JP3562114B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3562114B2
JP3562114B2 JP06247996A JP6247996A JP3562114B2 JP 3562114 B2 JP3562114 B2 JP 3562114B2 JP 06247996 A JP06247996 A JP 06247996A JP 6247996 A JP6247996 A JP 6247996A JP 3562114 B2 JP3562114 B2 JP 3562114B2
Authority
JP
Japan
Prior art keywords
information
air conditioner
calculating
control
storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06247996A
Other languages
Japanese (ja)
Other versions
JPH09250794A (en
Inventor
新一 下出
昌俊 渡辺
知己 梅田
弘 安田
良次 佐藤
喬 加藤
洋治 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP06247996A priority Critical patent/JP3562114B2/en
Publication of JPH09250794A publication Critical patent/JPH09250794A/en
Application granted granted Critical
Publication of JP3562114B2 publication Critical patent/JP3562114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は空気調和機に係り、特に利用者に快適な空調空間を提供する快適空気調和機に関する。
【0002】
【従来の技術】
従来の快適空気調和機は、特開平4−190050号公報に記載のように、静音モードと省エネモ−ドの選択手段を有する制御装置を備えている。そしてこの制御装置は、凝縮器冷却用ファンの速度制御手段に、相対的に低速度の低騒音運転モ−ドと相対的に高速度の省エネモ−ドとを設定するとともに、低騒音運転モ−ドまたは省エネモ−ドに選択的に切り替えるための切替手段を有している。これにより、それぞれの要求に応えた運転が実施可能である。
【0003】
また、特開平4−28949号公報に記載の空気調和機においては、能力モ−ドと静音モ−ドの選択手段を備えており、使用者が静音優先もしくは能力優先を必要に応じて任意に選択できる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術においては、冷・暖能力(空調環境)または静音(騒音)、空調環境に対する消費電力の割合であるエネルギ効率または静音(騒音)の各2指標に対して1指標を優先して空気調和機の運転を図ることについては開示されているものの、冷・暖能力、静音(騒音)およびエネルギ効率の3つの指標の中から2指標以上を同時に考慮して空気調和機を運転することに関して配慮されておらず、使用者のニ−ズにきめ細かく対応する点で十分ではなく、使用者に不満感が残るという不具合があった。
【0005】
ところで使用者にとって、冷・暖能力(暑い、ちょうど良いおよび寒いという量)、消費電力やエネルギ効率(冷・暖能力/消費入力電力で表される量)と騒音(やかましい、がまんできるおよび快適といった量)は、空気調和機を利用する際の重要な評価指標である。この中で例えば評価指標「冷・暖能力」は、実際の室内温度と望ましい温度の温度差が大きいときに、空気調和機を起動する場合に優先度が高い。そして、この場合短時間運転であるから、消費電力よりも静音が空調環境と同程度に優先される。一方、評価指標としての「消費電力」や「エネルギ効率」は、空気調和機の運転時の電力料金に直結するとともに、地球環境保全の面から重要である。また、オフイスや工場向けの業務用空気調和機の消費電力量は膨大であり、例えば夏場の午後には一年中で総電力が最大となる時間帯が存在する。この場合、電力のピ−クカット要請に応えるため、評価指標としての「エネルギ効率」を最優先し、次で、静音(騒音)よりも室内温度を設定値に保つこと、すなわち評価指標「冷・暖能力」が優先される。評価指標「静音」が優先されるのは、周囲騒音が小さい例えば夜間、退勤後のオフィス、病院および睡眠時運転等の場合である。この場合、冷・暖能力/時間は小さくて良い。また、人間の活動量とそれに伴う発熱量はともに比較的少なく、空調能力を余り必要とせず、省エネが重視される。
【0006】
ところで、これら3つの指標を独立に選択することは困難であり、現実にはトレ−ドオフの関係にある。従って、全ての指標を最優先する制御は不可能である。しかしながら、上記したように、利用者が求める3指標の優先度合は空気調和機を運転する周囲の条件により異なる。一般に、同時に3指標全てを最優先する運転の要求は殆ど無く、空気調和機の運転制御範囲内で利用者にとって好ましい2指標を同時に優先して運転することが求められている。
【0007】
本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、空調環境、運転費用および騒音を評価指標にして、利用者の感覚に合った快適な運転が可能な空気調和機を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するための本発明の第1の態様は、圧縮機と凝縮器と減圧手段と蒸発器とを順次配管接続して形成された空気調和機において、冷・暖能力と効率と騒音の3指標を入力可能な快適優先度入力手段と、これら3つの指標が入力された順に指標間に優先度を割当て記憶する快適優先度記憶手段とを設けたものである。
【0009】
上記目的を達成するための本発明の第2の態様は、圧縮機と凝縮器と減圧手段と蒸発器とを備えた空気調和機において、冷・暖能力と効率と騒音の3指標を入力可能な快適優先度入力手段と、これら3つの指標の中の少なくとも2つの指標に付与された優先度を記憶する快適優先度記憶手段とを設けたものである。
【0010】
上記目的を達成するための本発明の第3の態様は、室内機と室外機とを配管接続して構成され、目標室内温度等の室内環境を設定する利用者環境設定手段と、この利用者環境設定手段から入力された設定値を記憶する利用者環境記憶手段と、室内機および室外機の設置された環境における空気温度等の環境情報を検知する環境情報検知手段と、この環境情報検知手段が検知した情報を記憶する環境情報記憶手段とを備えた空気調和機において、冷・暖能力と効率と騒音の3つの評価指標を入力可能な利用者快適優先度入力手段と、この快適優先度入力手段から入力された前記3指標間の優先度を記憶する快適優先度記憶手段とを設けるとともに、利用者環境設定手段および快適優先度入力手段から入力された情報と、環境情報検知手段により検知された環境情報と、利用者環境記憶手段と環境情報記憶手段と快適優先度記憶手段とに記憶された記憶情報とに基づいて空気調和機に制御指令を出力する制御量演算手段を設けたものである。
【0011】
好ましくは、空気調和機の運転状態を検出する運転情報検知手段と、この運転情報検知手段が検知した運転情報を記憶する運転情報記憶手段とを設け、制御量演算手段は運転情報検知手段が検知した情報と、運転情報記憶手段に記憶された情報とに基づいて空気調和機に制御指令を出力するものである。
【0012】
また好ましくは、利用者環境設定手段および快適優先度入力手段から入力された情報と、環境情報検知手段により検知された環境情報と、利用者環境記憶手段と環境情報記憶手段と快適優先度記憶手段とに記憶された記憶情報とに基づいて空気調和機の制御目標を設定する制御目標決定手段と、この制御目標決定手段において設定された制御目標に基づき空気調和機の制御指令値を決定する制御量決定手段とを制御量演算手段に設けたものである。
【0013】
そして、制御量演算手段に、環境情報と利用者環境設定情報と快適優先度情報とから制御目標を決定する制御目標決定手段と、この制御目標に基づき空気調和機の制御量を決定する制御量決定手段を設けてもよい。さらに、制御目標決定手段は空気調和機の運転情報をも利用するようにしてもよい。
【0014】
また、予め設定した環境情報と実測または推定により求められた環境情報との偏差演算手段と、冷凍サイクル制御推定量記憶手段と、標準サイクル制御量演算手段と、性能因子推定量記憶手段と、標準性能因子演算手段と、性能因子増減率推定量記憶手段と、目標性能因子増減率演算手段とを、制御目標決定手段に設けてもよい。
【0015】
また、制御目標決定手段に、予め設定された環境情報と実測の環境情報とを比較する偏差演算手段と、冷凍サイクルの制御推定量を記憶する記憶手段と、標準サイクル制御量演算手段と、冷媒及び空気の物性値記憶手段と、空調機の諸元を記憶する記憶手段と、標準状態での性能因子を演算する演算手段と、標準状態からのずれに起因する性能因子のずれを補正するために推定により求めた性能因子の増減率を記憶する記憶手段と、実際の運転状態に基づいて性能因子を補正するために性能因子の増減率を演算する演算手段とを設けてもよい。
【0016】
また、制御量決定手段に、サイクル機器制御量推定記憶手段と制御量演算手段とを設けるのが好ましく、制御目標決定手段は、環境情報と利用者環境設定情報と快適優先度とを入力し、目標性能因子の増減率を出力するときに学習機能を備えればなお好ましい。さらに、制御量決定手段は、目標性能因子の増減率を入力し、制御量を出力する際に学習機能を備えればなお好ましい。
【0017】
また、制御目標決定手段に、環境情報と利用者環境設定情報と快適優先度を入力して目標性能因子増減率を出力する際、ファジィー推論ルールを用いて推定する推定手段を設けてもよく、制御量決定手段に、性能因子増減率を入力してサイクル制御量を出力する際、ファジィ−推論ルールを用いて推定する推定手段を設けてもよい。
【0018】
さらに、少なくとも環境情報と利用者環境設定情報と快適優先度情報とを入力し、圧縮機と室内熱交換器に付設した冷却ファンと室外熱交換器に付設した冷却ファンの回転数等からなる空気調和機の制御量の指令値を出力する際に、ファジィ−推論を用いて推定する知的制御手段を設けてもよく、この知的制御手段は運転情報をも入力してファジィー推論を実行するものであってもよい。
【0019】
さらに、圧縮機と室内熱交換器に付設した冷却ファンと室外熱交換器に付設した冷却ファンの少なくともいずれかの回転数が可変であり、この可変回転数の機器を変化させて冷凍サイクルの運転状態を制御してもよく、減圧手段または絞り手段の絞り度を可変にして、この絞り度の変化により冷凍サイクルの運転状態を制御してもよい。
【0020】
さらに、冷・暖能力と効率と騒音の3つの指標に対して、利用者がそれぞれ連続的またはほぼ連続的に設定できる設定手段を設けてもよく、冷・暖能力と効率と騒音の3つの評価指標間の優先順を入力できる快適優先度入力手段を設けてもよく、さらに、冷・暖能力と効率と騒音の3指標あるいはこれら3指標と相関の高い制御量の中の少なくとも2つの制御結果を表示する表示手段を設けてもよい。
【0021】
また、圧縮機と室内熱交換器に付設した冷却ファンと室外熱交換器に付設した冷却ファンの中の少なくとも1つの発生する音を時間的に小刻みに変化させるゆらぎ手段を空気調和機に設けてもよい。
【0022】
上記目的を達成するための本発明の第4の態様は、圧縮機と四方弁と室外熱交換器とこの室外熱交換器に送風する室外冷却ファンと膨張弁とを備えた室外機と、室外熱交換器とこの室内熱交換器に送風する室内冷却ファンとを備えた室内機とを配管接続して形成された空気調和機であって、この空気調和機が設置された室外及び室内の環境情報を検知する複数のセンサーを有する環境情報検出手段と、この環境情報検出手段により検出された情報から環境情報を演算する環境情報演算制御装置と、空気調和機の運転状態を検出する複数のセンサーを有する運転情報検知手段と、この運転情報検知手段から得られた情報に基づいて空気調和機を運転制御する空気調和機運転制御装置と、この空気調和機運転制御装置に空気調和機の運転制御量の指令を付与する運転情報演算制御装置と、この空気調和機の消費電力量を検出する電力量検出手段と、空気調和機の利用者が望む空調環境を設定可能な利用者環境設定手段と、空気調和機の室内機の発生する音の大きさを検出可能な騒音検出手段とを備え、前起電力量検出手段から得られた電力量と、前記騒音検出手段が検出した騒音と、前記運転情報演算制御装置で演算された空気調和機の効率とを空気調和機の3つの評価指標とし、この3つの指標間に優先度を設定可能な快適優先度入力手段を設けたものである。
【0023】
【発明の実施の形態】
本発明による空気調和機の実施の形態を、いくつかの実施例により図1ないし図20を用いて説明する。◆
