源で加熱するようにすれば該第2の室内熱交換器における放熱能力を向上させることが可能であり、また暖房時に室外熱交換器3から流出する冷媒を補助熱源で加熱するようにすれば該室外熱交換器3における吸熱量不足を補うことができる。
【0083】
上述した第1〜第9実施例では開閉弁14〜17として何れもオン・オフ式のものを例示したが、これら開閉弁14〜17は流量制御可能なものであってもよく、この場合には各弁における流量制御により室外熱交換器3及び第1,第2の室内熱交換器4,5の放熱,吸熱量を夫々コントロールすることができる。また、冷媒の流れ方向を制御する逆止弁11〜13はオン・オフ式の開閉弁や流量制御弁等で代用してもよい。
【0084】
【発明の効果】
以上詳述したように、本発明に係る車両用空調装置によれば、第2の室内熱交換器を通過した冷媒の全部または一部を第1の膨張手段を通じて第1の室内熱交換器に導くことにより、第2の室内熱交換器で放熱作用を、且つ第1の室内熱交換器で吸熱作用を夫々発揮させて車室内の暖房及び除湿を同時に行うことが可能であり、降雨,降雪時等の多湿下で暖房運転を行う場合は勿論のこと、冷房から暖房に切り換えた際にも車室内の窓ガラスに曇りを生じることがなく、しかも吹出温度を低下させることなく除湿運転を行うことができ、快適な空調を実現することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す車両用空気調和装置の冷媒回路図
【図2】同冷媒回路図
【図3】本発明の第2実施例を示す車両用空気調和装置の冷媒回路図
【図4】同冷媒回路図
【図5】本発明の第3実施例を示す車両用空気調和装置の冷媒回路図
【図6】同冷媒回路図
【図7】本発明の第4実施例を示す車両用空気調和装置の冷媒回路図
【図8】同冷媒回路図
【図9】本発明の第5実施例を示す車両用空気調和装置の冷媒回路図
【図10】同冷媒回路図
【図11】本発明の第6実施例を示す車両用空気調和装置の冷媒回路図
【図12】本発明の第7実施例を示す車両用空気調和装置の冷媒回路図
【図13】本発明の第8実施例を示す車両用空気調和装置の冷媒回路図
【図14】本発明の第9実施例を示す車両用空気調和装置の冷媒回路図
【符号の説明】
1…圧縮機、2…四方弁、3…室外熱交換器、4…第1の室内熱交換器、5…第2の室内熱交換器、6,6′…第1の膨張弁、7,7′…第2の膨張弁、8…受液器、9…アキュムレータ、10〜13…逆止弁、14〜17…開閉弁、18〜25,25a,25b,28,29…管路、26…ブライン・冷媒熱交換器、27…ポンプ、30…電熱ヒータ、33…バーナ。
[0001]
[Industrial applications]
The present invention relates to an air conditioner for a vehicle that cools and heats a passenger compartment, and more particularly to an air conditioner useful for an electric vehicle and the like.
[0002]
[Prior art]
BACKGROUND ART Generally, a heat pump type air conditioner is used for a vehicle such as an electric vehicle having no heat source such as an internal combustion engine. This air conditioner is mainly composed of a compressor, a four-way valve, an outdoor heat exchanger, two expansion means, and an indoor heat exchanger. The refrigerant cycle is switched by the four-way valve to convert the indoor heat exchanger into a heat absorber or an indoor heat exchanger. It is used as a radiator to cool and heat the cabin.
[0003]
[Problems to be solved by the invention]
In the above-mentioned conventional air conditioner, basically only operation in the cooling mode and the heating mode can be performed. Therefore, when heating is performed under humid conditions such as rainfall and snowfall, the window glass in the vehicle compartment is liable to be fogged. When switching to heating, there is a problem that the condensed water adhering to the indoor heat exchanger evaporates and fogging similar to the above occurs. Further, even if only dehumidification is performed, there is a disadvantage that a decrease in the blowing temperature is unavoidable and the comfort is greatly impaired.
[0004]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an air conditioner for a vehicle that can perform a dehumidifying operation without causing fogging of a window glass in a vehicle compartment during heating and without reducing a blowing temperature. is there.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a compressor, an outdoor heat exchanger, a first indoor heat exchanger, a first expansion means and a second expansion means are provided, and a refrigerant cycle is switched by a four-way valve or the like. A heat pump type air conditioner for a vehicle that cools and heats a vehicle interior is provided with a second indoor heat exchanger that is used as a radiator at least during heating, and a refrigerant that has passed through the second indoor heat exchanger is provided. A pipe is provided for guiding the refrigerant passing through the second indoor heat exchanger to the outdoor heat exchanger through the second expansion means, and a pipe is provided for guiding the refrigerant having passed through the second indoor heat exchanger to the first indoor heat exchanger through the first expansion means. .
[0006]
[Action]
In the air conditioner for a vehicle according to the present invention, while the second indoor heat exchanger is used as a radiator during heating, all or a part of the refrigerant that has passed through the second indoor heat exchanger is subjected to the first expansion. It can be led to the first indoor heat exchanger through the means. That is, the second indoor heat exchanger exerts a heat radiation effect, and the first indoor heat exchanger exerts a heat absorption effect, thereby simultaneously heating and dehumidifying the vehicle interior.
[0007]
【Example】
1 and 2 show a first embodiment of the present invention. In the figure, 1 is a variable capacity electric compressor, 2 is an electromagnetic four-way valve, 3 is an outdoor heat exchanger, 4 is a first indoor heat exchanger, 5 is a second indoor heat exchanger, 6 Is a heat-sensitive first expansion valve, 7 is a heat-sensitive second expansion valve, 8 is a liquid receiver, 9 is an accumulator, 10 to 13 are check valves, 14 to 17 are electromagnetic on-off valves, A Is a duct for air conditioning in the vehicle interior, F is an electric fan, D1 to D4 are electric dampers, and the first and second indoor heat exchangers 4 and 5 are arranged in the duct A.Here, the check valve 10 corresponds to a first control valve described in claim 3 of the present invention, and the check valve 11 corresponds to a third control valve described in claim 3 of the present invention. The check valve 12 corresponds to a second control valve according to a third aspect of the present invention. The on-off valve 14 corresponds to the control valve for the second indoor heat exchanger described in claim 7 of the present invention, and the on-off valve 15 corresponds to the second expansion valve described in claim 6 of the present invention. The on-off valve 16 corresponds to a first expansion valve control valve described in claim 5 of the present invention, and the on-off valve 17 corresponds to claim 8 of the present invention. It corresponds to a control valve for an outdoor heat exchanger.
[0008]
A discharge port of the compressor 1 is connected to a first port 2a of the four-way valve 2 via a pipe 18 and a second port 2b of the four-way valve 2 is connected to a outdoor heat source via a pipe 19 provided with an on-off valve 17. It is connected to one end of the exchanger 3. Further, the other end of the outdoor heat exchanger 3 is connected to the inlet of the first indoor heat exchanger 4 through a pipe line 20 in which the second expansion valve 7, on-off valves 15 and 16, and the first expansion valve 6 are interposed. , And the outlet of the first indoor heat exchanger 4 is connected to the inlet of the accumulator 9 via a pipe 21. Further, a pipe 22 branched from the middle of the pipe 21 is connected to a third port 2 c of the four-way valve 2, and an outlet of the accumulator 9 is connected to a suction port of the compressor 1 via a pipe 23.
[0009]
One end of a pipe 24 in which check valves 10 and 13 are interposed facing each other is connected between the other end of the outdoor heat exchanger 3 in the pipe 20 and the second expansion valve 7. Is connected to the outlet of the second indoor heat exchanger 5. The inlet of the receiver 8 is connected between the check valves 10 and 13 in the line 24, and the outlet is connected between the on-off valves 15 and 16 in the line 20. The inlet of the second indoor heat exchanger 5 is connected to one end of a pipe 25 provided with an on-off valve 14, and the other end of the pipe 25 is connected to check valves 11 and 12 in opposite directions. The two pipes 25a and 25b are branched, and one pipe 25a is connected to the middle of the pipe 19, and the other pipe 25b is connected to the fourth port 2d of the four-way valve 2. Since the flow direction of the refrigerant in the second indoor heat exchanger 5 can be controlled by the check valves 11 and 12 of the pipes 25a and 25b, the check valve 13 on the pipe 24 side is not always necessary. The interposition position of the on-off valve 14 may be on the outlet side of the second indoor heat exchanger 5.
[0010]
The dampers D1 and D2 of the duct A are for selecting the outlets A1 and A2, and are rotatably disposed inside the outlets A1 and A2. The damper D3 is for adjusting the amount of air flow to the second indoor heat exchanger 5, and is rotatably arranged upstream of the indoor heat exchanger 5. The damper D4 is for selecting the intake ports A3, A4 (indoor air and outdoor air), and is rotatably disposed inside the intake ports A3, A4.
[0011]
In this air conditioner, the refrigerant cycle is switched by the four-way valve 2 and the on-off valves 14 to 17, and the cooling / defrosting mode, the dry / defrosting mode, the dehumidifying / heating mode (parallel), the dehumidifying / heating mode (single), and the heating Operation in five modes is possible. The refrigerant cycle and function in each mode will be described below.
[0012]
The operation in the cooling / defrosting mode is performed by switching the four-way valve 2 to the solid line position in FIG. 1, operating the compressor 1 with the on-off valves 14 and 15 closed and the on-off valves 16 and 17 open. As shown by solid arrows in the figure, the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 and is condensed, and is condensed through the liquid receiver 8 to the first expansion valve 6 and the first indoor heat exchanger 4. It flows into and evaporates, and is sucked into the compressor 1 through the accumulator 9. In other words, in the refrigerant cycle in the cooling / defrosting mode, the first indoor heat exchanger 4 can exert a heat absorbing effect to cool the vehicle interior. Further, rapid defrosting of the heat exchanger 3 can be performed by utilizing a heat radiation effect generated in the outdoor heat exchanger 3.