図1は、本発明の一実施例の空気調和機の構成を示すブロック図である。空気調和機7は、室外に設置される正番機101と、屋内103に設置される室内機102とからなり、圧縮機21、四方弁22、室外熱交換器23、減圧装置24、室内熱交換器25を順次配管接続して構成される。冷房運転時には、圧縮機21から吐出された高温高圧のガス冷媒は室外熱交換器23において室外機ファン26から送られる空気により冷却され、高圧の液冷媒となる。この冷媒が減圧装置24に流入し、室内空気温度よりも低い温度の気液二相状態の冷媒となる。そして、室内熱交換器25において、室内ファン27から送風された室内空気より熱を奪い蒸発し、再び圧縮機21に戻る。また暖房運転時には、四方弁22を切り替えることで、冷媒の循環方向を逆転させる。即ち、冷媒は圧縮機21、四方弁22、室内熱交換器25、減圧装置24、室外熱交換器23、四方弁22の順に流れ、再び圧縮機21に戻る。なお、本実施例においては、減圧装置24として、電子膨張弁を使用している。
【0024】
本発明の空気調和機には、利用者が冷・暖能力、効率、騒音の3指標の優先度を選択する快適優先度入力手段5と、利用者が自動運転、冷房運転、暖房運転、ドライ運転、除湿運転等の運転モードや室内空気の温湿度条件、風向、風量のモード、タイマー設定を選択する利用者環境設定手段1が備えられている。快適度優先度入力手段5から入力された各項目の優先度の情報が、快適優先度設定装置29に送られて設定値として記憶装置17(6)に記憶される。また、利用者環境設定手段1から入力された各項目の優先度の情報が、環境条件設定装置13に送られ設定値として記憶装置17(2)2に記憶される。
【0025】
空気調和機の運転においては、運転状態を監視するために、室内機及び室外機に各種のセンサーが設けられており、各センサー(運転情報検知手段9)からの出力を運転情報演算制御装置14が取り込み、記憶装置17(4)に記憶する。センサーとしては、例えば、圧縮機21の回転数検出センサー914、圧縮機21の吐出冷媒温度検出センサー903、室外ファン26の回転数検出センサー912、室内ファン27の回転数検出センサー913、電流計または電力計915がある。
【0026】
一方、室内機102及び室外機101に環境情報を得るためのセンサーが設けられており、各センサーからの出力を環境情報演算制御装置15が取り込み、記憶手段17(4)に記憶する。この環境情報用センサーとしては、例えば、室外温度検出センサー33、室外湿度検出センサー34、室内吸込み空気温度検出センサー901、室内吸込み空気湿度センサー32、室内吹出し空気温度検出センサー902、室内吹出し空気湿度センサー109、輻射センサー111等がある。
【0027】
空気調和機は、例えば、次のように運転される。利用者が利用者環境設定手段1から入力した利用者環境情報は、環境条件設定装置13で設定され、記憶装置17(2)に記憶される。そして、この情報に対応する圧縮機21の回転数、室外ファン26の回転数、室内ファン27の回転数等の空気調和機の運転条件を、予め記憶装置17(10)に記憶されている運転パターン情報から空気調和機の制御目標設定手段81が選択する。この情報に基づいて空気調和機運転制御装置16が圧縮機21、室外ファン26、室内ファン27を駆動する。なお、これらの機器の駆動に必要な電力は電源28から供給される。空気調和機運転制御装置16には、演算回路の他に、圧縮機モータ等の回転数を変化させるインバータ回路、交流電源と直流電源とを変換する変換回路等の回路も含まれる。また、圧縮機吐出温度センサー903で検出された温度が、予め記憶装置17に記憶されている圧縮機回転数に対する圧縮機吐出温度となるように、膨張弁(減圧装置4)の弁開度を制御してサイクル内を流れる冷媒の循環量が調整される。自動運転モードの時は、室内吸込み空気温度センサー901で検出した空気温度と利用者が設定した温度との差を空気調和機運転制御装置16が計算し、その差に応じて、圧縮機21、室外ファン26および室内ファン27の回転数、膨張弁(減圧装置)24の弁開度にフィードバック制御するようにしてもよい。
【0028】
図2は本発明における情報の流れを示す図である。図2に示すように、制御量演算手段8が空気調和機7に接続されており、この制御量演算手段8には目標室内温度等の室内環境を設定する利用者環境設定手段1とこの利用者環境設定手段1により入力した情報を記憶する利用者環境記憶手段2、後に詳述する温度や湿度等の環境情報を検知する環境情報検知手段3と、この環境情報検知手段3が検知した情報を記憶する環境情報記憶手段4、および快適優先度入力手段5とこの快適優先度入力手段5を用いて入力した情報を記憶する快適優先度記憶手段6が接続されている。ここで、快適優先度入力手段5は、空調環境あるいは室内温度時間変化率で表される空気調和機の冷・暖能力を示す冷・暖能力51、空気調和機の消費電力あるいはエネルギ効率で表される効率52、および騒音53の3指標の中の少なくとも2指標を、利用者が任意に設定するものである。
【0029】
制御量演算手段8は、利用者環境設定手段1、利用者環境記憶手段2、環境情報検知手段3、環境情報記憶手段4、快適優先度入力手段5及び利用者優先度入力記憶手段6からの情報に基づいて空気調和機7の制御量を演算し、その演算結果に基づいて空気調和機7を制御する。ここで、空気調和機のエネルギ効率は、室内での冷・暖能力すなわち、冷房能力あるいは暖房能力(kW)を消費電力量(kW)で除した値であり、室内温度時間変化率は、単位時間当りの室内温度の増減率で表わされる。
【0030】
ところで、空気調和機の利用者にとって、冷・暖能力(暑い、ちょうど良い、寒い)、消費電力やエネルギ効率(=冷・暖能力/消費入力電力)、および騒音(やかましい、がまんできる、快適)の3指標は、空気調和機を利用する際の重要な指標であることは前述したとおりであり、冷・暖能力、効率、および騒音の3指標に対して利用者が優先度合を快適優先度入力手段5から選択できれば、快適かつ複合的で総合的な利用者ニ−ズを反映した空気調和機の運転を実現できる。
【0031】
図2に示した情報の流れに対し、空気調和機の運転情報をも利用する情報の流れを図3に示す。制御量演算手段8には、運転情報検知手段9およびこの運転情報検知手段9から検知された情報を記憶する運転情報記憶手段10が接続されており、制御量演算手段8はこれらの情報をも用いて空気調和機7を制御している。なお、現在の空気調和機の主流はヒ−トポンプ式であるから、冷房運転時には、室内熱交換器は蒸発器として、室外熱交換器は凝縮器として働く。一方、暖房運転時には、室内外の熱交換器はそれぞれ凝縮器および蒸発器として、冷房運転時とは逆に作用する。このヒートポンプ式空気調和機の運転情報の検出手段9の詳細を図3に示す。
【0032】
運転情報の検出手段9は、空気調和機の室内機本体内部又は本体近傍に設けた空気出口部の吸込空気温度931を検出する吸込温度検出手段901、空気調和機の室内機本体内部又は本体近傍に設けた空気出口部の吹出空気温度932を検出する吹出温度検出手段902、圧縮機の吐出部に設けた吐出冷媒温度933を検出する吐出温度検出手段903、圧縮機の吸込部に設けた吸込冷媒温度934を検出する吸込温度検出手段904、圧縮機の吐出部に設けた冷媒吐出圧力935を検出する圧縮機吐出圧力検出手段905、圧縮機の吸込部に設けた吸込冷媒圧力936を検出する圧力検出手段906、室外熱交換器内に設けた冷媒の飽和温度937を検出する室外熱交換器配管中間温度検出手段907、室内熱交換器に設けた室内熱交換器の冷媒飽和温度938を検出する室内熱交換器配管中間温度検出手段908、室内熱交換器の出口に設けた出口冷媒温度939を検出する室内熱交換器出口温度検出手段909、電動膨張弁等の減圧装置に設けた減圧装置の入口冷媒温度940を検出する減圧装置入口温度検出手段910、室内熱交換器の出口に設けた室内熱交換器出口冷媒圧力941を検出する室内熱交換器出口圧力手段911、室外ファンに設けた室外ファンの回転数942を検出する室外ファン回転数検出手段912、室内ファンに設けた室内ファンの回転数943を検出する室外ファン回転数検出手段913、圧縮機に設けた圧縮機の回転数944を検出する圧縮機回転数検出手段914、圧縮機モ−タ近傍に設けた消費電力945を推定する圧縮機モ−タ入力電流検出手段915、室内ファン近傍に設けたモ−タ消費電力946を推定する室内ファンモ−タ入力電流検出手段916、室外ファン近傍に設けたモ−タ消費電力947を推定する室外ファンモ−タ入力電流検出手段917、室内熱交換器の入口部に設けた室内熱交換器の冷媒温度948を検出する室内熱交換器入口温度検出手段909、室外熱交換器の入口部に設けた室外熱交換器の入口部冷媒温度949を検出する室外熱交換器入口温度検出手段919、室外熱交換器の出口部に設けた室外熱交換器の冷媒温度950を検出する室外熱交換器出口温度検出手段920、室内熱交換器の出口部に設けた室外熱交換器の出口部の温度951を検出する室内熱交換器出口部温度検出手段921を備えている。
【0033】
これら検出手段の中で、熱交換器23、25や減圧機構24や圧縮機21の配管内の冷媒温度の検出には、配管表面に取り付けた熱電対、サ−ミスタ等を用いる。ここで、冷房能力や暖房能力および消費電力の算出には、図9に示した全ての情報を必ずしも必要とはしない。コストや要求精度を勘案して、この中のいくつかのセンサーを選択的に用いれば良い。電流検出手段としては各種電流計があり、回転数の検出にはエンコーダ、パルス回転計、タコジェネレータ等を、圧力の検出にはブルドン管式圧力計、歪ゲージ式圧力計等がある。なお、これらの検出値はディジタル計算機で処理される都合上、ディジタル化が容易な信号が得られるものが望ましい。
【0034】
利用者が入力する冷・暖能力、効率、騒音の快適優先度の3指標は、具体的には次のものに対応している。◆
冷・暖能力の指標は、室内機の冷房能力、暖房能力や、室内空気温度の上昇率や下降率に対応する。ここで、室内機の冷房運転時の冷房能力及び暖房運転時の暖房能力は、次式で表される。
【0035】
Q=ρ・V・Δh ・・・・・・(1)
Q:冷房能力または暖房能力
ρ:吸込み空気の密度
V:室内ファンを流通する空気の体積流量
Δh:室内吸込み空気と吹出し空気とのエンタルピー差
また、冷房運転時の冷房能力は次式でも与えられる。一般に空気は湿り空気であり、冷房運転時には減湿を生じるため、空気の顕熱量と潜熱量を考慮する必要がある。
【0036】
Q=ρ・V・Cp・ΔT+hw・ρ・V・Δx ・・・・・(2)
Q :冷房能力
ρ :吸込み空気の密度
V :室内ファンを流通する空気の体積流量
Cp:空気の比熱
ΔT:室内吸込み空気と吹出し空気との温度差
hw:水のエンタルピー
Δx:室内吸込み空気と吹出し空気との絶対湿度差
暖房運転時の暖房能力は、顕熱量だけを考慮すればよいので、式(2)の第1項のみとなる。
【0037】
Q=ρ・V・Cp・ΔT ・・・・・(3)
Q :暖房能力
ρ :吸込み空気の密度
V :室内ファンを流通する空気の体積流量
Cp:空気の比熱
ΔT:室内吸込み空気と吹出し空気との温度差
ここで、空気の比熱、空気の密度、水のエンタルピー及び湿り空気線図は予め記憶装置17に記憶されている。室内吸込み及び吹出し空気の温度(例えば乾球温度、湿球温度)は、それぞれ室内吸込み空気温度検出センサー901と室内吹出し空気温度検出センサー902で検出する。また、室内吸込み及び吹出し空気の湿度(例えば相対湿度)は、各々室内吸込み空気湿度センサー32、室内吹出し空気湿度センサー109で検出する。空気の密度、空気の絶対湿度は、記憶装置17に記憶されている湿り空気線図上で、乾球温度と湿球温度、乾球温度と相対湿度、湿球温度と相対湿度のいずれかの組み合わせにから決定される。また室内ファンを流通する空気の体積流量は、予め記憶装置17に記憶されているファン回転数とファン風量(体積流量)との関係から、室内ファン回転数検出センサー913で検出された回転数の情報から算出される。また、室内に設けられている輻射計111からの情報を考慮してもよい。◆
なお、上記冷房能力、暖房能力及び室内温度の上昇率や下降率は、制御量演算手段8で演算され、その情報は記憶装置17に記憶される。
【0038】
効率の指標は、消費電力量や成績係数に対応している。本実施例では、消費電力量は電源28と空気調和機運転制御装置16との間に設けられている電流計915から環境情報検知手段14(3)が検出し、その情報を記憶装置17(4)に記憶する。ここで、成績係数は、冷房運転時、暖房運転時において、それぞれ冷房能力と入力、暖房能力と入力との比である。入力は前述の消費電力量であり、冷房能力、暖房能力は前述の式(1)から式(3)で表される量である。
【0039】
ところで、制御部の消費電力が空気調和機の中で占める割合が相対的に少ない場合には、空気調和機の消費電力Wは、圧縮機の消費電力Wと室内冷却ファンの消費電力Wと室外冷却ファンの消費電力Wの和で表される。圧縮機の消費電力(W)945は、モ−タを含む圧縮機の電力特性が既知であるから、圧縮機モ−タの入力電流検出手段915が検出した入力電流値から算出できる。室内冷却ファンの消費電力(W)946および室外冷却ファンの消費電力(W)947を、室内冷却ファンに設けた電流検出手段916および室外冷却ファンに設けた電流検出手段917で検出された入力電流値から算出する。勿論製造コストを許容出来る場合には、各モ−タの消費電力を電力計で直接計測するかまたは消費電流量を電流計を用いて間接的に検出しても良い。省エネルギ−の尺度であるエネルギ効率は、空気調和機の冷房または暖房能力qを消費電力Wで除した値であるから、上式を用いて冷・暖能力を算出して求めることができる。◆
なお、上記消費電力量や成績係数は、制御量演算手段8で演算され、その情報は記憶装置17(4)に記憶される。
【0040】
騒音の指標は、室内機の運転音に対応する。本実施例では、室内機の騒音は室内ファンによる送風音が支配的であり、またファンの送風音はファンの回転数の6乗に比例するため、予め記憶装置17(4)に記憶されているファン回転数と送風音との関係から運転音を算出する。また、室内機に騒音計または騒音検出用のマイクロフォンを設置してもよい。
【0041】
騒音の指標は、室内と室外の2種類の騒音に対応する。室内騒音は、室内熱交換器に設けた冷却用のファンの騒音とそのファンを駆動するモ−タの電磁音と管内を流れる冷媒の流動音からなる。一方、室外騒音は、さらに圧縮機音で構成される。この中で、モ−タ電磁音、管内を流れる冷媒流動音、圧縮機音は、それぞれモ−タ又は冷媒配管又は圧力容器でほぼ密閉された壁を透過して放射され、それらの壁の表面振動の大きさにほぼ比例するので、表面にエネルギ−を消失可能なダンピング材を添付する方法で解決できる例が多い。
【0042】
一方、空気調和機の主たる騒音源である室内外のファンにおいて発生する騒音の原因は、ファンの表面及び周囲近傍での渦である。しかし、この渦の発生を防止するために、冷却風の流れを阻害する密閉又は半密閉構造を空気調和機が採用することは不可能である。したがって騒音の有効な低減策は、ファンを大型化することであるが、コンパクト性を要求される空気調和機にとってはこの手法は採用できるものではない。なお、ファン騒音はファンの回転数の約6乗に比例するので、予め記憶装置17(4)に記憶されているファン回転数と送風音との関係から運転音を算出する。また、室内機に騒音計または騒音検出用のマイクロフォン112を設置して騒音を検出するようにしてもよい。なお、室内機の運転音は、運転情報演算制御装置14で演算され、その結果は記憶装置17に記憶される。
【0043】
図5に、環境情報検知手段3の詳細を示す。環境情報検知手段3は、室内温度を検出する室内温度検知手段301、室内湿度を検出する室内温度検知手段302、室外温度を検出する室外温度検知手段303、室外湿度を検出する室外温度検知手段304、日射量を検出する日射量検知手段305の各検知手段を備えている。これらの情報の中で、室内温度は空気調和機の運転による吸熱あるいは排熱により変化し、室内湿度は加湿あるいは除湿により変化する。なお、これらの情報全てを必ずしも必要とする訳ではなく、必要に応じて使いわければ良い。
【0044】
図6に、制御量演算手段8の詳細を示す。制御量演算手段8は、室内温度等の環境情報と、目標室内温度等の利用者環境設定情報と、快適優先度情報との3種の情報から、制御目標を決定する制御目標決定手段81と、この制御目標決定手段81により決定された制御目標に基づき、空気調和機7の制御量を決定する制御量決定手段82とから構成されている。◆
ところで、制御量演算手段8は、上記3種の情報に加えて図3で示した運転情報をも利用するようにしても良い(図7参照)。この場合、更に快適な空気調和機の運転が可能になる。
【0045】
図8に、図6中に示した制御目標決定手段81の詳細を示す。利用者設定環境情報の一つである目標室内温度と環境情報としての室内温度との温度差を偏差演算手段811において演算する。そして、温度差と、サイクル制御量である圧縮機や冷却ファンの回転数の基準状態における関係等が、サイクル制御推定量記憶手段812に記憶されている。偏差演算手段811とサイクル制御推定量記憶手段812の各出力情報に基づいて、基準となるサイクル制御量を標準サイクル制御量演算手段813が演算する。
【0046】
冷・暖能力因子推定量記憶手段814には、基準となる効率、空調能力あるいは標準の室内温度の時間変化率の冷・暖能力、騒音の各指標もしくは3これら3指標と相関の高い量、すなわち性能因子とサイクル制御量の関係が記憶されている。標準冷・暖能力因子演算手段815は、標準サイクル制御量演算手段813の出力情報に基づいて冷・暖能力因子推定量記憶手段814を参照し、基準となる性能因子を演算する。
【0047】
冷・暖能力性能因子増減率推定量記憶手段816は、効率、冷・暖能力と騒音の3指標の増減率あるいは3指標と相関の高い量、すなわち性能因子の増減率と快適優先度の関係を記憶する。
【0048】
目標性能因子増減率演算手段817は、標準性能因子演算手段815の出力に基づいて能力因子増減率推定量記憶手段816を参照するとともに、快適優先度入力手段5からの入力に基づき快適優先度記憶手段6を参照して得られた快適優先度情報を用いて、効率、冷・暖能力、騒音の3指標の目標性能因子増減率を演算する。
【0049】
この図8に示した実施例では、デ−タベ−ス化して記憶した情報を用いているが、温度が高い/低い、音が大きい/小さいという評価は、使用者の感覚により決定されるものであり、あいまいさが残る。従って、ある予め定められた制御ル−ルを用い、ファジィ演算を使えば、サイクル制御推定量を計算するときや、効率、冷・暖能力、騒音の3指標の目標性能因子の増減率を演算するときに有効である。
【0050】
次に、図9に運転情報をも用いて目標能力因子の増減率を求める図8の変形例を示す。この場合、制御量決定手段82は、図7に示した冷・暖能力因子推定量記憶手段814の代わりに、物性値記憶手段818及び空気調和機諸元記憶手段819を備えている。そして、物性値記憶手段818には冷媒及び空気の物性値が記憶されており、空気調和機諸元記憶手段819には圧縮機の吐出量やファンの吐出風量と回転数の関係が記憶されている。標準能力因子演算手段815は、標準サイクル制御量演算手段813と偏差演算手段8101の各出力情報と空気調和機の運転情報とを用いて標準能力因子を演算する。図8に示した実施例では、標準能力因子を演算する際、温度差とサイクル制御量である圧縮機や冷却ファンの回転数の関係を用いているが、本変形例においては、冷媒及び空気の物性値と、空気調和機の諸元を用いて標準能力因子を求めることができ、制御システムが簡素になる。
【0051】
図10に、制御量決定手段82の詳細な構成を示す。制御目標決定手段81が有するサイクル機器制御推定量記憶手段821には、冷・暖能力因子増減率とサイクル制御量の関係が記憶されている。制御量演算手段822は、目標能力因子増減率演算手段817の出力を用いて、サイクル機器制御推定量記憶手段821を参照してサイクル機器の制御量を求め、圧縮機や、室内熱交換器冷却ファンや、室外熱交換器冷却ファン等のの空気調和機7のサイクル機器を制御する。
【0052】
次に、快適優先度の入力後の空気調和機の制御装置の作用について説明する。◆
利用者が快適優先度の各指標に対し、例えば5段階評価で優先度を快適優先度入力手段5から入力すると、その情報が快適優先度設定装置29に設定され、記憶装置17に記録される。空気調和機運転制御装置16は、記憶装置17から利用者の入力した環境条件を取り出し、その情報に対応した基準となる標準運転条件を予め記憶装置17に記憶されている運転条件情報から選択する。この運転条件の情報としては、例えば圧縮機の回転数や室内及び室外のファンの回転数がある。この時、空気調和機運転制御装置16において、標準運転時における冷・暖能力、効率や運転音等の指標が算出される。次に、利用者が入力した快適優先度入力手段5から入力された値を、快適優先度設定装置29において各項目の重み付け係数に変換し、記憶装置17に記憶する。空気調和機運転制御装置16は、この情報を記憶装置17から取り出し、先に算出した標準運転時における冷・暖能力、効率や運転音の指標の各々に重み付けし、その情報に対応する運転条件を予め記憶装置17に記憶されている運転条件情報から選択し、実運転条件情報とする。この実運転条件の情報としては、上記したと同様、例えば圧縮機の回転数や室内及び室外のファン回転数がある。空気調和機運転制御装置16は、この圧縮機の回転数や室内及び室外ファンの回転数の設定値に基づいて、圧縮機21、室外ファン26及び室内ファン27を制御する。
【0053】
また、空気調和機の運転中においては、運転情報演算制御装置14と環境情報演算制御装置15とが作動して各種情報を逐次センシング及び演算し、新しい情報を記憶装置17に記憶する。空気調和機運転制御装置16もまた逐次記憶装置17から新しい情報を引き出し、再度演算して得られた実運転条件情報と標準運転情報とを常に比較し、利用者が入力した設定に沿うようにフィードバック制御を行う。
【0054】
図11から図14に、上述した制御に用いられる快適優先度入力手段5の詳細を示す。快適優先度入力手段5は、3つの指標、すなわち、冷・暖能力あるいは室内温度の時間変化率で表される空気調和機の冷・暖能力501と、空気調和機の消費電力あるいはエネルギ効率で表される効率502と、騒音503の3指標の中の少なくとも2指標を、利用者が任意に設定できるようにするものである。快適優先度入力手段5には、冷・暖能力、効率、騒音の3種の指標に対応して、冷・暖能力選択範囲表示部511、消費電力選択範囲表示部521、騒音選択範囲表示部531が備えられており。それぞれの表示部には選択範囲ボタンが複数個、図11の場合には各6個、設置されている。各選択範囲ボタン512、522、532を押した順にこれら3指標間の優先順位が割り当てられ、各選択範囲の優先順位に応じた信号が快適優先度入力手段5から出力される。
【0055】
本実施例においては、初めにある指標について範囲選択ボタン群中の1つのボタンを押すと、他の選択指標の選択可能な範囲がボタンの点灯あるいは点滅により利用者に明示され、利用者は点灯または点滅している範囲の中から選択することになる。この様子を図12に示す。各選択指標は、6段階の選択範囲を有している。最優先として、冷・暖能力選択指標表示部513の選択範囲ボタン群514中のボタン515を押す。すると、消費電力指標表示部523の選択ボタン群524中の第3から5段階の範囲を示すボタン525が点灯する(塗りつぶし表示)。同様に、騒音指標表示部533の選択ボタン群534中の第1から3段階の範囲を示すボタン535が点灯する。そこで、次に優先させるものとして、例えば、消費電力の選択範囲ボタン群中の第4段階のボタンを押したとすれば、騒音の選択範囲ボタン群中の第1段階のボタンのみが点灯する。この結果、各選択範囲の優先順位に応じた信号が、快適優先度入力手段5から出力される。
【0056】
ところで、定常運転の場合には、冷・暖能力は設定温度に基づいて決められ、選択する必要がない、そこで、消費電力と騒音について選択可能な範囲をボタンの点灯あるいは点滅により利用者に明示し、その範囲の中で選択できるようにする。この場合、消費電力と騒音選択ボタンのいずれか先に押した方が優先される。
【0057】
図13に、快適優先度入力手段5の他の実施例を示す。快適優先度入力手段5の表示部は、冷・暖能力516、消費電力526、騒音536の選択指標について、それぞれの優先割合が518,528,538であるとして円グラフ上に示される。各指標毎の選択割合は、0から100%の間の値であり、全ての選択割合の合計は100%である。それぞれの選択ボタン517、527、537を押す時間又は回数により、各指標の優先割合が円グラフで表示され、選択範囲の優先割合の多い順に優先度が設定され、優先順位の割合に応じた信号が快適優先度入力手段5から出力される。
【0058】
図14に、快適優先度入力手段5のさらに他の変形例を示す。快適優先度入力手段5は、冷・暖能力指標表示部543、消費電力指標553、騒音選択指標表示部563を有しており、それぞれの表示部には、選択範囲ボタン群545,555,565が設けられている。定常運転の場合に冷・暖能力、消費電力、騒音の運転範囲を、ボタンを点灯させて利用者に明示し、利用者はこの表示から、例えば電気を多く使用しているようであれば、消費電力選択範囲ボタンを用いて、消費電力量が低減するように空気調和機に指令を与える。また、騒音が気になるようであれば、騒音選択範囲ボタンを用いて騒音が低減するように空気調和機に指令を与える。さらに、暑過ぎるまたは寒過ぎる場合には、冷・暖能力選択ボタンを用いて、冷・暖能力を変化させ指令を与える。また、各指標に対して、ロックボタン544、554、564が設けられており、このロックボタンを押すことにより、その選択指標の選択値を保持することができる。
【0059】
なお、本実施例では、快適優先度入力手段5と利用者環境設定手段1とは分離しているが、一体化されていてもよい。また、快適優先度設定装置29、運転情報演算制御装置14、環境条件設定装置13、環境情報演算制御装置15、空気調和機運転制御装置16および記憶装置17は分離しているが、一体化されていてもよい。
【0060】
また、冷・暖能力及び効率、騒音の各指標あるいはこれら各指標と相関の高い各量の中の少なくとも2指標(2量)に対する制御結果を表示する表示手段を設けるようにしてもよい。なお、表示個所は限定されるものでなく、快適優先度入力手段5と利用者環境設定手段3を一体にした部材内に制御結果を表示する構成であれば、コスト低減とスペ−ス効率の工場が可能となる。
【0061】
図15に、知的制御量演算手段11を用いて空気調和機を制御する本発明の他の実施例を示す。知的制御量演算手段11は、環境情報と、利用者環境設定情報と、快適優先度情報と、運転情報とに基づいて、ファジィ−演算又は学習機能を有するニュ−ラルネットワ−クを用いて知的制御量を演算する。この知的制御量の演算の一例を、図16ないし図21を用いて以下に示す。
【0062】