[0013]
The operation in the dry / defrosting mode is performed by switching the four-way valve 2 to the solid line position in FIG. 1, operating the compressor 1 with the on-off valve 15 closed and the on-off valves 14, 16, 17 opened. As shown by the dashed arrow in the figure, a part of the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 and is condensed, and is passed through the liquid receiver 8 to the first expansion valve 6 and the first indoor heat exchanger. 4, evaporates, and is sucked into the compressor 1 through the accumulator 9. The remaining part of the refrigerant flows into the second indoor heat exchanger 5 and is condensed, and merges with the above-mentioned refrigerant before the liquid receiver 8. That is, in the refrigerant cycle in the dry / defrost mode, the first indoor heat exchanger 4 exerts a heat absorbing action and the second indoor heat exchanger 5 exerts a heat dissipation action, thereby reducing the blow-out temperature. Dehumidification of the vehicle interior can be performed. Incidentally, the temperature and the amount of dehumidification in the dry state can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3. In addition, it is possible to perform defrosting of the outdoor heat exchanger 3 by utilizing a heat radiation effect generated in the outdoor heat exchanger 3, and it is also possible to prevent a decrease in the blowing temperature at the time of the defrosting.
[0014]
In the dehumidification / heating mode (parallel) operation, the four-way valve 2BreakingThe operation is performed by switching the compressor to the line position and operating the compressor 1 with the on-off valves 14, 15, 16, 17 opened. As shown by a solid line arrow in the drawing, the refrigerant discharged from the compressor 1 flows into the second indoor heat exchanger 5, is condensed, passes through the liquid receiver 8, and is divided, and a part of the refrigerant is in the second state. It flows into the expansion valve 7 and the outdoor heat exchanger 3 and evaporates, and is sucked into the compressor 1 through the accumulator 9. The remaining portion of the refrigerant flows into the first expansion valve 6 and the first indoor heat exchanger 4 and evaporates, and merges with the above-described refrigerant before the accumulator 9. That is, in the refrigerant cycle in the dehumidifying / heating mode (parallel), the outdoor heat exchanger 3 exerts a heat absorbing effect, the second indoor heat exchanger 5 emits heat, and the first indoor heat exchanger 4 Thus, the heat absorption and dehumidification of the vehicle interior can be simultaneously performed by exerting the heat absorbing effects. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3.
[0015]
In the operation in the dehumidifying / heating mode (single), the four-way valve 2 is connected as shown in FIG.BreakingThe operation is performed by switching to the line position and operating the compressor 1 with the on-off valves 15 and 17 closed and the on-off valves 14 and 16 opened. As shown by a dashed-dotted arrow in the figure, the refrigerant discharged from the compressor 1 flows into the second indoor heat exchanger 5 and is condensed, and is passed through the liquid receiver 8 to the first expansion valve 6 and the first indoor heat exchanger. It flows into the exchanger 4, evaporates, and is sucked into the compressor 1 through the accumulator 9. In other words, in the refrigerant cycle in the dehumidification / heating mode (single), the second indoor heat exchanger 5 exerts a heat radiation effect, and the first indoor heat exchanger 4 exerts a heat absorption effect to heat and heat the vehicle interior. Dehumidification can be performed simultaneously. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3.
[0016]
In the heating mode operation, the four-way valve 2BreakingThe operation is performed by switching the compressor to the line position and operating the compressor 1 with the on-off valve 16 closed and the on-off valves 14, 15, 17 opened. As shown by the dashed arrow in the figure, the refrigerant discharged from the compressor 1 flows into the second indoor heat exchanger 5 and is condensed, and is condensed through the liquid receiver 8 to the second expansion valve 7 and the outdoor heat exchanger 3. It flows into and evaporates, and is sucked into the compressor 1 through the accumulator 9. That is, in the refrigerant cycle in the heating mode, the second indoor heat exchanger 5 can exert a heat radiation effect to heat the vehicle interior. Incidentally, the heating capacity during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3.
[0017]
As described above, according to the air-conditioning apparatus of the first embodiment, it is possible to operate in five modes by switching the refrigerant cycle by the four-way valve 2 and the on-off valves 14 to 17, and to operate electricity without a heat source such as an internal combustion engine. There is an advantage that air conditioning can be suitably performed in a vehicle such as an automobile.
[0018]
In addition, during the operation in the dry / defrost mode, the blowout temperature can be adjusted by exerting the heat radiation effect in the second indoor heat exchanger 5, so that no cool air is blown into the vehicle interior during the dry or defrosting. .
[0019]
Furthermore, during operation in the two dehumidifying / heating modes, the interior of the vehicle can be heated while dehumidifying, so that the windowpane does not become cloudy even under humid conditions such as rainfall and snowfall, and from cooling to heating. , It is possible to realize comfortable heating by preventing the occurrence of fogging when switching to.
[0020]
Furthermore, during the operation in the dehumidification / heating mode (parallel), both the outdoor heat exchanger 3 and the first indoor heat exchanger 4 exhibit the heat absorbing effect, so that the outdoor operation when performing the heating operation in a cold region or the like. It is possible to prevent frost formation on the heat exchanger 3 and prevent a decrease in the heating capacity.
[0021]
Note that the air conditioner shown in the first embodiment has the same dry / defrosting mode as the first embodiment by switching the refrigerant cycle by the four-way valve 2 even in a circuit configuration excluding all the on-off valves 14 to 17. Operation in two modes of the dehumidification / heating mode (parallel) is possible. In the dry / defrost mode, the cooling operation or the dry operation can be selected by adjusting the amount of air flow to the second indoor heat exchanger 5 with the damper D3, and a decrease in the blow-out temperature during defrost can be prevented. Further, by controlling the on / off of the on-off valve 17, the flow rate of the refrigerant to the outdoor heat exchanger 3 and the second indoor heat exchanger 5 can be adjusted.
[0022]
Further, if the circuit configuration is such that the on-off valves 14, 15, and 17 are excluded and only the on-off valve 16 is left, switching of the refrigerant cycle by the four-way valve 2 and the on-off valve 16 switches the two modes to the same as in the first embodiment. Operation in three modes including the heating mode becomes possible.
[0023]
Further, if the circuit configuration is such that the on-off valves 14, 16, 17 are excluded and only the on-off valve 15 is left, the two modes are switched to the two modes by switching the refrigerant cycle by the four-way valve 2 and the on-off valve 15, as in the first embodiment. Operation in three modes including the dehumidification / heating mode (single) is possible.
[0024]
Furthermore, if the circuit configuration is such that the on-off valves 15, 16, 17 are excluded and only the on-off valve 14 is left, the refrigerant cycle is switched by the four-way valve 2 and the on-off valve 14 to switch to the above-described two modes as in the first embodiment. Operation in three modes including the cooling / defrosting mode.
[0025]
Further, if the circuit configuration is such that the on-off valves 14, 15, 16 are excluded and only the on-off valve 17 is left, the refrigerant cycle is switched by the four-way valve 2 and the on-off valve 17, and the first dry / defrosting mode is set. The operation in two modes including the dehumidification / heating mode (single) similar to the embodiment can be performed.
[0026]
In addition, by appropriately combining two or three of the on-off valves 14 to 17, only the necessary mode can be selected and set from the five operation modes obtained in the air conditioner of the first embodiment. .
[0027]
3 and 4 show a second embodiment of the present invention. The second embodiment is a simplified version of the air conditioner of the first embodiment. The first embodiment differs from the first embodiment in that the on-off valves 15 and 16 are eliminated from the pipeline 20 and the first and second expansions. The difference is that electronic valves (6 ', 7') capable of remotely controlling the opening and closing operations are used as the valves. The degree of opening of both expansion valves 6 ', 7' is controlled based on the temperature of refrigerant discharged from the heat exchanger, as in the case of the thermal type.Further, the check valve 10 shown in FIGS. 3 and 4 corresponds to the first control valve described in claim 3 of the present invention, and the check valve 11 corresponds to the claim of the present invention. The check valve 12 corresponds to a third control valve described in claim 3, and the check valve 12 corresponds to a second control valve described in claim 3 of the claims. The on-off valve 14 corresponds to a control valve for a second indoor heat exchanger described in claim 7 of the present invention, and the on-off valve 17 corresponds to the outdoor heat exchanger described in claim 8 of the present invention. It corresponds to a control valve.As in the first embodiment, the check valve 13 on the pipe line 24 side is not always necessary, and the interposition position of the on-off valve 14 may be on the outlet side of the second indoor heat exchanger 5. Good. The other configuration is the same as that of the first embodiment, so that the same reference numerals are used and the description is omitted.
[0028]
In this air conditioner, a refrigerant cycle is switched by a four-way valve 2, first and second expansion valves 6 'and 7', and on-off valves 14 and 17 to provide a cooling / defrost mode, a dry / defrost mode, a dehumidification / heating mode. Operation in five modes of a mode (parallel), a dehumidification / heating mode (single), and a heating mode is possible. The refrigerant cycle and function in each mode will be described below.
[0029]
In the operation in the cooling / defrosting mode, the compressor 1 is operated with the four-way valve 2 switched to the solid line position in FIG. 3 and the second expansion valve 7 ′ and the on-off valve 14 closed and the on-off valve 17 opened. Done by As shown by the solid arrows in FIG. 1, the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 and is condensed, and is passed through the liquid receiver 8 to the first expansion valve 6 ′ and the first indoor heat exchanger 4. Into the compressor 1 through the accumulator 9. In other words, in the refrigerant cycle in the cooling / defrosting mode, the first indoor heat exchanger 4 can exert a heat absorbing effect to cool the vehicle interior. Further, rapid defrosting of the heat exchanger 3 can be performed by utilizing a heat radiation effect generated in the outdoor heat exchanger 3.
[0030]
The operation in the dry / defrost mode is performed by switching the four-way valve 2 to the solid line position in FIG. 3, operating the compressor 1 with the second expansion valve 7 'closed and the on-off valves 14, 17 opened. Is As shown by a dashed arrow in the figure, a part of the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 and is condensed, and is passed through the liquid receiver 8 to the first expansion valve 6 ′ and the first indoor heat exchange. It flows into the compressor 4, evaporates, and is sucked into the compressor 1 through the accumulator 9. The remaining part of the refrigerant flows into the second indoor heat exchanger 5 and is condensed, and merges with the above-mentioned refrigerant before the liquid receiver 8. That is, in the refrigerant cycle in the dry / defrost mode, the first indoor heat exchanger 4 exerts a heat absorbing action and the second indoor heat exchanger 5 exerts a heat dissipation action, thereby reducing the blow-out temperature. Dehumidification of the vehicle interior can be performed. Incidentally, the temperature and the amount of dehumidification during the drying can be controlled by adjusting the discharge capacity of the compressor and the opening of the damper D3. In addition, it is possible to perform defrosting of the outdoor heat exchanger 3 by utilizing a heat radiation effect generated in the outdoor heat exchanger 3, and it is also possible to prevent a decrease in the blowing temperature at the time of the defrosting.