図16に、室内機熱交換器に付設する冷却ファンの回転数を推定する推論ル−ルの一例を示す。この例においては、3指標の中の効率指標としての消費電力と、冷・暖能力指標としての冷・暖能力とを取上げいる。この2つの指標に対して、サイクル制御量の一例として室内機の熱交換器に付設する冷却ファンの回転数を推定している。具体的には、消費電力を下げるとともに冷・暖能力上げたい時には圧縮機の回転数を下げ、冷却ファンの回転数を上げる。また、冷・暖能力を維持しかつ消費電力を下げたい時は、冷却ファンの回転数を上げて冷・暖能力を高めると共に、圧縮機の回転数を下げて圧縮機への電気入力を減少させる。なおこの時、騒音は制御されない。
【0063】
図17に、圧縮機の回転数を推定する推論ル−ルの一例を示す。この場合、3指標の中で、冷・暖能力と騒音を用いて、サイクル制御量の一つである圧縮機の回転数を推定する。そして、冷・暖能力を上げかつ騒音を小さくしたい時には、冷却ファンの回転数を下げ、圧縮機の回転数を上げる。また、騒音が大きくてもよいから急速に冷房したいときには、冷却ファンの回転数と圧縮機の回転数の双方とも増加させる。このとき、消費電力は制御されない。このように、各サイクルの制御量と3指標あるいはこの3指標と相関の高い3つの制御量の中から少なくとも2指標又は2つの制御量を組合せたル−ルを作成できる。
【0064】
図18から図20に、ファジィ−制御を用いた場合のメンバシップ関数の一例を示す。この中で、図18は効率の変化量、図19は騒音の変化量、図20は冷・暖能力の変化量のメンバシップ関数を夫々示している。メンバシップ関数に対する適合度を表すグレ−ドを求め、図16および図17に示したす制御ル−ルを用いて冷却ファンや圧縮機の回転数を制御する。
【0065】
なお上記実施例では、騒音として空気調和機から室内に放射される室内騒音について主として述べたが、屋外の環境を保全する必要が有るときは室外騒音に対して、同様な考え方で推論ル−ルを構築して対処すれば良い。◆
また、上記実施例においては、室内機と室外機が分離したセパレ−ト型空気調和機について説明したが、例えば窓掛け型空気調和機、冷蔵庫、ショ−ケ−スのように冷凍サイクルがすべて同一空間にあるようなものでも、上述した方法と同様な方法で対処できる。
【0066】
以上述べたように、本実施例によれば、空気調和機において、冷・暖能力、消費電力やエネルギ効率(=冷・暖能力/消費入力電力)と騒音の3指標に対して利用者が複数の優先度合を選択できるので、利用者は快適な空気調和空間を得ることができる。
【0067】
【発明の効果】
以上説明したように、本発明に係る空気調和機においては、冷・暖能力、エネルギ効率(電力料金等)と騒音の3つの評価指標に対して利用者が複数の優先度合を選択できるので、利用者の感覚にフィットした空気調和機の運転ができ、従って快適な空気調和空間を実現できる。
【図面の簡単な説明】
【図1】本発明に係る空気調和機の構成を示す模式図である。
【図2】本発明の一実施例の情報の流れを示す図である。
【図3】本発明の他の実施例の情報の流れを示す図である。
【図4】本発明の一実施例に用いられる運転情報検知手段の詳細な構成を示す図である。
【図5】本発明の一実施例に用いられる環境情報検知手段の詳細な構成を示す図である。
【図6】本発明の一実施例の制御量演算手段の詳細な構成を示す図である。
【図7】本発明の制御量演算手段の他の実施例の詳細な構成を示す図である。
【図8】本発明の一実施例の制御目標決定手段の詳細な構成を示す図である。
【図9】本発明の制御目標決定手段の他の実施例の詳細な構成を示す図である。
【図10】本発明の一実施例の制御量決定手段の詳細な構成を示す図である。
【図11】本発明の一実施例の快適優先度入力手段の詳細な構成を示す図である。
【図12】図11に示した快適優先度入力手段の動作状態を示す図である。
【図13】本発明の快適優先度入力手段の他の実施例の詳細な構成を示す図である。
【図14】本発明の快適優先度入力手段の更に他の実施例の詳細な構成を示す図である。
【図15】ファジィ−又はニュ−ラルネットワ−クを用いた空気調和機の模式図である。
【図16】ファジィ−を用いた場合に、室内機熱交換器に付設する冷却ファンの回転数を推定する推論テーブルの一例である。
【図17】ファジィ−を用いた場合に、圧縮機の回転数を推定する推論テーブルの一例である。
【図18】ファジィ−制御に用いる効率指標のメンバシップ関数の一例である。
【図19】ファジィ−制御に用いる騒音指標のメンバシップ関数の一例である。
【図20】ファジィ−制御に用いる冷・暖能力指標のメンバシップ関数の一例である。
【符号の説明】
1……利用者環境設定手段、2……利用者環境記憶手段、
3……環境情報検知手段、4……環境情報記憶手段、
5……快適優先度入力手段、6……快適優先度記憶手段、
7……空調機器、8……制御量演算手段、9……運転情報検知手段、
10……運転情報記憶手段、83……制御目標決定手段、
82……制御量決定手段、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner, and more particularly to a comfortable air conditioner that provides a user with a comfortable air-conditioned space.
[0002]
[Prior art]
A conventional comfortable air conditioner is provided with a control device having means for selecting a silent mode and an energy saving mode, as described in Japanese Patent Application Laid-Open No. Hei 4-190050. The control device sets a relatively low-speed low-noise operation mode and a relatively high-speed energy-saving mode in the speed control means of the condenser cooling fan, and also sets the low-noise operation mode. Switching means for selectively switching to the power saving mode or the energy saving mode. As a result, it is possible to perform an operation corresponding to each request.
[0003]
The air conditioner described in Japanese Patent Application Laid-Open No. 4-28949 is provided with means for selecting a performance mode and a silent mode, and the user can arbitrarily prioritize a silent mode or a capacity mode as necessary. You can choose.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional technology, one index is prioritized for each of two indexes of cooling / heating capability (air-conditioning environment) or noise (noise) and energy efficiency or noise (noise) which is a ratio of power consumption to the air-conditioning environment. Although it is disclosed to operate the air conditioner by operating the air conditioner, the air conditioner is operated by simultaneously considering two or more of the three indices of the cooling / heating capability, the quietness (noise), and the energy efficiency. However, it is not enough to respond to the needs of the user in a detailed manner, and there is a problem that the user remains unsatisfied.
[0005]
By the way, for the user, the cooling and warming ability (the amount of hot, just right and cold), the power consumption and energy efficiency (the amount expressed by the cooling and warming ability / input power consumption) and the noise (noisy, comfortable and comfortable) Is an important evaluation index when using an air conditioner. Among them, for example, the evaluation index “cooling / heating capability” has a high priority when the air conditioner is started when the temperature difference between the actual room temperature and the desired temperature is large. In this case, since the operation is a short-time operation, the noise is given higher priority than the power consumption in the air-conditioning environment. On the other hand, “power consumption” and “energy efficiency” as evaluation indices are directly linked to the power rate during operation of the air conditioner, and are important from the viewpoint of global environmental conservation. Further, the power consumption of commercial air conditioners for offices and factories is enormous. For example, in the afternoon of summer, there is a time zone in which the total power becomes maximum during the year. In this case, in order to respond to the demand for peak cut of electric power, "energy efficiency" as an evaluation index is given top priority, and then, the room temperature is maintained at a set value rather than noise (noise). The warming ability is given priority. The evaluation index “silent” is prioritized when the ambient noise is small, for example, at night, in an office after leaving work, in a hospital, or when driving during sleep. In this case, the cooling / heating ability / time may be small. In addition, both the amount of human activity and the amount of heat generated therefrom are relatively small, so that air conditioning capacity is not required so much and energy saving is emphasized.