[0031]
In the operation in the dehumidification / heating mode (parallel), the four-way valve 2BreakingThe operation is performed by operating the compressor 1 while switching to the line position and opening the on-off valves 14 and 17. As shown by a solid line arrow in the drawing, the refrigerant discharged from the compressor 1 flows into the second indoor heat exchanger 5, is condensed, passes through the liquid receiver 8, and is divided, and a part of the refrigerant is in the second state. It flows into the expansion valve 7 ′ and the outdoor heat exchanger 3, evaporates, and is sucked into the compressor 1 through the accumulator 9. The remaining part of the refrigerant flows into the first expansion valve 6 ′ and the first indoor heat exchanger 4, evaporates, and merges with the refrigerant before the accumulator 9. That is, in the refrigerant cycle in the dehumidifying / heating mode (parallel), the outdoor heat exchanger 3 exerts a heat absorbing effect, the second indoor heat exchanger 5 emits heat, and the first indoor heat exchanger 4 Thus, the heat absorption and dehumidification of the vehicle interior can be simultaneously performed by exerting the heat absorbing effects. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3.
[0032]
In the operation in the dehumidifying / heating mode (single), the four-way valve 2 is set to the position shown in FIG.BreakingThis is performed by operating the compressor 1 with the second expansion valve 7 'and the on-off valve 17 closed and the on-off valve 14 opened while switching to the line position. As shown by an alternate long and short dash line arrow in the drawing, the refrigerant discharged from the compressor 1 flows into the second indoor heat exchanger 5 and is condensed, and is passed through the liquid receiver 8 to the first expansion valve 6 ′ and the first indoor heat exchanger 5. It flows into the heat exchanger 4, evaporates, and is sucked into the compressor 1 through the accumulator 9. In other words, in the refrigerant cycle in the dehumidification / heating mode (single), the second indoor heat exchanger 5 exerts a heat radiation effect, and the first indoor heat exchanger 4 exerts a heat absorption effect to heat and heat the vehicle interior. Dehumidification can be performed simultaneously. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3.
[0033]
In the heating mode operation, the four-way valve 2BreakingThis is performed by operating the compressor 1 with the first expansion valve 6 'closed and the on-off valves 14, 17 opened while switching to the line position. As shown by the dashed arrow in the drawing, the refrigerant discharged from the compressor 1 flows into the second indoor heat exchanger 5 and is condensed, and is passed through the liquid receiver 8 to the second expansion valve 7 ′ and the outdoor heat exchanger 3. Into the compressor 1 through the accumulator 9. That is, in the refrigerant cycle in the heating mode, the second indoor heat exchanger 5 can exert a heat radiation effect to heat the vehicle interior. Incidentally, the heating capacity during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3.
[0034]
As described above, according to the air conditioner of the second embodiment, operation in five modes is performed by switching the refrigerant cycle by the four-way valve 2, the first and second expansion valves 6 'and 7', and the on-off valves 14 and 17. This is advantageous in that air conditioning can be suitably performed in a vehicle such as an electric vehicle having no heat source such as an internal combustion engine. In addition, the functions of the on-off valves 15 and 16 in the air conditioner of the first embodiment can be replaced by the two expansion valves 6 'and 7' to simplify the circuit configuration. Other effects are similar to those of the first embodiment.
[0035]
In the air conditioner shown in the second embodiment, the refrigerant cycle is switched by the four-way valve 2 and the first and second expansion valves 6 'and 7' even in a circuit configuration excluding all the on-off valves 14 and 17. Thus, it is possible to operate in the four modes of the dry / defrost mode, the dehumidification / heating mode (parallel), the dehumidification / heating mode (single), and the heating mode as in the second embodiment. In the dry / defrost mode, the cooling operation or the dry operation can be selected by adjusting the amount of air flow to the second indoor heat exchanger 5 with the damper D3, and a decrease in the blow-out temperature during defrost can be prevented. Further, by controlling the on / off of the on-off valve 17, the flow rate of the refrigerant to the outdoor heat exchanger 3 and the second indoor heat exchanger 5 can be adjusted.
[0036]
Further, if the circuit configuration is such that the on-off valve 17 is excluded and only the on-off valve 14 is left, the refrigerant cycle is switched by the four-way valve 2, the first and second expansion valves 6 ', 7' and the on-off valve 14, and Operation in the same five modes as in the second embodiment becomes possible.
[0037]
Furthermore, if the circuit configuration is such that the on-off valve 14 is excluded and only the on-off valve 17 is left, the four-way valve 2, the first and second expansion valves 6 ′, 7 ′, and the switching of the refrigerant cycle by the on-off valve 17 allow the second cycle to be performed. Operation in the four modes of the dry / defrost mode, the dehumidification / heating mode (parallel), the dehumidification / heating mode (single), and the heating mode as in the second embodiment is possible.
[0038]
5 and 6 show a third embodiment of the present invention. The third embodiment is a simplified version of the air conditioner of the first embodiment. The third embodiment differs from the first embodiment in that the on-off valve 17 is excluded from the pipe 19, and the check valves 11, 12 and the pipe The difference is that the pipes 25a and 25b are excluded, and that the on-off valve 14 is excluded from the pipe 25 and the pipe 25 is connected to the fourth port 2d of the four-way valve 2.In addition, the check valve 10 shown in FIGS. 5 and 6 corresponds to the first control valve described in claim 9, and the check valve 13 corresponds to the claim. This corresponds to the second control valve described in item 9. The on-off valve 15 corresponds to the control valve for the second expansion valve described in claim 9 of the present invention, and the on-off valve 16 corresponds to the control valve for the first expansion valve described in claim 11 of the present invention. It corresponds to a control valve.The check valve 13 for controlling the flow direction of the refrigerant in the second indoor heat exchanger 5 may be interposed on the pipe 25 side. The other configuration is the same as that of the first embodiment, so that the same reference numerals are used and the description is omitted.
[0039]
In this air conditioner, the refrigerant cycle is switched by the four-way valve 2 and the on-off valves 15 and 16, and in four modes of a cooling / defrosting mode, a dehumidifying / heating mode (parallel), a dehumidifying / heating mode (single), and a heating mode. Operation is possible. The refrigerant cycle and function in each mode will be described below.
[0040]
The operation in the cooling / defrosting mode is performed by switching the four-way valve 2 to the solid line position in FIG. 5, operating the compressor 1 with the on-off valve 15 closed and the on-off valve 16 open. As shown by solid arrows in the figure, the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 and is condensed, and is condensed through the liquid receiver 8 to the first expansion valve 6 and the first indoor heat exchanger 4. It flows into and evaporates, and is sucked into the compressor 1 through the accumulator 9. In other words, in the refrigerant cycle in the cooling / defrosting mode, the first indoor heat exchanger 4 can exert a heat absorbing effect to cool the vehicle interior. Further, rapid defrosting of the heat exchanger 3 can be performed by utilizing a heat radiation effect generated in the outdoor heat exchanger 3.
[0041]
In the operation in the dehumidification / heating mode (parallel), the four-way valve 2BreakingThe operation is performed by operating the compressor 1 while switching to the line position and opening the on-off valves 15 and 16. As shown by a solid line arrow in the drawing, the refrigerant discharged from the compressor 1 flows into the second indoor heat exchanger 5, is condensed, passes through the liquid receiver 8, and is divided, and a part of the refrigerant is in the second state. It flows into the expansion valve 7 and the outdoor heat exchanger 3 and evaporates, and is sucked into the compressor 1 through the accumulator 9. The remaining portion of the refrigerant flows into the first expansion valve 6 and the first indoor heat exchanger 4 and evaporates, and merges with the above-described refrigerant before the accumulator 9. That is, in the refrigerant cycle in the dehumidifying / heating mode (parallel), the outdoor heat exchanger 3 exerts a heat absorbing effect, the second indoor heat exchanger 5 emits heat, and the first indoor heat exchanger 4 Thus, the heat absorption and dehumidification of the vehicle interior can be simultaneously performed by exerting the heat absorbing effects. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3.
[0042]
In the operation in the dehumidifying / heating mode (single), the four-way valve 2 is set to the position shown in FIG.BreakingThe operation is performed by operating the compressor 1 while switching to the line position, closing the on-off valve 15 and opening the on-off valve 16. As shown by a dashed-dotted arrow in the figure, the refrigerant discharged from the compressor 1 flows into the second indoor heat exchanger 5 and is condensed, and is passed through the liquid receiver 8 to the first expansion valve 6 and the first indoor heat exchanger. It flows into the exchanger 4, evaporates, and is sucked into the compressor 1 through the accumulator 9. In other words, in the refrigerant cycle in the dehumidification / heating mode (single), the second indoor heat exchanger 5 exerts a heat radiation effect, and the first indoor heat exchanger 4 exerts a heat absorption effect to heat and heat the vehicle interior. Dehumidification can be performed simultaneously. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3.
[0043]
In the heating mode operation, the four-way valve 2BreakingThe operation is performed by operating the compressor 1 in a state where the switching is performed to the line position and the on-off valve 16 is closed and the on-off valve 15 is opened. As shown by the dashed arrow in the figure, the refrigerant discharged from the compressor 1 flows into the second indoor heat exchanger 5 and is condensed, and is condensed through the liquid receiver 8 to the second expansion valve 7 and the outdoor heat exchanger 3. It flows into and evaporates, and is sucked into the compressor 1 through the accumulator 9. That is, in the refrigerant cycle in the heating mode, the second indoor heat exchanger 5 can exert a heat radiation effect to heat the vehicle interior. Incidentally, the heating capacity during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1 and the opening of the damper D3.
[0044]
As described above, according to the air conditioner of the third embodiment, there are four modes of operation by switching the refrigerant cycle by the four-way valve 2 and the on-off valves 15 and 16, and the electric vehicle or the like without a heat source such as an internal combustion engine There is an advantage that air conditioning can be suitably performed in the vehicle. Other effects are similar to those of the first embodiment.
[0045]
The air conditioner shown in the third embodiment has the same cooling / defrosting mode as the third embodiment by switching the refrigerant cycle by the four-way valve 2 even in a circuit configuration excluding all the on-off valves 15 and 16. Operation in two modes of the dehumidification / heating mode (parallel) is possible.
[0046]
Further, if the circuit configuration is such that the on-off valve 15 is excluded and only the on-off valve 16 is left, the heating mode similar to the third embodiment is added to the two modes by switching the refrigerant cycle by the four-way valve 2 and the on-off valve 16. Operation in the three modes is also possible.
[0047]
Furthermore, if the circuit configuration is such that the on-off valve 16 is excluded and only the on-off valve 15 is left, the refrigerant cycle is switched by the four-way valve 2 and the on-off valve 15 to switch the two modes to the above-described dehumidification / heating mode as in the first embodiment. Operation in three modes including (single) is possible.
[0048]
7 and 8 show a fourth embodiment of the present invention. In the fourth embodiment, a brine / refrigerant heat exchanger is used in the air conditioner of the first embodiment. In the fourth embodiment, the pipes 24 and 25 are separated from the second indoor heat exchanger 5. A point at which a refrigerant path of a brine / refrigerant heat exchanger (hereinafter simply referred to as a brine heat exchanger) 26 is connected between the two, and a line 28 at which one end of the brine path of the brine heat exchanger 26 is provided with an electric pump 27 interposed therebetween. And a point where the other end of the brine path of the brine heat exchanger 26 is connected to the other end of the second indoor heat exchanger 5 via a pipe 29. Different.The check valve 10 shown in FIGS. 7 and 8 corresponds to the first control valve described in claim 16 of the present invention, and the check valve 11 corresponds to the claim of the present invention. The check valve 12 corresponds to a third control valve described in claim 16, and the check valve 12 corresponds to a second control valve described in claim 16 of the claims. The on-off valve 14 corresponds to a control valve for a brine / refrigerant heat exchanger described in claim 20 of the present invention, and the on-off valve 15 corresponds to the second expansion valve described in claim 19 of the present invention. The on-off valve 16 corresponds to the control valve for the first expansion valve described in claim 18 of the present invention, and the on-off valve 17 corresponds to the claim 21 of the present invention. It corresponds to a control valve for an outdoor heat exchanger.Incidentally, as in the first embodiment, the check valve 13 on the pipe line 24 side is not always necessary, and the interposition position of the on-off valve 14 may be on the refrigerant path outlet side of the brine heat exchanger 26. . The other configuration is the same as that of the first embodiment, so that the same reference numerals are used and the description is omitted.
[0049]
In this air conditioner, the refrigerant cycle is switched by the four-way valve 2 and the on-off valves 14 to 17, and the cooling / defrosting mode, the dry / defrosting mode, the dehumidifying / heating mode (parallel), the dehumidifying / heating mode (single), and the heating Operation in five modes is possible. The refrigerant cycle and function in each mode will be described below.
[0050]
The operation in the cooling / defrosting mode is performed by switching the four-way valve 2 to the solid line position in FIG. 7, operating the compressor 1 with the on-off valves 14, 15 closed and the on-off valves 16, 17 open. As shown by solid arrows in the figure, the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 and is condensed, and is condensed through the liquid receiver 8 to the first expansion valve 6 and the first indoor heat exchanger 4. It flows into and evaporates, and is sucked into the compressor 1 through the accumulator 9. In other words, in the refrigerant cycle in the cooling / defrosting mode, the first indoor heat exchanger 4 can exert a heat absorbing effect to cool the vehicle interior. Further, rapid defrosting of the heat exchanger 3 can be performed by utilizing a heat radiation effect generated in the outdoor heat exchanger 3.
[0051]
The operation in the dry / defrosting mode is performed by switching the four-way valve 2 to the position indicated by the solid line in FIG. 7, operating the compressor 1 and the pump 27 with the on-off valve 15 closed and the on-off valves 14, 16, 17 opened. Done. As shown by the dashed arrow in the figure, a part of the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 and is condensed, and is passed through the liquid receiver 8 to the first expansion valve 6 and the first indoor heat exchanger. 4, evaporates, and is sucked into the compressor 1 through the accumulator 9. The remaining part of the refrigerant flows into the brine heat exchanger 26 and exchanges heat with the brine, and merges with the refrigerant before the liquid receiver 8. That is, in the refrigerant cycle in the dry / defrost mode, the first indoor heat exchanger 4 exerts a heat absorbing action and the second indoor heat exchanger 5 exerts a heat dissipation action, thereby reducing the blow-out temperature. Dehumidification of the vehicle interior can be performed. Incidentally, the heating capacity and the dehumidification amount during the dry time can be controlled by adjusting the discharge capacity of the compressor 1, the opening of the damper D3, the capacity of the pump 27, and the like. In addition, it is possible to perform defrosting of the outdoor heat exchanger 3 by utilizing a heat radiation effect generated in the outdoor heat exchanger 3, and it is also possible to prevent a decrease in the blowing temperature at the time of the defrosting.
[0052]
In the operation in the dehumidification / heating mode (parallel), the four-way valve 2BreakingThis is performed by operating the compressor 1 and the pump 27 while switching to the line position and opening the on-off valves 14, 15, 16, 17. As shown by the solid line arrows in the figure, the refrigerant discharged from the compressor 1 flows into the brine heat exchanger 26 and exchanges heat with the brine. After passing through the liquid receiver 8, the refrigerant is branched and a part of the refrigerant is changed to the second refrigerant. It flows into the expansion valve 7 and the outdoor heat exchanger 3 and evaporates, and is sucked into the compressor 1 through the accumulator 9. The heated brine circulates between the brine heat exchanger 27 and the second indoor heat exchanger 5 as shown by the solid arrows in FIG. The remaining portion of the refrigerant flows into the first expansion valve 6 and the first indoor heat exchanger 4 and evaporates, and merges with the above-described refrigerant before the accumulator 9. In other words, in the refrigerant cycle in the dehumidification / heating mode (parallel), the outdoor heat exchanger 3 exerts a heat absorbing action, the second indoor heat exchanger 5 exerts a heat dissipation action, and the first indoor heat exchange. The heating and dehumidification of the vehicle interior can be performed simultaneously by exerting the heat absorbing effect by the heater 4. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1, adjusting the opening of the damper D3, adjusting the capacity of the pump 27, and the like.
[0053]
For the operation in the dehumidification / heating mode (single), the four-way valve 2BreakingThe operation is performed by operating the compressor 1 and the pump 27 while switching to the line position and closing the on-off valves 15 and 17 and opening the on-off valves 14 and 16. As shown by the one-dot chain line arrow in FIG. 2, the refrigerant discharged from the compressor 1 flows into the brine heat exchanger 26 and exchanges heat with the brine, and the first expansion valve 6 and the first indoor heat through the liquid receiver 8. It flows into the exchanger 4, evaporates, and is sucked into the compressor 1 through the accumulator 9. The heated brine circulates between the brine heat exchanger 26 and the second indoor heat exchanger 5 as indicated by a dashed line arrow in FIG. In other words, in the refrigerant cycle in the dehumidification / heating mode (single), the second indoor heat exchanger 5 exerts a heat radiation effect, and the first indoor heat exchanger 4 exerts a heat absorption effect to heat and heat the vehicle interior. Dehumidification can be performed simultaneously. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1, adjusting the opening of the damper D3, adjusting the capacity of the pump 27, and the like.
[0054]
In the heating mode operation, the four-way valve 2BreakingThe operation is performed by operating the compressor 1 and the pump 27 with the on-off valve 16 closed and the on-off valves 14, 15, 17 opened while switching to the line position. As shown by a dashed arrow in the figure, the refrigerant discharged from the compressor 1 flows into the brine heat exchanger 26 and exchanges heat with the brine, and is transferred to the second expansion valve 7 and the outdoor heat exchanger 3 through the liquid receiver 8. It flows into and evaporates, and is sucked into the compressor 1 through the accumulator 9. The heated brine circulates between the brine heat exchanger 26 and the second indoor heat exchanger 5 as shown by the dashed arrow in the figure. That is, in the refrigerant cycle in the heating mode, the second indoor heat exchanger 5 can exert a heat radiation effect to heat the vehicle interior. Incidentally, the heating capacity during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1, adjusting the opening of the damper D3, adjusting the capacity of the pump 27, and the like.
[0055]
As described above, according to the air-conditioning apparatus of the fourth embodiment, operation in five modes is possible by switching the refrigerant cycle by the four-way valve 2 and the on-off valves 14 to 17, and electric power without a heat source such as an internal combustion engine can be obtained. There is an advantage that air conditioning can be suitably performed in a vehicle such as an automobile. Other effects are similar to those of the first embodiment.
[0056]
Note that the air conditioner shown in the fourth embodiment has the same dry / defrost mode as the fourth embodiment by switching the refrigerant cycle by the four-way valve 2 even in a circuit configuration excluding all the on-off valves 14 to 17. Operation in two modes of the dehumidification / heating mode (parallel) is possible. In the dry / defrost mode, the cooling operation or the dry operation can be selected by adjusting the amount of air flow to the second indoor heat exchanger 5 with the damper D3, and a decrease in the blow-out temperature during defrost can be prevented. Further, by controlling the on / off of the on-off valve 17, the flow rate of the refrigerant to the outdoor heat exchanger 3 and the second indoor heat exchanger 5 can be adjusted.
[0057]
In addition, if the circuit configuration is such that the on-off valves 14, 15, 17 are excluded and only the on-off valve 16 is left, switching of the refrigerant cycle by the four-way valve 2 and the on-off valve 16 switches the above two modes to the same as in the fourth embodiment. Operation in three modes including the heating mode becomes possible.
[0058]
Further, if the circuit configuration is such that the on-off valves 14, 16, and 17 are excluded and only the on-off valve 15 is left, switching of the refrigerant cycle by the four-way valve 2 and the on-off valve 15 switches the two modes to the above-described two modes as in the fourth embodiment. Operation in three modes including the dehumidification / heating mode (single) is possible.
[0059]
Furthermore, if the circuit configuration is such that the on-off valves 15, 16, and 17 are excluded and only the on-off valve 14 is left, switching of the refrigerant cycle by the four-way valve 2 and the on-off valve 14 switches the two modes to the two modes as in the fourth embodiment. Operation in three modes including the cooling / defrosting mode.