[0006]
Incidentally, it is difficult to independently select these three indices, and in reality, they are in a trade-off relationship. Therefore, it is impossible to perform a control in which all the indexes have the highest priority. However, as described above, the priority of the three indices required by the user differs depending on the surrounding conditions for operating the air conditioner. Generally, there is hardly any demand for operation in which all three indices are given the highest priority at the same time, and it is demanded that the user preferentially operate two indices simultaneously within the operation control range of the air conditioner.
[0007]
The present invention has been made to solve the above-described problems, and has an object to make it possible to drive comfortably in accordance with a user's sense by using an air-conditioning environment, operation cost, and noise as evaluation indexes. It is to provide a simple air conditioner.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an air conditioner formed by sequentially connecting a compressor, a condenser, a pressure reducing means, and an evaporator with pipes, and has a cooling / heating capability, efficiency, and noise. And a comfort priority input means capable of inputting the three indices, and a comfort priority storage means for allocating and storing priorities among the indices in the order in which these three indices are input.
[0009]
According to a second aspect of the present invention to achieve the above object, an air conditioner including a compressor, a condenser, a decompression means, and an evaporator can input three indices of cooling / heating capability, efficiency, and noise. A comfortable priority input means, and a comfort priority storage means for storing the priority given to at least two of the three indices.
[0010]
A third aspect of the present invention for achieving the above object is a user environment setting means configured by connecting an indoor unit and an outdoor unit with a pipe, and setting an indoor environment such as a target indoor temperature, User environment storage means for storing a set value input from the environment setting means, environment information detection means for detecting environment information such as air temperature in an environment in which an indoor unit and an outdoor unit are installed, and this environment information detection means User priority input means capable of inputting three evaluation indices of cooling / heating ability, efficiency and noise in an air conditioner provided with environmental information storage means for storing information detected by the user; A comfort priority storage means for storing the priority among the three indices input from the input means, and information input from the user environment setting means and the comfort priority input means, and Control amount calculation means for outputting a control command to the air conditioner based on the known environment information and the storage information stored in the user environment storage means, the environment information storage means and the comfort priority storage means is provided. Things.
[0011]
Preferably, operating information detecting means for detecting an operating state of the air conditioner, and operating information storing means for storing operating information detected by the operating information detecting means are provided, and the control amount calculating means is controlled by the operating information detecting means. The control command is output to the air conditioner based on the information thus obtained and the information stored in the operation information storage means.
[0012]
Also preferably, information input from the user environment setting means and the comfort priority input means, the environment information detected by the environment information detecting means, the user environment storage means, the environment information storage means, and the comfort priority storage means Control target setting means for setting a control target of the air conditioner based on the stored information stored in the control target, and control for determining a control command value of the air conditioner based on the control target set by the control target setting means The quantity determining means is provided in the control quantity calculating means.
[0013]
And a control amount determining means for determining a control target from the environment information, the user environment setting information and the comfort priority information, and a control amount for determining a control amount of the air conditioner based on the control target. Determination means may be provided. Further, the control target determination means may use the operation information of the air conditioner.
[0014]
Further, a deviation calculating means between the preset environmental information and the environmental information obtained by actual measurement or estimation, a refrigeration cycle control estimated amount storing means, a standard cycle control amount calculating means, a performance factor estimated amount storing means, The control factor determination means may include a performance factor calculation means, a performance factor change rate estimation amount storage means, and a target performance factor change rate calculation means.
[0015]
In addition, the control target determining means includes a deviation calculating means for comparing preset environmental information and actually measured environmental information, a storing means for storing an estimated amount of control of the refrigeration cycle, a standard cycle control amount calculating means, and a refrigerant. Storage means for storing the physical property values of air, storage means for storing the specifications of the air conditioner, calculation means for calculating the performance factor in the standard state, and correction of the performance factor deviation due to the deviation from the standard state. May be provided with storage means for storing the change rate of the performance factor obtained by the estimation, and calculation means for calculating the change rate of the performance factor in order to correct the performance factor based on the actual operation state.
[0016]
Preferably, the control amount determining means includes a cycle device control amount estimating storage means and a control amount calculating means, and the control target determining means inputs environment information, user environment setting information, and comfort priority, It is more preferable to provide a learning function when outputting the increase / decrease rate of the target performance factor. Furthermore, it is more preferable that the control amount determining means has a learning function when inputting the increase / decrease rate of the target performance factor and outputting the control amount.
[0017]
In addition, the control target determination means, when inputting environment information, user environment setting information and comfort priority and outputting a target performance factor increase / decrease rate, may provide an estimation means for estimating using a fuzzy inference rule, The control amount determining means may be provided with an estimating means for estimating using a fuzzy inference rule when outputting the cycle control amount by inputting the performance factor change rate.
[0018]
Further, at least environment information, user environment setting information, and comfort priority information are input, and the air including the number of revolutions of the cooling fan attached to the compressor and the indoor heat exchanger and the cooling fan attached to the outdoor heat exchanger is input. When outputting the command value of the control amount of the harmony machine, intelligent control means for estimating using a fuzzy inference may be provided, and this intelligent control means also inputs driving information and executes fuzzy inference. It may be something.
[0019]
Furthermore, the rotation speed of at least one of the cooling fan attached to the compressor and the indoor heat exchanger and / or the cooling fan attached to the outdoor heat exchanger is variable. The state may be controlled, or the degree of throttling of the pressure reducing means or the throttling means may be varied, and the operating state of the refrigeration cycle may be controlled by changing the degree of throttling.
[0020]
Furthermore, a setting means that allows the user to set the three indices of cooling / heating capability, efficiency and noise continuously or almost continuously may be provided. A comfort priority input means capable of inputting a priority order between the evaluation indices may be provided, and at least two of the three indices of cooling / heating capability, efficiency, and noise or a control amount having a high correlation with these three indices. Display means for displaying the result may be provided.
[0021]
Further, the air conditioner is provided with fluctuation means for changing at least one of the sounds generated in the cooling fan attached to the compressor and the indoor heat exchanger and the cooling fan attached to the outdoor heat exchanger in small steps with time. Is also good.
[0022]
A fourth aspect of the present invention for achieving the above object is an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor cooling fan that blows air to the outdoor heat exchanger, and an expansion valve; An air conditioner formed by pipe connection of an indoor unit having a heat exchanger and an indoor cooling fan that blows air to the indoor heat exchanger, the outdoor and indoor environments in which the air conditioner is installed. Environmental information detecting means having a plurality of sensors for detecting information, an environmental information calculation control device for calculating environmental information from information detected by the environmental information detecting means, and a plurality of sensors for detecting an operating state of the air conditioner Operating information detecting means having an air conditioner based on information obtained from the operating information detecting means, and an air conditioner operation controlling apparatus for controlling the operation of the air conditioner based on the information obtained from the operating information detecting means. Quantity An operation information arithmetic and control device for giving an instruction, an electric energy detection means for detecting the power consumption of the air conditioner, a user environment setting means capable of setting an air conditioning environment desired by a user of the air conditioner, Noise detection means capable of detecting the loudness of the sound generated by the indoor unit of the harmony device, the amount of power obtained from the pre-electromotive force detection means, the noise detected by the noise detection means, and the operation information The efficiency of the air conditioner calculated by the arithmetic and control unit is used as three evaluation indices of the air conditioner, and comfort priority input means capable of setting a priority between the three indices is provided.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of an air conditioner according to the present invention will be described with reference to FIGS. ◆
FIG. 1 is a block diagram illustrating a configuration of an air conditioner according to an embodiment of the present invention. The air conditioner 7 includes a main unit 101 installed outdoors and an indoor unit 102 installed indoors 103. A compressor 21, a four-way valve 22, an outdoor heat exchanger 23, a pressure reducing device 24, an indoor heat The exchangers 25 are sequentially connected by piping. During the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 is cooled by the air sent from the outdoor unit fan 26 in the outdoor heat exchanger 23 to become a high-pressure liquid refrigerant. This refrigerant flows into the pressure reducing device 24 and becomes a gas-liquid two-phase refrigerant having a temperature lower than the indoor air temperature. Then, in the indoor heat exchanger 25, heat is taken from the indoor air blown from the indoor fan 27 to evaporate and return to the compressor 21 again. In the heating operation, the circulation direction of the refrigerant is reversed by switching the four-way valve 22. That is, the refrigerant flows in the order of the compressor 21, the four-way valve 22, the indoor heat exchanger 25, the pressure reducing device 24, the outdoor heat exchanger 23, and the four-way valve 22, and returns to the compressor 21 again. In this embodiment, an electronic expansion valve is used as the pressure reducing device 24.
[0024]
The air conditioner of the present invention includes a comfort priority input means 5 for the user to select the priority of three indices of cooling / heating capability, efficiency, and noise, and a user's automatic operation, cooling operation, heating operation, and dry operation. A user environment setting means 1 for selecting operation modes such as operation and dehumidification operation, temperature and humidity conditions of indoor air, wind direction, air volume mode, and timer setting is provided. The priority information of each item input from the comfort priority input means 5 is sent to the comfort priority setting device 29 and stored in the storage device 17 (6) as a set value. The information on the priority of each item input from the user environment setting means 1 is sent to the environment condition setting device 13 and stored in the storage device 17 (2) 2 as a set value.
[0025]
In the operation of the air conditioner, various sensors are provided in the indoor unit and the outdoor unit in order to monitor the operation state, and the output from each sensor (the operation information detecting means 9) is used as the operation information arithmetic and control unit 14. Is stored in the storage device 17 (4). As the sensors, for example, the rotation speed detection sensor 914 of the compressor 21, the discharge refrigerant temperature detection sensor 903 of the compressor 21, the rotation speed detection sensor 912 of the outdoor fan 26, the rotation speed detection sensor 913 of the indoor fan 27, an ammeter or There is a power meter 915.
[0026]
On the other hand, sensors for obtaining environmental information are provided in the indoor unit 102 and the outdoor unit 101. The output from each sensor is taken in by the environment information arithmetic and control unit 15 and stored in the storage unit 17 (4). Examples of the environmental information sensor include an outdoor temperature detection sensor 33, an outdoor humidity detection sensor 34, an indoor suction air temperature detection sensor 901, an indoor suction air humidity sensor 32, an indoor discharge air temperature detection sensor 902, and an indoor discharge air humidity sensor. 109, a radiation sensor 111, and the like.
[0027]
The air conditioner is operated, for example, as follows. The user environment information input by the user from the user environment setting means 1 is set by the environment condition setting device 13 and stored in the storage device 17 (2). The operation conditions of the air conditioner, such as the rotation speed of the compressor 21, the rotation speed of the outdoor fan 26, and the rotation speed of the indoor fan 27, corresponding to this information, are stored in advance in the storage device 17 (10). The control target setting means 81 of the air conditioner selects from the pattern information. The air conditioner operation control device 16 drives the compressor 21, the outdoor fan 26, and the indoor fan 27 based on this information. The power required to drive these devices is supplied from a power supply 28. The air conditioner operation control device 16 includes circuits such as an inverter circuit that changes the rotation speed of a compressor motor and the like and a conversion circuit that converts an AC power supply and a DC power supply, in addition to the arithmetic circuit. Also, the valve opening degree of the expansion valve (decompression device 4) is adjusted so that the temperature detected by the compressor discharge temperature sensor 903 becomes the compressor discharge temperature corresponding to the compressor rotation speed stored in the storage device 17 in advance. By controlling, the circulation amount of the refrigerant flowing in the cycle is adjusted. In the automatic operation mode, the air conditioner operation control device 16 calculates the difference between the air temperature detected by the indoor suction air temperature sensor 901 and the temperature set by the user. Feedback control may be performed on the rotation speeds of the outdoor fan 26 and the indoor fan 27 and the opening degree of the expansion valve (pressure reducing device) 24.