[0060]
Further, if the circuit configuration is such that the on-off valves 14, 15, and 16 are excluded and only the on-off valve 17 is left, the four-way valve 2 and the on-off valve 17 switch the refrigerant cycle to switch to the dry / defrost mode. The operation in two modes including the dehumidification / heating mode (single) similar to the embodiment can be performed.
[0061]
In addition, by appropriately combining two or three of the on-off valves 14 to 17, only the necessary mode can be selected and set from the five operation modes obtained in the air conditioner of the fourth embodiment. .
[0062]
Further, if the expansion valves 6 ', 7' which can be closed as exemplified in the second embodiment are used as the first and second expansion valves 6, 7, the functions of the on-off valves 15, 16 will be changed to the two expansion valves 6 '. , 7 'to simplify the circuit configuration.
[0063]
9 and 10 show a fifth embodiment of the present invention. The fifth embodiment uses a brine / refrigerant heat exchanger in the air conditioner of the third embodiment. In the fifth embodiment, the pipes 24 and 25 are separated from the second indoor heat exchanger 5. One end of the brine heat exchanger 26 is connected to one end of the second indoor heat exchanger 5 through a pipe 28 having an electric pump 27 interposed therebetween. And the other end of the brine heat exchanger 26 is connected to the other end of the second indoor heat exchanger 5 via the pipe 29.The check valve 10 shown in FIGS. 9 and 10 corresponds to the first control valve described in claim 22 of the claims, and the check valve 13 corresponds to the claims of the claims. This corresponds to the second control valve described in item 22. The on-off valve 15 corresponds to a control valve for a second expansion valve described in claim 25 of the present invention, and the on-off valve 16 corresponds to a control valve for the first expansion valve described in claim 24 of the present invention. It corresponds to a control valve.Incidentally, the check valve 13 may be interposed on the pipe 25 side as in the third embodiment. The other configuration is the same as that of the third embodiment, so that the same reference numerals are used and the description is omitted.
[0064]
This air conditioner is operated in four modes of a cooling / defrosting mode, a dehumidifying / heating mode (parallel), a dehumidifying / heating mode (single), and a heating mode by switching the refrigerant cycle by the four-way valve 2 and the opening / closing valves 15 and 16. Driving is possible. The refrigerant cycle and function in each mode will be described below.
[0065]
The operation in the cooling / defrosting mode is performed by switching the four-way valve 2 to the solid line position in FIG. 9 and operating the compressor 1 with the on-off valve 15 closed and the on-off valve 16 opened. As shown by solid arrows in the figure, the refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 and is condensed, and is condensed through the liquid receiver 8 to the first expansion valve 6 and the first indoor heat exchanger 4. It flows into and evaporates, and is sucked into the compressor 1 through the accumulator 9. In other words, in the refrigerant cycle in the cooling / defrosting mode, the first indoor heat exchanger 4 can exert a heat absorbing effect to cool the vehicle interior. Further, rapid defrosting of the heat exchanger 3 can be performed by utilizing a heat radiation effect generated in the outdoor heat exchanger 3.
[0066]
The operation in the dehumidification / heating mode (parallel) is performed by switching the four-way valve 2 to the solid line position in FIG. 10 and operating the compressor 1 and the pump 27 with the on-off valves 15 and 16 opened. As shown by the solid line arrows in the figure, the refrigerant discharged from the compressor 1 flows into the brine heat exchanger 26 and exchanges heat with the brine. After passing through the liquid receiver 8, the refrigerant is branched and a part of the refrigerant is changed to the second refrigerant. It flows into the expansion valve 7 and the outdoor heat exchanger 3 and evaporates, and is sucked into the compressor 1 through the accumulator 9. The heated brine circulates between the brine heat exchanger 26 and the second indoor heat exchanger 5 as shown by the solid arrows in FIG. The remaining portion of the refrigerant flows into the first expansion valve 6 and the first indoor heat exchanger 4 and evaporates, and merges with the above-described refrigerant before the accumulator 9. In other words, in the refrigerant cycle in the dehumidification / heating mode (parallel), the outdoor heat exchanger 3 exerts a heat absorbing action, the second indoor heat exchanger 5 exerts a heat dissipation action, and the first indoor heat exchange. The heating and dehumidification of the vehicle interior can be performed simultaneously by exerting the heat absorbing effect by the heater 4. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1, adjusting the opening of the damper D3, adjusting the capacity of the pump 27, and the like.
[0067]
The operation in the dehumidification / heating mode (single) is performed by switching the four-way valve 2 to the solid line position in FIG. 10, operating the compressor 1 and the pump 27 with the on-off valve 15 closed and the on-off valve 16 opened. . As shown by the one-dot chain line arrow in FIG. 2, the refrigerant discharged from the compressor 1 flows into the brine heat exchanger 26 and exchanges heat with the brine, and the first expansion valve 6 and the first indoor heat through the liquid receiver 8. It flows into the exchanger 4, evaporates, and is sucked into the compressor 1 through the accumulator 9. The heated brine circulates between the brine heat exchanger 26 and the second indoor heat exchanger 5 as indicated by a dashed line arrow in FIG. In other words, in the refrigerant cycle in the dehumidification / heating mode (single), the second indoor heat exchanger 5 exerts a heat radiation effect, and the first indoor heat exchanger 4 exerts a heat absorption effect to heat and heat the vehicle interior. Dehumidification can be performed simultaneously. Incidentally, the heating capacity and the dehumidification amount during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1, adjusting the opening of the damper D3, adjusting the capacity of the pump 27, and the like.
[0068]
The operation in the heating mode is performed by switching the four-way valve 2 to the solid line position in FIG. 10, operating the compressor 1 and the pump 27 with the on-off valve 16 closed and the on-off valve 15 opened. As shown by a dashed arrow in the figure, the refrigerant discharged from the compressor 1 flows into the brine heat exchanger 26 and exchanges heat with the brine, and is transferred to the second expansion valve 7 and the outdoor heat exchanger 3 through the liquid receiver 8. It flows into and evaporates, and is sucked into the compressor 1 through the accumulator 9. The heated brine circulates between the brine heat exchanger 26 and the second indoor heat exchanger 5 as shown by the dashed arrow in the figure. That is, in the refrigerant cycle in the heating mode, the second indoor heat exchanger 5 can exert a heat radiation effect to heat the vehicle interior. Incidentally, the heating capacity during the same mode operation can be controlled by adjusting the discharge capacity of the compressor 1, adjusting the opening of the damper D3, adjusting the capacity of the pump 27, and the like.
[0069]
As described above, according to the air conditioner of the fifth embodiment, it is possible to operate in four modes by switching the refrigerant cycle by the four-way valve 2 and the on-off valves 15 and 16, and to operate the electric machine without a heat source such as an internal combustion engine. There is an advantage that air conditioning can be suitably performed in a vehicle such as an automobile. Other effects are the same as in the third embodiment.
[0070]
The air conditioner shown in the fifth embodiment has the same cooling / defrosting mode as the fifth embodiment by switching the refrigerant cycle by the four-way valve 2 even in a circuit configuration excluding all the on-off valves 15 and 16. Operation in two modes of the dehumidification / heating mode (parallel) is possible.
[0071]
Further, if the circuit configuration is such that the on-off valve 15 is excluded and only the on-off valve 16 is left, the heating mode similar to that of the fifth embodiment is added to the two modes by switching the refrigerant cycle by the four-way valve 2 and the on-off valve 16. Operation in the three modes is also possible.
[0072]
Furthermore, if the circuit configuration is such that the on-off valve 16 is excluded and only the on-off valve 15 is left, the refrigerant cycle is switched by the four-way valve 2 and the on-off valve 15 to switch the two modes to the above-described dehumidification / heating mode as in the fifth embodiment. Operation in three modes including (single) is possible.
[0073]
Further, if the expansion valves 6 ', 7' which can be closed as exemplified in the second embodiment are used as the first and second expansion valves 6, 7, the functions of the on-off valves 15, 16 will be changed to the two expansion valves 6 '. , 7 'to simplify the circuit configuration.
[0074]
FIG. 11 shows a sixth embodiment of the present invention. In the sixth embodiment, an auxiliary heat source for brine heating is provided in the air conditioner of the fourth embodiment. The fourth embodiment is different from the fourth embodiment in that an electric heater 30 is disposed in a brine heat exchanger 26; The difference is that a power supply circuit 31 is connected to the electric heater 30.Further, the check valve 10 shown in FIG. 11 corresponds to the first control valve described in claim 16 of the claims, and the check valve 11 corresponds to the claim 16 of the claims. The check valve 12 corresponds to the third control valve described above, and the check valve 12 corresponds to the second control valve described in claim 16 of the claims. The on-off valve 14 corresponds to a control valve for a brine / refrigerant heat exchanger described in claim 20 of the present invention, and the on-off valve 15 corresponds to the second expansion valve described in claim 19 of the present invention. The on-off valve 16 corresponds to the first control valve described in claim 18 of the claims. The on-off valve 17 corresponds to a control valve for an outdoor heat exchanger according to claim 21 of the present invention.
[0075]
In this air conditioner, the brine can be supplementarily heated by the heat of the electric heater 30 during the operation in the two dehumidifying / heating modes and the heating mode, and the heat radiation capability of the second indoor heat exchanger 5 can be improved. Further, when the brine heated by the electric heater 30 is circulated to the second indoor heat exchanger 5 when the outdoor heat exchanger 3 is defrosted in the cooling / defrosting mode, heat is radiated by the heat exchanger 5. Since the blowing temperature can be adjusted by exerting the function, no cool air is blown into the vehicle interior during the defrosting of the outdoor heat exchanger 3. Further, even when the outside air temperature is low and the heat pump does not operate normally, or when the operation of the compressor 1 is forcibly stopped, the brine heated by the electric heater 30 is circulated to the second indoor heat exchanger 5. There is an advantage that the interior of the vehicle compartment can be heated by exerting a heat radiation effect in the heat exchanger 5. Other functions and effects are the same as those of the fourth embodiment.
[0076]
FIG. 12 shows a seventh embodiment of the present invention. The seventh embodiment is different from the fourth embodiment in that an auxiliary heat source for heating brine is provided in the air conditioner of the fourth embodiment. The fourth embodiment is different from the fourth embodiment in that an air / brine heat exchanger ( The difference is that an air heat exchanger 32 is interposed and a burner 33 that burns with a liquid fuel such as kerosene is connected to the air heat exchanger 32.In addition, the check valve 10 shown in FIG. 12 corresponds to the first control valve described in claim 16 of the present invention, and the check valve 11 corresponds to claim 16 of the present invention. The check valve 12 corresponds to the third control valve described above, and the check valve 12 corresponds to the second control valve described in claim 16 of the claims. The on-off valve 14 corresponds to a control valve for a brine / refrigerant heat exchanger described in claim 20 of the present invention, and the on-off valve 15 is a first expansion valve described in claim 19 of the present invention. The on-off valve 16 corresponds to the control valve for the second expansion valve described in claim 18 of the claims, and the on-off valve 17 corresponds to the claim 21 in the claims. It corresponds to a control valve for an outdoor heat exchanger.
[0077]
In this air conditioner, the brine is supplementarily heated by the heat of the burner 33 during the operation in the two dehumidifying / heating modes and the heating mode, so that the heat radiation capability of the second indoor heat exchanger 5 can be improved. When the brine heated by the burner 33 is circulated to the second indoor heat exchanger 5 when the outdoor heat exchanger 3 is defrosted in the cooling / defrosting mode, the heat exchanger 5 has a heat radiating effect. Can be adjusted to adjust the blowing temperature, so that no cool air is blown into the vehicle interior during the defrosting of the outdoor heat exchanger 3. Furthermore, even when the outside air temperature is low and the heat pump does not operate normally, or when the operation of the compressor 1 is forcibly stopped, the brine heated by the burner 33 is circulated to the second indoor heat exchanger 5 and There is an advantage that the interior of the vehicle compartment can be heated by exerting the heat radiation effect in the heat exchanger 5. Other functions and effects are the same as those of the fourth embodiment.
[0078]
FIG. 13 shows an eighth embodiment of the present invention. In the eighth embodiment, an air conditioner of the fifth embodiment is provided with an auxiliary heat source for brine heating. The fifth embodiment is different from the fifth embodiment in that an electric heater 30 is disposed in a brine heat exchanger 26; The difference is that a power supply circuit 31 is connected to the electric heater 30.Further, the check valve 10 shown in FIG. 13 corresponds to the first control valve described in claim 22 of the claims, and the check valve 13 corresponds to claim 22 of the claims. This corresponds to the second control valve described. The on-off valve 15 corresponds to a control valve for a second expansion valve described in claim 25 of the present invention, and the on-off valve 16 corresponds to a control valve for the first expansion valve described in claim 24 of the present invention. It corresponds to a control valve.
[0079]
In this air conditioner, the brine can be supplementarily heated by the heat of the electric heater 30 during the operation in the two dehumidifying / heating modes and the heating mode, and the heat radiation capability of the second indoor heat exchanger 5 can be improved. When the brine heated by the electric heater 30 is circulated to the second indoor heat exchanger 5 when the outdoor heat exchanger 3 is defrosted in the cooling / defrosting mode, heat is radiated by the heat exchanger 5. Since the blowing temperature can be adjusted by exerting the function, no cool air is blown into the vehicle interior during the defrosting of the outdoor heat exchanger 3. Furthermore, even when the outside air temperature is low and the heat pump does not operate normally, or when the operation of the compressor 1 is forcibly stopped, the brine heated by the electric heater 30 is circulated to the second indoor heat exchanger 5. There is an advantage that the interior of the vehicle compartment can be heated by exerting a heat radiation effect in the heat exchanger 5. Other functions and effects are the same as those of the fifth embodiment.
[0080]
FIG. 14 shows a ninth embodiment of the present invention. The ninth embodiment is different from the fifth embodiment in that an auxiliary heat source for brine heating is provided in the air conditioner of the fifth embodiment. The difference is that a burner 33 that burns with a liquid fuel such as kerosene is connected to the air heat exchanger 32.Further, the check valve 10 shown in FIG. 14 corresponds to the first control valve described in claim 22 of the claims, and the check valve 13 corresponds to claim 22 of the claims. This corresponds to the second control valve described. The on-off valve 15 corresponds to a control valve for a second expansion valve described in claim 25 of the present invention, and the on-off valve 16 corresponds to a control valve for the first expansion valve described in claim 24 of the present invention. It corresponds to a control valve.
[0081]
In this air conditioner, the brine is supplementarily heated by the heat of the burner 33 during the operation in the two dehumidifying / heating modes and the heating mode, so that the heat radiation capability of the second indoor heat exchanger 5 can be improved. When the brine heated by the burner 33 is circulated to the second indoor heat exchanger 5 when the outdoor heat exchanger 3 is defrosted in the cooling / defrosting mode, the heat exchanger 5 has a heat radiating effect. Can be adjusted to adjust the blowing temperature, so that no cool air is blown into the vehicle interior during the defrosting of the outdoor heat exchanger 3. Furthermore, even when the outside air temperature is low and the heat pump does not operate normally, or when the operation of the compressor 1 is forcibly stopped, the brine heated by the burner 33 is circulated to the second indoor heat exchanger 5 and There is an advantage that the interior of the vehicle compartment can be heated by exerting the heat radiation effect in the heat exchanger 5. Other functions and effects are the same as those of the fifth embodiment.
[0082]
In the sixth to ninth embodiments, the example in which the auxiliary heat source is incorporated in the air conditioner of the fourth or sixth embodiment having the brine heat exchanger 26 is shown. It can also be used for the air conditioners of (1) to (3). That is, if the refrigerant flowing into the second indoor heat exchanger 5 during heating is heated by the same auxiliary heat source as described above, the heat radiation capability of the second indoor heat exchanger can be improved, and If the refrigerant flowing out of the outdoor heat exchanger 3 is heated by the auxiliary heat source during heating, the shortage of heat absorption in the outdoor heat exchanger 3 can be compensated.
[0083]
In the above-described first to ninth embodiments, the on-off valves are all exemplified as the on-off valves 14 to 17, but these on-off valves 14 to 17 may be of a type capable of controlling the flow rate. Can control the heat radiation and heat absorption of the outdoor heat exchanger 3 and the first and second indoor heat exchangers 4 and 5 by controlling the flow rate of each valve. Further, the check valves 11 to 13 for controlling the flow direction of the refrigerant may be replaced with an on / off type on-off valve or a flow control valve.
[0084]
【The invention's effect】
As described above in detail, according to the vehicle air conditioner of the present invention, all or part of the refrigerant that has passed through the second indoor heat exchanger is transferred to the first indoor heat exchanger through the first expansion unit. By guiding, it is possible to simultaneously perform heating and dehumidification of the vehicle cabin by exerting a heat radiation effect in the second indoor heat exchanger and a heat absorbing effect in the first indoor heat exchanger, and perform rainfall and snowfall. When the heating operation is performed under humid conditions such as when the air conditioner is switched from the cooling operation to the heating operation, the dehumidification operation is performed without fogging the window glass in the vehicle compartment and without reducing the blowing temperature. And comfortable air conditioning can be realized.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of a vehicle air conditioner showing a first embodiment of the present invention.
FIG. 2 is a circuit diagram of the same refrigerant.
FIG. 3 is a refrigerant circuit diagram of a vehicle air conditioner showing a second embodiment of the present invention.
FIG. 4 is a refrigerant circuit diagram of the same.
FIG. 5 is a refrigerant circuit diagram of a vehicle air conditioner showing a third embodiment of the present invention.
FIG. 6 is a refrigerant circuit diagram of the same.
FIG. 7 is a refrigerant circuit diagram of a vehicle air conditioner showing a fourth embodiment of the present invention.
FIG. 8 is the same refrigerant circuit diagram.
FIG. 9 is a refrigerant circuit diagram of a vehicle air conditioner showing a fifth embodiment of the present invention.
FIG. 10 is a refrigerant circuit diagram of the same.
FIG. 11 is a refrigerant circuit diagram of a vehicle air conditioner showing a sixth embodiment of the present invention.
FIG. 12 is a refrigerant circuit diagram of a vehicle air conditioner showing a seventh embodiment of the present invention.
FIG. 13 is a refrigerant circuit diagram of a vehicle air conditioner showing an eighth embodiment of the present invention.
FIG. 14 is a refrigerant circuit diagram of a vehicle air conditioner showing a ninth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 4-way valve, 3 ... Outdoor heat exchanger, 4 ... First indoor heat exchanger, 5 ... Second indoor heat exchanger, 6, 6 '... First expansion valve, 7, 7 ': second expansion valve, 8: liquid receiver, 9: accumulator, 10-13: check valve, 14-17: open / close valve, 18-25, 25a, 25b, 28, 29 ... conduit, 26 ... a brine / refrigerant heat exchanger, 27 ... a pump, 30 ... an electric heater, 33 ... a burner.

Claims (28)

圧縮機、室外熱交換器、第1の膨張手段、第2の膨張手段及び車室内空調用のダクト内に配置された室内熱交換器を備え、四方弁等による冷媒サイクルの切り換えで車室内の冷房と暖房を行うヒートポンプ式の車両用空気調和装置において、
室内熱交換器は、通過する冷媒がダクト内空気と熱交換してダクト内空気から吸熱する吸熱専用の第1の室内熱交換器と、通過する冷媒がダクト内空気と熱交換しダクト内に放熱する放熱専用の第2の室内熱交換器とからなると共に、
第2の室内熱交換器を通過した冷媒を第2の膨張手段を通じて室外熱交換器に導く一方の管路と、
第2の室内熱交換器を通過した冷媒を第1の膨張手段を通じて第1の室内熱交換器に導く他方の管路とを備え、
圧縮機から吐出された冷媒を室外熱交換器に導き更に前記他方の管路に導く冷房・除霜モードと、
圧縮機から吐出された冷媒を室外熱交換器及び第2の室内熱交換器に導き前記他方の管路に導くドライ・除霜モードと、
圧縮機から吐出された冷媒を第2の室内熱交換器に導き更に前記一方の管路に導く暖房モードと、
圧縮機から吐出された冷媒を第2の室内熱交換器に導き、更に前記一方の管路及び前記他方の管路の両者又は他方の管路に導く除湿・暖房モードとを有する、
ことを特徴とする車両用空気調和装置。
A compressor, an outdoor heat exchanger, a first expansion unit, a second expansion unit, and an indoor heat exchanger arranged in a duct for air conditioning inside the vehicle compartment, and a refrigerant cycle switching by a four-way valve or the like switches the refrigerant cycle to the inside of the vehicle compartment. In heat pump type air conditioners for vehicles that perform cooling and heating,
The indoor heat exchanger is composed of a first indoor heat exchanger dedicated to absorbing heat, in which the passing refrigerant exchanges heat with the air in the duct and absorbs heat from the air in the duct, and the passing refrigerant exchanges heat with the air in the duct to form a heat in the duct. It consists of a second indoor heat exchanger dedicated to radiating heat,
One conduit for guiding the refrigerant having passed through the second indoor heat exchanger to the outdoor heat exchanger through the second expansion means;
A second pipe for guiding the refrigerant that has passed through the second indoor heat exchanger to the first indoor heat exchanger through the first expansion means,
A cooling / defrosting mode that guides the refrigerant discharged from the compressor to the outdoor heat exchanger and further guides the refrigerant to the other pipeline,
A dry / defrost mode in which the refrigerant discharged from the compressor is guided to the outdoor heat exchanger and the second indoor heat exchanger, and is guided to the other pipeline.