[0028]
FIG. 2 is a diagram showing a flow of information in the present invention. As shown in FIG. 2, a control amount calculating means 8 is connected to the air conditioner 7, and the control amount calculating means 8 includes a user environment setting means 1 for setting an indoor environment such as a target indoor temperature and the like. User environment storage means 2 for storing information input by the user environment setting means 1, environment information detection means 3 for detecting environment information such as temperature and humidity described in detail later, and information detected by the environment information detection means 3. Is connected to a comfort priority input means 5 and a comfort priority storage means 6 for storing information input using the comfort priority input means 5. Here, the comfort priority input means 5 includes a cooling / heating capability 51 indicating the cooling / heating capability of the air conditioner represented by the air-conditioning environment or the indoor temperature change rate, and a power consumption or energy efficiency of the air conditioner. The user arbitrarily sets at least two of the three indexes of the efficiency 52 and the noise 53 to be performed.
[0029]
The control amount calculation means 8 is provided from the user environment setting means 1, the user environment storage means 2, the environment information detection means 3, the environment information storage means 4, the comfort priority input means 5, and the user priority input storage means 6. The control amount of the air conditioner 7 is calculated based on the information, and the air conditioner 7 is controlled based on the calculation result. Here, the energy efficiency of the air conditioner is a value obtained by dividing the cooling / heating capacity in the room, that is, the cooling capacity or the heating capacity (kW) by the power consumption (kW). It is expressed as the rate of change in room temperature per hour.
[0030]
By the way, for users of air conditioners, cooling and warming ability (hot, just right, cold), power consumption and energy efficiency (= cooling / heating ability / input power consumption), and noise (noisy, comfortable, comfortable) As described above, the three indices are important indices when using an air conditioner, and the user sets the priority for the three indices of cooling / heating capability, efficiency, and noise as comfortable priority. If a selection can be made from the input means 5, a comfortable, complex and comprehensive operation of the air conditioner reflecting the user needs can be realized.
[0031]
FIG. 3 shows a flow of information that also uses the operation information of the air conditioner in contrast to the flow of information shown in FIG. The control amount calculating means 8 is connected to a driving information detecting means 9 and a driving information storing means 10 for storing information detected by the driving information detecting means 9, and the control amount calculating means 8 also stores the information. This is used to control the air conditioner 7. Since the current mainstream of air conditioners is a heat pump type, during a cooling operation, the indoor heat exchanger functions as an evaporator and the outdoor heat exchanger functions as a condenser. On the other hand, at the time of the heating operation, the indoor and outdoor heat exchangers act as a condenser and an evaporator, respectively, and operate in a manner opposite to that at the time of the cooling operation. FIG. 3 shows details of the operation information detecting means 9 of the heat pump type air conditioner.
[0032]
The operation information detecting means 9 includes an intake temperature detecting means 901 for detecting a suction air temperature 931 at an air outlet provided inside or near the main body of the indoor unit of the air conditioner, inside or near the main body of the indoor unit of the air conditioner. Outlet temperature detecting means 902 for detecting the outlet air temperature 932 of the air outlet provided in the compressor, discharge temperature detecting means 903 for detecting the discharged refrigerant temperature 933 provided in the discharge section of the compressor, and suction provided in the suction section of the compressor. Suction temperature detection means 904 for detecting the refrigerant temperature 934, compressor discharge pressure detection means 905 for detecting the refrigerant discharge pressure 935 provided at the discharge part of the compressor, and suction refrigerant pressure 936 provided at the suction part of the compressor. Pressure detecting means 906, outdoor heat exchanger pipe intermediate temperature detecting means 907 for detecting the saturation temperature 937 of the refrigerant provided in the outdoor heat exchanger, indoor heat exchanger provided in the indoor heat exchanger Indoor heat exchanger pipe intermediate temperature detecting means 908 for detecting refrigerant saturation temperature 938, indoor heat exchanger outlet temperature detecting means 909 for detecting outlet refrigerant temperature 939 provided at the outlet of the indoor heat exchanger, decompression of electric expansion valve, etc. A decompression device inlet temperature detecting means 910 for detecting an inlet refrigerant temperature 940 of the decompression device provided in the device, and an indoor heat exchanger outlet pressure means 911 for detecting an indoor heat exchanger outlet refrigerant pressure 941 provided at an outlet of the indoor heat exchanger. An outdoor fan rotation number detecting means 912 for detecting the rotation number 942 of the outdoor fan provided in the outdoor fan, an outdoor fan rotation number detecting means 913 for detecting the rotation number 943 of the indoor fan provided in the indoor fan, and a compressor. Compressor rotation speed detecting means 914 for detecting the rotation speed 944 of the compressor, and compressor motor input current for estimating power consumption 945 provided near the compressor motor. Output means 915, indoor fan motor input current detecting means 916 for estimating motor power consumption 946 provided near the indoor fan, and outdoor fan motor input current for estimating motor power consumption 947 provided near the outdoor fan. Detecting means 917, an indoor heat exchanger inlet temperature detecting means 909 for detecting the refrigerant temperature 948 of the indoor heat exchanger provided at the inlet of the indoor heat exchanger, and an outdoor heat exchanger provided at the inlet of the outdoor heat exchanger. An outdoor heat exchanger inlet temperature detecting means 919 for detecting an inlet-portion refrigerant temperature 949; an outdoor heat exchanger outlet temperature detecting means 920 for detecting a refrigerant temperature 950 of an outdoor heat exchanger provided at an outlet of the outdoor heat exchanger; An indoor heat exchanger outlet temperature detecting means 921 for detecting the temperature 951 at the outlet of the outdoor heat exchanger provided at the outlet of the heat exchanger is provided.
[0033]
Among these detection means, a thermocouple, a thermistor, or the like attached to the pipe surface is used to detect the temperature of the refrigerant in the pipes of the heat exchangers 23 and 25, the pressure reducing mechanism 24, and the compressor 21. Here, all the information shown in FIG. 9 is not necessarily required for calculating the cooling capacity, the heating capacity, and the power consumption. Some of these sensors may be selectively used in consideration of cost and required accuracy. As the current detecting means, there are various ammeters, such as an encoder, a pulse tachometer, and a tachometer for detecting the number of revolutions, and a Bourdon tube pressure gauge and a strain gauge pressure gauge for detecting the pressure. In addition, since these detected values are processed by a digital computer, it is preferable that these signals provide signals that can be easily digitized.
[0034]
The three indices of the cooling / heating capability, efficiency, and noise comfort priority input by the user specifically correspond to the following. ◆
The index of the cooling / heating capability corresponds to the cooling capability and the heating capability of the indoor unit, and the rate of increase and decrease of the indoor air temperature. Here, the cooling capacity of the indoor unit during the cooling operation and the heating capacity during the heating operation are expressed by the following equations.
[0035]
Q = ρ · V · Δh (1)
Q: Cooling capacity or heating capacity
ρ: density of intake air
V: Volume flow rate of air flowing through the indoor fan
Δh: Enthalpy difference between indoor suction air and blown air
The cooling capacity during the cooling operation is also given by the following equation. Generally, air is humid air, and dehumidification occurs during cooling operation. Therefore, it is necessary to consider the amount of sensible heat and the amount of latent heat of air.
[0036]
Q = ρ · V · Cp · ΔT + hw · ρ · V · Δx (2)
Q: Cooling capacity
ρ: density of intake air
V: Volume flow rate of air flowing through the indoor fan
Cp: Specific heat of air
ΔT: temperature difference between indoor air and blown air
hw: Water enthalpy
Δx: Absolute humidity difference between indoor suction air and discharge air
Since the heating capacity during the heating operation only needs to consider the sensible heat amount, only the first term of Expression (2) is used.
[0037]
Q = ρ · V · Cp · ΔT (3)
Q: Heating capacity
ρ: density of intake air
V: Volume flow rate of air flowing through the indoor fan
Cp: Specific heat of air
ΔT: temperature difference between indoor air and blown air
Here, the specific heat of air, the density of air, the enthalpy of water, and the psychrometric chart are stored in the storage device 17 in advance. The temperatures of the indoor suction air and the discharge air (for example, the dry bulb temperature and the wet bulb temperature) are detected by the indoor suction air temperature detection sensor 901 and the indoor discharge air temperature detection sensor 902, respectively. The humidity (for example, relative humidity) of the indoor suction air and the discharge air is detected by the indoor suction air humidity sensor 32 and the indoor discharge air humidity sensor 109, respectively. The density of the air and the absolute humidity of the air can be obtained from any one of the dry bulb temperature and the wet bulb temperature, the dry bulb temperature and the relative humidity, and the wet bulb temperature and the relative humidity on the psychrometric chart stored in the storage device 17. Determined from the combination. The volume flow rate of the air flowing through the indoor fan is calculated based on the relationship between the fan speed and the fan air volume (volume flow rate) stored in the storage device 17 in advance. Calculated from information. Further, information from the radiometer 111 provided in the room may be considered. ◆
The cooling rate, the heating capacity, and the rate of rise and fall of the room temperature are calculated by the control amount calculating means 8, and the information is stored in the storage device 17.
[0038]
The efficiency index corresponds to the power consumption and the coefficient of performance. In the present embodiment, the amount of power consumption is detected by the environmental information detecting means 14 (3) from the ammeter 915 provided between the power supply 28 and the air conditioner operation control device 16, and the information is stored in the storage device 17 ( 4). Here, the coefficient of performance is a ratio between the cooling capacity and the input and between the heating capacity and the input during the cooling operation and the heating operation, respectively. The input is the above-described power consumption, and the cooling capacity and the heating capacity are the quantities represented by the above-described equations (1) to (3).
[0039]
By the way, when the power consumption of the control unit is relatively small in the air conditioner, the power consumption W of the air conditioner is small. t Is the power consumption W of the compressor c And the power consumption W of the indoor cooling fan i And outdoor cooling fan power consumption W o It is expressed by the sum of Power consumption of compressor (W c ) 945 can be calculated from the input current value detected by the input current detection means 915 of the compressor motor since the power characteristics of the compressor including the motor are known. Power consumption of indoor cooling fan (W i ) 946 and the power consumption (W o ) 947 is calculated from the input current value detected by the current detecting means 916 provided in the indoor cooling fan and the current detecting means 917 provided in the outdoor cooling fan. Of course, if the manufacturing cost can be tolerated, the power consumption of each motor may be directly measured with a wattmeter or the amount of current consumption may be detected indirectly with a current meter. Energy efficiency, which is a measure of energy saving, is obtained by changing the cooling or heating capacity q of the air conditioner to the power consumption W. t , The cooling / heating ability can be calculated and calculated using the above equation. ◆
The power consumption and the coefficient of performance are calculated by the control amount calculating means 8, and the information is stored in the storage device 17 (4).
[0040]
The noise index corresponds to the operation sound of the indoor unit. In this embodiment, the noise of the indoor unit is dominated by the blowing sound of the indoor fan, and the blowing sound of the fan is proportional to the sixth power of the rotation speed of the fan. The operation sound is calculated from the relationship between the fan rotation speed and the blow sound. Further, a noise meter or a microphone for noise detection may be installed in the indoor unit.