A heating mode in which the refrigerant discharged from the compressor is guided to the second indoor heat exchanger and further to the one of the pipelines;
A dehumidification / heating mode in which the refrigerant discharged from the compressor is guided to the second indoor heat exchanger, and further, both the one pipeline and the other pipeline or the other pipeline are guided.
An air conditioner for a vehicle, comprising:
第2の室内熱交換器を冷媒回路に介装されたブライン・冷媒熱交換器に接続し、ブラインを第2の室内熱交換器に循環させるようにした、
ことを特徴とする請求項1記載の車両用空気調和装置。
The second indoor heat exchanger was connected to a brine / refrigerant heat exchanger interposed in the refrigerant circuit, and the brine was circulated to the second indoor heat exchanger.
The vehicle air conditioner according to claim 1, wherein:
圧縮機と、
圧縮機の吐出口にその第1ポートが接続された四方弁と、
四方弁の第2ポートにその一端が接続された室外熱交換器と、
室外熱交換器の他端に第1の制御弁を介してその入口が接続された第1の膨張弁と、
第1の膨張弁の出口にその入口が接続され、出口が圧縮機の吸入口に接続された第1の室内熱交換器と、
四方弁の第4ポートに第2の制御弁を介してその入口が接続され、出口が第1の制御弁と第1の膨張弁との間に接続された第2の室内熱交換器と、
第1の制御弁と第1の膨張弁との間にその入口が接続され、出口が室外熱交換器の他端に接続された第2の膨張弁とを備え、
四方弁の第2ポートを第3の制御弁を介して第2の室内熱交換器の入口に接続し、
四方弁の第3ポートを圧縮機の吸入口に接続した、
ことを特徴とする車両用空気調和装置。
A compressor,
A four-way valve having a first port connected to a discharge port of the compressor;
An outdoor heat exchanger having one end connected to the second port of the four-way valve;
A first expansion valve having an inlet connected to the other end of the outdoor heat exchanger via a first control valve;
A first indoor heat exchanger having an inlet connected to an outlet of the first expansion valve, and an outlet connected to an inlet of the compressor;
A second indoor heat exchanger having an inlet connected to a fourth port of the four-way valve via a second control valve, and an outlet connected between the first control valve and the first expansion valve;
A second expansion valve having an inlet connected between the first control valve and the first expansion valve, and an outlet connected to the other end of the outdoor heat exchanger;
Connecting the second port of the four-way valve to the inlet of the second indoor heat exchanger via a third control valve;
The third port of the four-way valve was connected to the compressor inlet,
An air conditioner for a vehicle, comprising:
第1,第2の膨張弁として閉動作可能なものを使用した、
ことを特徴とする請求項3項記載の車両用空気調和装置。
The first and second expansion valves used can be closed,
The vehicle air conditioner according to claim 3, wherein:
第1の膨張弁の入口側に第1膨張弁用制御弁を介装した、
ことを特徴とする請求項3項記載の車両用空気調和装置。
A control valve for the first expansion valve interposed on the inlet side of the first expansion valve ,
The vehicle air conditioner according to claim 3, wherein:
第2の膨張弁の入口側に第2膨張弁用制御弁を介装した、
ことを特徴とする請求項3または5記載の車両用空気調和装置。
A control valve for the second expansion valve is interposed on the inlet side of the second expansion valve ,
The vehicle air conditioner according to claim 3 or 5, wherein:
第2の室内熱交換器の出入口の少なくとも一方側に第2室内熱交換器用制御弁を介装した、
ことを特徴とする請求項3乃至6何れか1項記載の車両用空気調和装置。
A control valve for a second indoor heat exchanger was interposed on at least one side of the entrance and exit of the second indoor heat exchanger ,
The vehicle air conditioner according to any one of claims 3 to 6, wherein:
四方弁の第2ポートと室外熱交換器の一端との間に室外熱交換器用制御弁を介装した、
ことを特徴とする請求項3乃至7何れか1項記載の車両用空気調和装置。
A control valve for an outdoor heat exchanger was interposed between the second port of the four-way valve and one end of the outdoor heat exchanger ,
The vehicle air conditioner according to any one of claims 3 to 7, wherein:
圧縮機と、
圧縮機の吐出口にその第1ポートが接続された四方弁と、
四方弁の第2ポートにその一端が接続された室外熱交換器と、
室外熱交換器の他端に第1の制御弁を介してその入口が接続された第1の膨張弁と、
第1の膨張弁の出口にその入口が接続され、出口が圧縮機の吸入口に接続された第1の室内熱交換器と、
四方弁の第4ポートにその入口が接続され、出口が第1の制御弁と第1の膨張弁との間に接続された第2の室内熱交換器と、
第1の制御弁と第1の膨張弁との間にその入口が接続され、出口が室外熱交換器の他端に接続された第2の膨張弁とを備え、
四方弁の第3ポートを圧縮機の吸入口に接続し、
第2の室内熱交換器の出入口側の一方に第2の制御弁を介装し、
第2の膨張弁の入口側に第2膨張弁用制御弁を介装した、
ことを特徴とする車両用空気調和装置。
A compressor,
A four-way valve having a first port connected to a discharge port of the compressor;
An outdoor heat exchanger having one end connected to the second port of the four-way valve;
A first expansion valve having an inlet connected to the other end of the outdoor heat exchanger via a first control valve;
A first indoor heat exchanger having an inlet connected to an outlet of the first expansion valve, and an outlet connected to an inlet of the compressor;
A second indoor heat exchanger having an inlet connected to the fourth port of the four-way valve and an outlet connected between the first control valve and the first expansion valve;
A second expansion valve having an inlet connected between the first control valve and the first expansion valve, and an outlet connected to the other end of the outdoor heat exchanger;
Connect the third port of the four-way valve to the suction port of the compressor,
A second control valve is interposed on one of the entrance and exit sides of the second indoor heat exchanger,
A control valve for the second expansion valve is interposed on the inlet side of the second expansion valve ,
An air conditioner for a vehicle, comprising:
第1,第2の膨張弁として閉動作可能なものを使用した、
ことを特徴とする請求項9記載の車両用空気調和装置。
The first and second expansion valves used can be closed,
The vehicle air conditioner according to claim 9, wherein:
第1の膨張弁の入口側に第1膨張弁用制御弁を介装した、
ことを特徴とする請求項9記載の車両用空気調和装置。
A control valve for the first expansion valve interposed on the inlet side of the first expansion valve ,
The vehicle air conditioner according to claim 9, wherein:
第2の室内熱交換器に流入する冷媒を加熱するための補助熱源を設けた、
ことを特徴とする請求項1または3乃至11何れか1項記載の車両用空気調和装置。
An auxiliary heat source for heating the refrigerant flowing into the second indoor heat exchanger was provided.
The air conditioner for a vehicle according to any one of claims 1 to 3, wherein:
室外熱交換器から流出する冷媒を加熱するための補助熱源を設けた、
ことを特徴とする請求項1または3乃至11何れか1項記載の車両用空気調和装置。
An auxiliary heat source for heating the refrigerant flowing out of the outdoor heat exchanger was provided,
The air conditioner for a vehicle according to any one of claims 1 to 3, wherein:
補助熱源が電熱ヒータである、
ことを特徴とする請求項12または13記載の車両用空気調和装置。
The auxiliary heat source is an electric heater,
The air conditioner for a vehicle according to claim 12 or 13, wherein:
補助熱源がバーナである、
ことを特徴とする請求項12または13記載の車両用空気調和装置。
The auxiliary heat source is a burner,
The air conditioner for a vehicle according to claim 12 or 13, wherein:
圧縮機と、
圧縮機の吐出口にその第1ポートが接続された四方弁と、
四方弁の第2ポートにその一端が接続された室外熱交換器と、
室外熱交換器の他端に第1の制御弁を介してその入口が接続された第1の膨張弁と、
第1の膨張弁の出口にその入口が接続され、出口が圧縮機の吸入口に接続された第1の室内熱交換器と、
四方弁の第4ポートに第2の制御弁を介してその冷媒路入口が接続され、冷媒路出口が第1の制御弁と第1の膨張弁との間に接続されたブライン・冷媒熱交換器と、
ブライン・冷媒熱交換器のブライン路にポンプを介して接続された第2の室内熱交換器と、
第1の制御弁と第1の膨張弁との間にその入口が接続され、出口が室外熱交換器の他端に接続された第2の膨張弁とを備え、
四方弁の第2ポートを第3の制御弁を介してブライン・冷媒熱交換器の冷媒路入口に接続し、
四方弁の第3ポートを圧縮機の吸入口に接続した、
ことを特徴とする車両用空気調和装置。
A compressor,
A four-way valve having a first port connected to a discharge port of the compressor;
An outdoor heat exchanger having one end connected to the second port of the four-way valve;
A first expansion valve having an inlet connected to the other end of the outdoor heat exchanger via a first control valve;
A first indoor heat exchanger having an inlet connected to an outlet of the first expansion valve, and an outlet connected to an inlet of the compressor;
Brine / refrigerant heat exchange in which the refrigerant passage inlet is connected to the fourth port of the four-way valve via a second control valve, and the refrigerant passage outlet is connected between the first control valve and the first expansion valve. Vessels,
A second indoor heat exchanger connected to the brine path of the brine / refrigerant heat exchanger via a pump;
A second expansion valve having an inlet connected between the first control valve and the first expansion valve, and an outlet connected to the other end of the outdoor heat exchanger;
Connecting the second port of the four-way valve to the refrigerant passage inlet of the brine-refrigerant heat exchanger via a third control valve;
The third port of the four-way valve was connected to the compressor inlet,
An air conditioner for a vehicle, comprising:
第1,第2の膨張弁として閉動作可能なものを使用した、
ことを特徴とする請求項16記載の車両用空気調和装置。
The first and second expansion valves used can be closed,
The vehicle air conditioner according to claim 16, wherein:
第1の膨張弁の入口側に第1膨張弁用制御弁を介装した、
ことを特徴とする請求項16記載の車両用空気調和装置。
A control valve for the first expansion valve interposed on the inlet side of the first expansion valve ,
The vehicle air conditioner according to claim 16, wherein:
第2の膨張弁の入口側に第2膨張弁用制御弁を介装した、
ことを特徴とする請求項16または18記載の車両用空気調和装置。
A control valve for the second expansion valve is interposed on the inlet side of the second expansion valve ,
The air conditioner for a vehicle according to claim 16 or 18, wherein:
ブライン・冷媒熱交換器の冷媒路出入口の少なくとも一方側にブライ ン・冷媒熱交換器用制御弁を介装した、
ことを特徴とする請求項16乃至19何れか1項記載の車両用空気調和装置。
It was interposed Bligh down-refrigerant heat exchanger control valves on at least one side of the refrigerant passage entrance of the brine-refrigerant heat exchanger,
The vehicle air conditioner according to any one of claims 16 to 19, wherein:
四方弁の第2ポートと室外熱交換器の一端との間に室外熱交換器用制御弁を介装した、
ことを特徴とする請求項16乃至20何れか1項記載の車両用空気調和装置。
A control valve for an outdoor heat exchanger was interposed between the second port of the four-way valve and one end of the outdoor heat exchanger ,
The vehicle air conditioner according to any one of claims 16 to 20, wherein:
圧縮機と、
圧縮機の吐出口にその第1ポートが接続された四方弁と、
四方弁の第2ポートにその一端が接続された室外熱交換器と、
室外熱交換器の他端に第1の制御弁を介してその入口が接続された第1の膨張弁と、
第1の膨張弁の出口にその入口が接続され、出口が圧縮機の吸入口に接続された第1の室内熱交換器と、
四方弁の第4ポートにその冷媒路入口が接続され、冷媒路出口が第1の制御弁と第1の膨張弁との間に接続されたブライン・冷媒熱交換器と、
ブライン・冷媒熱交換器のブライン路にポンプを介して接続された第2の室内熱交換器と、
第1の制御弁と第1の膨張弁との間にその入口が接続され、出口が室外熱交換器の他端に接続された第2の膨張弁とを備え、
四方弁の第3ポートを圧縮機の吸入口に接続し、
ブライン・冷媒熱交換器の冷媒路出入口側一方に第2の制御弁を介装した、
ことを特徴とする車両用空気調和装置。
A compressor,
A four-way valve having a first port connected to a discharge port of the compressor;
An outdoor heat exchanger having one end connected to the second port of the four-way valve;
A first expansion valve having an inlet connected to the other end of the outdoor heat exchanger via a first control valve;
A first indoor heat exchanger having an inlet connected to an outlet of the first expansion valve, and an outlet connected to an inlet of the compressor;
A brine / refrigerant heat exchanger whose refrigerant path inlet is connected to the fourth port of the four-way valve and whose refrigerant path outlet is connected between the first control valve and the first expansion valve;
A second indoor heat exchanger connected to the brine path of the brine / refrigerant heat exchanger via a pump;
A second expansion valve having an inlet connected between the first control valve and the first expansion valve, and an outlet connected to the other end of the outdoor heat exchanger;
Connect the third port of the four-way valve to the suction port of the compressor,
A second control valve was interposed on one of the refrigerant path entrance and exit sides of the brine / refrigerant heat exchanger,
An air conditioner for a vehicle, comprising:
第1,第2の膨張弁として閉動作可能なものを使用した、
ことを特徴とする請求項22記載の車両用空気調和装置。
The first and second expansion valves used can be closed,
The air conditioner for a vehicle according to claim 22, wherein:
第1の膨張弁の入口側に第1膨張弁用制御弁を介装した、
ことを特徴とする請求項22記載の車両用空気調和装置。
A control valve for the first expansion valve interposed on the inlet side of the first expansion valve ,
The air conditioner for a vehicle according to claim 22, wherein:
第2の膨張弁の入口側に第2膨張弁用制御弁を介装した、
ことを特徴とする請求項22または24記載の車両用空気調和装置。
A control valve for the second expansion valve is interposed on the inlet side of the second expansion valve ,
The air conditioner for a vehicle according to claim 22 or 24, wherein:
ブライン加熱用の補助熱源を設けた、
ことを特徴とする請求項2または17乃至25何れか1項記載の車両用空気調和装置。
An auxiliary heat source for brine heating was provided,
The air conditioner for a vehicle according to any one of claims 2 or 17 to 25, wherein:
補助熱源が電熱ヒータである、
ことを特徴とする請求項26記載の車両用空気調和装置。
The auxiliary heat source is an electric heater,
The vehicle air conditioner according to claim 26, wherein:
補助熱源がバーナである、
ことを特徴とする請求項26記載の車両用空気調和装置。
The auxiliary heat source is a burner,
The vehicle air conditioner according to claim 26, wherein:
JP25722693A 1993-10-14 1993-10-14 Vehicle air conditioner Expired - Fee Related JP3563094B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25722693A JP3563094B2 (en) 1993-10-14 1993-10-14 Vehicle air conditioner
US08/323,221 US5598887A (en) 1993-10-14 1994-10-14 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25722693A JP3563094B2 (en) 1993-10-14 1993-10-14 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JPH07108824A JPH07108824A (en) 1995-04-25
JP3563094B2 true JP3563094B2 (en) 2004-09-08

Family

ID=17303429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25722693A Expired - Fee Related JP3563094B2 (en) 1993-10-14 1993-10-14 Vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP3563094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070694A (en) * 2016-04-14 2018-12-21 三电汽车空调系统株式会社 Vehicle air conditioning device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373326B2 (en) * 1995-04-17 2003-02-04 サンデン株式会社 Vehicle air conditioner
JP3331815B2 (en) * 1995-05-23 2002-10-07 株式会社デンソー Vehicle air conditioner
JP4341093B2 (en) * 1999-01-13 2009-10-07 株式会社デンソー Air conditioner
JP4048654B2 (en) * 1999-07-26 2008-02-20 株式会社デンソー Refrigeration cycle equipment
KR101015640B1 (en) * 2003-04-30 2011-02-22 한라공조주식회사 Air conditioning system for vehicle
JP4459776B2 (en) * 2004-10-18 2010-04-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
JP6059860B2 (en) * 2009-03-30 2017-01-11 株式会社日本クライメイトシステムズ Air conditioner for vehicles
JP2012111251A (en) * 2010-11-19 2012-06-14 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP5780166B2 (en) * 2011-02-11 2015-09-16 株式会社デンソー Heat pump cycle
JP6088753B2 (en) 2012-06-13 2017-03-01 サンデンホールディングス株式会社 Air conditioner for vehicles
CN102765308A (en) * 2012-08-01 2012-11-07 江苏晨宇车业有限公司 New-energy cold and heat air exchange system of air conditioner for automobile
JP5712248B2 (en) * 2013-06-04 2015-05-07 株式会社日本クライメイトシステムズ Air conditioner for vehicles
JP6432339B2 (en) * 2014-12-25 2018-12-05 株式会社デンソー Refrigeration cycle equipment
CN107139680B (en) * 2017-05-02 2023-06-16 珠海格力电器股份有限公司 Air conditioning system and control method thereof
CN107160972B (en) * 2017-06-19 2023-05-23 珠海格力电器股份有限公司 Electric automobile, heat pump air conditioner assembly of electric automobile and control method of heat pump air conditioner assembly
JP7330482B2 (en) * 2019-02-26 2023-08-22 株式会社イズミ技研 heat pump system
CN113059980B (en) * 2021-03-31 2022-01-07 比亚迪股份有限公司 Integrated thermal management system and vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586599B2 (en) * 1988-09-22 1997-03-05 ダイキン工業株式会社 Air conditioner
JP3538845B2 (en) * 1991-04-26 2004-06-14 株式会社デンソー Automotive air conditioners
JPH0596940A (en) * 1991-10-07 1993-04-20 Matsushita Electric Ind Co Ltd Air-conditioning device for electrically driven automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070694A (en) * 2016-04-14 2018-12-21 三电汽车空调系统株式会社 Vehicle air conditioning device

Also Published As

Publication number Publication date
JPH07108824A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
JP3563094B2 (en) Vehicle air conditioner
US5598887A (en) Air conditioner for vehicles
US9931905B2 (en) Air conditioning device for vehicle
US9346337B2 (en) Air conditioning device for vehicle
JP6189098B2 (en) Heat pump air conditioning system for vehicles
JP3233771B2 (en) Vehicle air conditioner
JP3799748B2 (en) Air conditioner for vehicles
WO2018198582A1 (en) Vehicular air conditioner
JP2000052757A (en) Air-conditioning and heating equipment for automobile
JPH06143974A (en) Air conditioner
JP2014088093A (en) Vehicle air conditioner and operating method thereof
JP5142032B2 (en) Air conditioner for vehicles
JP2004511384A (en) Heating, ventilation or air conditioning
JP3321871B2 (en) Heat pump type air conditioner for vehicles
CN112543855B (en) Combination valve and vehicle air conditioner using same
JP3718935B2 (en) Air conditioner for vehicles
JP2001354029A (en) Heat pump type air-conditioner for vehicle
JP3275321B2 (en) Automotive air conditioners
JP3460422B2 (en) Vehicle air conditioner
JP4452111B2 (en) Air conditioner for vehicles
JP3339345B2 (en) Vehicle air conditioner
JP3993524B2 (en) Air conditioner for vehicles
JP2001246921A (en) Air conditioning unit and air conditioner for vehicle
JPH0939554A (en) Heat pump heating, cooling and dehumidifying device for electric automobile
KR20240039913A (en) Hvac system of an electric bus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370