[0041]
The noise index corresponds to two types of noise, indoor and outdoor. The indoor noise includes noise of a cooling fan provided in the indoor heat exchanger, electromagnetic noise of a motor driving the fan, and flow noise of a refrigerant flowing in the pipe. On the other hand, outdoor noise is further composed of compressor sound. Among them, the motor electromagnetic noise, the refrigerant flow noise flowing in the pipe, and the compressor noise are radiated through the motor or the refrigerant pipe or the wall substantially sealed by the pressure vessel, respectively, and the surface of those walls is radiated. Since it is almost proportional to the magnitude of the vibration, there are many cases where the problem can be solved by attaching a damping material capable of dissipating energy to the surface.
[0042]
On the other hand, a cause of noise generated in indoor and outdoor fans, which is a main noise source of the air conditioner, is vortices on the surface of the fan and in the vicinity of the surroundings. However, in order to prevent the generation of the vortex, it is impossible for the air conditioner to adopt a closed or semi-closed structure that obstructs the flow of the cooling air. Therefore, an effective measure to reduce noise is to increase the size of the fan, but this method cannot be used for an air conditioner that requires compactness. Since the fan noise is proportional to the sixth power of the fan speed, the operating noise is calculated from the relationship between the fan speed and the blowing sound stored in advance in the storage device 17 (4). In addition, a noise meter or a microphone 112 for noise detection may be installed in the indoor unit to detect noise. The operation sound of the indoor unit is calculated by the operation information calculation control device 14, and the result is stored in the storage device 17.
[0043]
FIG. 5 shows details of the environment information detecting means 3. The environmental information detecting means 3 includes an indoor temperature detecting means 301 for detecting indoor temperature, an indoor temperature detecting means 302 for detecting indoor humidity, an outdoor temperature detecting means 303 for detecting outdoor temperature, and an outdoor temperature detecting means 304 for detecting outdoor humidity. , An amount of solar radiation detecting means 305 for detecting the amount of solar radiation. Among these information, the room temperature changes due to heat absorption or exhaust heat due to the operation of the air conditioner, and the room humidity changes due to humidification or dehumidification. Note that not all of this information is necessarily required, and may be used as needed.
[0044]
FIG. 6 shows the details of the control amount calculating means 8. The control amount calculating unit 8 includes a control target determining unit 81 that determines a control target from three types of information: environment information such as room temperature, user environment setting information such as target room temperature, and comfort priority information. And a control amount determining means 82 for determining a control amount of the air conditioner 7 based on the control target determined by the control target determining means 81. ◆
By the way, the control amount calculating means 8 may use the operation information shown in FIG. 3 in addition to the above three kinds of information (see FIG. 7). In this case, a more comfortable operation of the air conditioner becomes possible.
[0045]
FIG. 8 shows details of the control target determining means 81 shown in FIG. The difference calculator 811 calculates the temperature difference between the target room temperature, which is one of the user setting environment information, and the room temperature as the environment information. The relationship between the temperature difference and the cycle control amount, such as the rotational speed of the compressor or the cooling fan, in the reference state is stored in the estimated cycle control amount storage unit 812. The standard cycle control amount calculation means 813 calculates a reference cycle control amount based on the output information of the deviation calculation means 811 and the cycle control estimated amount storage means 812.
[0046]
The cooling / heating capability factor estimation amount storage means 814 stores the reference efficiency, the air conditioning capability or the cooling / heating capability of the time rate of change of the standard indoor temperature, the noise index, or three quantities that are highly correlated with these three indexes. That is, the relationship between the performance factor and the cycle control amount is stored. The standard cooling / heating capacity factor calculating means 815 refers to the cooling / heating capacity factor estimated quantity storage means 814 based on the output information of the standard cycle control amount calculating means 813, and calculates a reference performance factor.
[0047]
The cooling / heating ability performance factor increase / decrease rate estimation amount storage means 816 stores the rate of increase / decrease of three indices of efficiency, cooling / heating ability and noise or an amount highly correlated with the three indices, that is, the relationship between the rate of increase / decrease of performance factor and comfort priority Is stored.
[0048]
The target performance factor change rate calculating means 817 refers to the capacity factor change rate estimation amount storage means 816 based on the output of the standard performance factor calculating means 815 and stores the comfort priority based on the input from the comfort priority input means 5. Using the comfort priority information obtained with reference to the means 6, the target performance factor increase / decrease rate of three indices of efficiency, cooling / heating ability, and noise is calculated.
[0049]
In the embodiment shown in FIG. 8, information stored in the form of a database is used. However, the evaluation that the temperature is high / low and the sound is high / low is determined by the sense of the user. And ambiguity remains. Therefore, if a predetermined control rule is used and fuzzy calculation is used, when calculating the estimated amount of the cycle control, and calculating the rate of change of the target performance factors of the three indexes of efficiency, cooling / heating capability, and noise. It is effective when you do.
[0050]
Next, FIG. 9 shows a modification of FIG. 8 in which the increase / decrease rate of the target performance factor is obtained by using the driving information. In this case, the control amount determination unit 82 includes a physical property value storage unit 818 and an air conditioner specification storage unit 819 instead of the cooling / heating capability factor estimation amount storage unit 814 shown in FIG. The physical property value storage means 818 stores the physical property values of the refrigerant and air, and the air conditioner specification storage means 819 stores the relationship between the discharge amount of the compressor and the discharge air amount of the fan and the rotation speed. I have. The standard capacity factor calculating means 815 calculates a standard capacity factor using each output information of the standard cycle control amount calculating means 813 and the deviation calculating means 8101 and the operation information of the air conditioner. In the embodiment shown in FIG. 8, when calculating the standard capacity factor, the relationship between the temperature difference and the rotation speed of the compressor or the cooling fan, which is the cycle control amount, is used. The standard performance factor can be obtained using the physical property values of the air conditioner and the specifications of the air conditioner, and the control system is simplified.
[0051]
FIG. 10 shows a detailed configuration of the control amount determining means 82. The cycle device control estimated amount storage unit 821 of the control target determination unit 81 stores the relationship between the cooling / heating capability factor change rate and the cycle control amount. The control amount calculating means 822 obtains the control amount of the cycle equipment by referring to the cycle equipment control estimated amount storage means 821 using the output of the target capacity factor increase / decrease rate calculating means 817, and determines the control amount of the compressor or the indoor heat exchanger. It controls cycle devices of the air conditioner 7, such as a fan and an outdoor heat exchanger cooling fan.
[0052]
Next, the operation of the control device of the air conditioner after the input of the comfort priority will be described. ◆
When the user inputs the priority of each index of the comfort priority from the comfort priority input means 5 in, for example, a five-level evaluation, the information is set in the comfort priority setting device 29 and recorded in the storage device 17. . The air conditioner operation control device 16 extracts the environmental condition input by the user from the storage device 17 and selects a standard operation condition as a reference corresponding to the information from the operation condition information stored in the storage device 17 in advance. . The information on the operating conditions includes, for example, the rotational speed of the compressor and the rotational speeds of the indoor and outdoor fans. At this time, the air conditioner operation control device 16 calculates indices such as cooling / heating capability, efficiency, and operation sound during standard operation. Next, the value inputted by the user from the comfort priority input means 5 is converted into a weighting coefficient of each item in the comfort priority setting device 29 and stored in the storage device 17. The air conditioner operation control device 16 retrieves this information from the storage device 17, weights each of the previously calculated indices of the cooling / heating capability, efficiency, and operation sound at the time of the standard operation, and operates conditions corresponding to the information. Is selected from the operating condition information stored in the storage device 17 in advance, and is set as the actual operating condition information. As described above, the information on the actual operating conditions includes, for example, the rotational speed of the compressor and the rotational speeds of the indoor and outdoor fans. The air conditioner operation control device 16 controls the compressor 21, the outdoor fan 26, and the indoor fan 27 based on the set values of the rotation speed of the compressor and the rotation speeds of the indoor and outdoor fans.
[0053]
During the operation of the air conditioner, the operation information arithmetic and control unit 14 and the environmental information arithmetic and control unit 15 operate to sequentially sense and calculate various types of information, and store new information in the storage device 17. The air conditioner operation control device 16 also fetches new information from the sequential storage device 17 and constantly compares the actual operation condition information obtained by re-calculation with the standard operation information so as to follow the setting input by the user. Perform feedback control.
[0054]
11 to 14 show details of the comfort priority input means 5 used for the above-described control. The comfort priority input means 5 has three indices, namely, the cooling / heating capability 501 of the air conditioner represented by the cooling / heating capability or the time change rate of the room temperature, and the power consumption or energy efficiency of the air conditioning device. The user can arbitrarily set at least two of the three indices of the expressed efficiency 502 and the noise 503. The comfort priority input means 5 includes a cooling / heating capability selection range display unit 511, a power consumption selection range display unit 521, and a noise selection range display unit corresponding to three indices of cooling / heating capability, efficiency, and noise. 531 is provided. Each display section has a plurality of selection range buttons, six in the case of FIG. The priority order among these three indices is assigned in the order in which the selection range buttons 512, 522, and 532 are pressed, and a signal corresponding to the priority order of each selection range is output from the comfort priority input means 5.
[0055]
In the present embodiment, when one of the range selection buttons for an index is first pressed, the selectable range of the other selection index is clearly indicated to the user by turning on or blinking the button, and the user turns on the light. Or, you have to select from the blinking range. This is shown in FIG. Each selection index has a six-step selection range. As the highest priority, a button 515 in the selection range button group 514 of the cooling / heating ability selection index display section 513 is pressed. Then, a button 525 indicating a range from the third to the fifth step in the selection button group 524 of the power consumption index display unit 523 is turned on (solid display). Similarly, a button 535 indicating a first to third range in the selection button group 534 of the noise index display section 533 is lit. Then, as a next priority, for example, if the fourth stage button in the power consumption selection range button group is pressed, only the first stage button in the noise selection range button group is turned on. As a result, a signal according to the priority of each selection range is output from the comfort priority input means 5.
[0056]
By the way, in the case of steady operation, the cooling / heating capacity is determined based on the set temperature and does not need to be selected. Therefore, the selectable range of power consumption and noise is clearly indicated to the user by turning on or off the button. And make a selection within that range. In this case, whichever of the power consumption and noise selection buttons is pressed first has priority.
[0057]
FIG. 13 shows another embodiment of the comfort priority input means 5. The display unit of the comfort priority input means 5 displays the selection index of the cooling / heating capability 516, the power consumption 526, and the noise 536 on the pie chart assuming that the respective priority ratios are 518, 528, and 538. The selection ratio for each index is a value between 0 and 100%, and the total of all the selection ratios is 100%. The priority ratio of each index is displayed in a pie chart according to the time or the number of times each of the selection buttons 517, 527, and 537 are pressed, and the priority is set in descending order of the priority ratio in the selection range, and the signal according to the priority ratio is displayed. Is output from the comfort priority input means 5.
[0058]
FIG. 14 shows another modification of the comfort priority input means 5. The comfort priority input means 5 has a cooling / heating ability index display section 543, a power consumption index 553, and a noise selection index display section 563, and each display section has a selection range button group 545, 555, 565. Is provided. In the case of steady operation, the operating range of cooling / heating capacity, power consumption, noise is clearly indicated to the user by turning on the button, and from this display, if the user is using a lot of electricity, for example, Using the power consumption selection range button, a command is issued to the air conditioner to reduce the power consumption. If the user is worried about noise, a command is given to the air conditioner using the noise selection range button to reduce the noise. Further, if the temperature is too hot or too cold, the cooling / heating ability is changed and a command is given by using the cooling / heating ability selection button. Further, lock buttons 544, 554, and 564 are provided for each index, and by pressing this lock button, the selected value of the selected index can be held.
[0059]
In this embodiment, the comfort priority input unit 5 and the user environment setting unit 1 are separated from each other, but may be integrated. Further, the comfort priority setting device 29, the operation information calculation control device 14, the environmental condition setting device 13, the environment information calculation control device 15, the air conditioner operation control device 16, and the storage device 17 are separate but integrated. May be.
[0060]
Also, a display means for displaying control results for at least two indices (two quantities) among the respective indices of cooling / heating capability, efficiency, and noise, or quantities having a high correlation with these indices, may be provided. The display location is not limited. If the control result is displayed in a member in which the comfort priority input means 5 and the user environment setting means 3 are integrated, cost reduction and space efficiency can be reduced. Factory becomes possible.
[0061]
FIG. 15 shows another embodiment of the present invention for controlling an air conditioner using the intelligent control amount calculating means 11. The intelligent control amount calculating means 11 uses a neural network having a fuzzy calculation or learning function based on the environment information, the user environment setting information, the comfort priority information, and the driving information. Calculate the target control amount. An example of the calculation of the intelligent control amount will be described below with reference to FIGS.
[0062]
FIG. 16 shows an example of an inference rule for estimating the number of revolutions of the cooling fan attached to the indoor unit heat exchanger. In this example, the power consumption as the efficiency index and the cooling / heating capability as the cooling / heating capability index among the three indicators are taken. For these two indices, the rotation speed of the cooling fan attached to the heat exchanger of the indoor unit is estimated as an example of the cycle control amount. Specifically, when it is desired to reduce the power consumption and increase the cooling / heating capability, the rotation speed of the compressor is reduced and the rotation speed of the cooling fan is increased. To maintain cooling and warming capacity and reduce power consumption, increase the speed of the cooling fan to increase cooling and warming capacity, and reduce the number of compressor revolutions to reduce the electrical input to the compressor. Let it. At this time, the noise is not controlled.
[0063]
FIG. 17 shows an example of an inference rule for estimating the rotational speed of the compressor. In this case, the rotation speed of the compressor, which is one of the cycle control amounts, is estimated by using the cooling / heating capability and the noise among the three indexes. Then, when it is desired to increase the cooling / heating capability and reduce the noise, the rotation speed of the cooling fan is reduced and the rotation speed of the compressor is increased. In addition, when cooling is to be performed rapidly because the noise may be loud, both the rotation speed of the cooling fan and the rotation speed of the compressor are increased. At this time, power consumption is not controlled. In this way, it is possible to create a rule in which at least two indices or two control amounts are combined from the control amount in each cycle and three indices or three control amounts having a high correlation with these three indices.
[0064]
FIGS. 18 to 20 show examples of membership functions when fuzzy control is used. Among them, FIG. 18 shows the change amount of the efficiency, FIG. 19 shows the change amount of the noise, and FIG. 20 shows the membership function of the change amount of the cooling / heating ability. A grade representing the degree of conformity to the membership function is obtained, and the number of rotations of the cooling fan and the compressor is controlled using the control rules shown in FIGS.
[0065]
In the above embodiment, the indoor noise radiated from the air conditioner into the room as the noise has mainly been described. Should be built and dealt with. ◆
Further, in the above embodiment, the separate type air conditioner in which the indoor unit and the outdoor unit are separated from each other has been described. Even those in the same space can be dealt with by a method similar to the method described above.
[0066]
As described above, according to the present embodiment, in the air conditioner, the user can control the three indices of the cooling / heating capability, power consumption and energy efficiency (= cooling / heating capability / consumption input power) and noise. Since a plurality of priorities can be selected, the user can obtain a comfortable air-conditioned space.
[0067]
【The invention's effect】
As described above, in the air conditioner according to the present invention, the user can select a plurality of priorities for the three evaluation indices of the cooling / heating capability, the energy efficiency (power rate, etc.), and the noise. The operation of the air conditioner that fits the user's sense can be performed, and thus a comfortable air conditioning space can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of an air conditioner according to the present invention.
FIG. 2 is a diagram showing a flow of information according to an embodiment of the present invention.
FIG. 3 is a diagram showing a flow of information according to another embodiment of the present invention.
FIG. 4 is a diagram showing a detailed configuration of driving information detecting means used in one embodiment of the present invention.
FIG. 5 is a diagram showing a detailed configuration of environment information detecting means used in one embodiment of the present invention.
FIG. 6 is a diagram showing a detailed configuration of a control amount calculating means according to one embodiment of the present invention.
FIG. 7 is a diagram showing a detailed configuration of another embodiment of the control amount calculating means of the present invention.
FIG. 8 is a diagram showing a detailed configuration of a control target determining means according to one embodiment of the present invention.
FIG. 9 is a diagram showing a detailed configuration of another embodiment of the control target determining means of the present invention.
FIG. 10 is a diagram showing a detailed configuration of a control amount determining unit according to one embodiment of the present invention.
FIG. 11 is a diagram showing a detailed configuration of a comfort priority input unit according to one embodiment of the present invention.
12 is a diagram showing an operation state of the comfort priority input means shown in FIG.
FIG. 13 is a diagram showing a detailed configuration of another embodiment of the comfort priority input means of the present invention.
FIG. 14 is a diagram showing a detailed configuration of still another embodiment of the comfort priority input means of the present invention.
FIG. 15 is a schematic diagram of an air conditioner using a fuzzy or neural network.
FIG. 16 is an example of an inference table for estimating the number of revolutions of a cooling fan attached to an indoor unit heat exchanger when fuzzy is used.
FIG. 17 is an example of an inference table for estimating the number of revolutions of a compressor when fuzzy logic is used.
FIG. 18 is an example of a membership function of an efficiency index used for fuzzy control.
FIG. 19 is an example of a noise index membership function used for fuzzy control.
FIG. 20 is an example of a membership function of a cooling / heating ability index used for fuzzy control.
[Explanation of symbols]
1 ... user environment setting means, 2 ... user environment storage means,
3 ... environmental information detecting means, 4 ... environmental information storing means,
5: Comfort priority input means, 6: Comfort priority storage means,
7 ... air conditioning equipment, 8 ... control amount calculation means, 9 ... operation information detection means,
10 driving information storage means, 83 control target determination means,
82 control amount determining means,

Claims (5)

室内機と室外機とを配管接続して構成され、目標室内温度等の室内環境を設定する利用者環境設定手段と、この利用者環境設定手段から入力された設定値を記憶する利用者環境記憶手段と、前記室内機および室外機の設置された環境における空気温度等の環境情報を検知する環境情報検知手段と、この環境情報検知手段が検知した情報を記憶する環境情報記憶手段とを備えた空気調和機において、
冷・暖能力と効率と騒音の3つの評価指標を入力可能な利用者快適優先度入力手段と、この快適優先度入力手段から入力された前記3指標間の優先度を記憶する快適優先度記憶手段とを設けるとともに、前記利用者環境設定手段および前記快適優先度入力手段から入力された情報と、前記環境情報検知手段により検知された環境情報と、前記利用者環境記憶手段と前記環境情報記憶手段と前記快適優先度記憶手段とに記憶された記憶情報とに基づいて空気調和機に制御指令を出力する制御量演算手段を設けたことを特徴とする空気調和機。
A user environment setting unit configured by connecting an indoor unit and an outdoor unit with a pipe, and setting an indoor environment such as a target indoor temperature; and a user environment storage for storing a set value input from the user environment setting unit. Means, environment information detecting means for detecting environmental information such as air temperature in the environment where the indoor unit and the outdoor unit are installed, and environmental information storing means for storing information detected by the environmental information detecting means. In air conditioners,
User comfort priority input means capable of inputting three evaluation indices of cooling / heating ability, efficiency, and noise, and comfort priority storage for storing the priority among the three indices input from the comfort priority input means Means, information input from the user environment setting means and the comfort priority input means, environment information detected by the environment information detection means, the user environment storage means, and the environment information storage. An air conditioner comprising a control amount calculating means for outputting a control command to the air conditioner based on the means and the information stored in the comfort priority storage means.
空気調和機の運転状態を検出する運転情報検知手段と、この運転情報検知手段が検知した運転情報を記憶する運転情報記憶手段とを設け、前記制御量演算手段は前記運転情報検知手段が検知した情報と、前記運転情報記憶手段に記憶された情報とに基づいて空気調和機に制御指令を出力することを特徴とする請求項1に記載の空気調和機。Operating information detecting means for detecting an operating state of the air conditioner, and operating information storing means for storing operating information detected by the operating information detecting means are provided, and the control amount calculating means detects the operating information detected by the operating information detecting means. The air conditioner according to claim 1, wherein a control command is output to the air conditioner based on information and information stored in the operation information storage means. 前記制御量演算手段は、前記利用者環境設定手段および前記快適優先度入力手段から入力された情報と、前記環境情報検知手段により検知された環境情報と、前記利用者環境記憶手段と前記環境情報記憶手段と前記快適優先度記憶手段とに記憶された記憶情報とに基づいて空気調和機の制御目標を設定する制御目標決定手段と、この制御目標決定手段において設定された制御目標に基づき空気調和機の制御指令値を決定する制御量決定手段とを備えたことを特徴とする請求項1または請求項2に記載の空気調和機。The control amount calculation means includes information input from the user environment setting means and the comfort priority input means, environment information detected by the environment information detection means, the user environment storage means, and the environment information. Control target determining means for setting a control target of the air conditioner based on the storage information stored in the storage means and the comfort priority storing means; and air conditioning based on the control target set in the control target determining means. The air conditioner according to claim 1 or 2, further comprising control amount determining means for determining a control command value of the air conditioner. 前記制御目標決定手段は、利用者の環境情報の設定値と利用者の環境情報の検出値または推定値との偏差を演算する偏差演算手段と、基準状態におけるこの偏差と冷凍サイクルの制御量との関係を記憶するサイクル制御推定量記憶手段と、前記偏差演算手段の出力を用いて前記サイクル制御推定量記憶手段に記憶された情報を参照して基準となる冷凍サイクルの制御量を演算する標準サイクル制御量演算手段と、前記効率、冷・暖能力及び騒音の3指標に含まれる能力因子と前記冷凍サイクルの制御量との関係を記憶する能力因子推定量記憶手段と、前記標準サイクル制御量演算手段の出力を用いてこの能力因子推定量記憶手段に記憶された情報を参照し標準能力因子を演算する標準能力因子演算手段と、前記能力因子及びその増減率と前記快適優先度との関係を記憶する能力因子増減率推定量記憶手段と、前記標準能力因子演算手段の出力と前記快適優先度情報とを用いて前記能力因子増減率推定量記憶手段に記憶された情報を参照して能力因子の増減率の目標値を演算する目標能力因子増減率演算手段とを備えたことを特徴とする請求項1に記載の空気調和機。The control target determining means is a deviation calculating means for calculating a deviation between a set value of the user's environmental information and a detected value or an estimated value of the user's environmental information, and this deviation in the reference state and the control amount of the refrigeration cycle. And a standard for calculating a reference refrigeration cycle control amount by referring to information stored in the cycle control estimated amount storage means using an output of the deviation calculating means. Cycle control amount calculation means; capacity factor estimation amount storage means for storing the relationship between the control factors of the refrigeration cycle and the performance factors included in the three indexes of efficiency, cooling / heating capacity and noise; and the standard cycle control amount A standard performance factor calculating means for calculating a standard performance factor by referring to the information stored in the performance factor estimation amount storage means using the output of the calculating means; An ability factor increase / decrease rate estimation amount storage means for storing a relationship with an appropriate priority; and an ability factor increase / decrease rate estimation amount storage means using the output of the standard ability factor calculation means and the comfort priority information. 2. The air conditioner according to claim 1, further comprising: target capacity factor change rate calculating means for calculating a target value of the change rate of the performance factor with reference to the information. 前記制御目標決定手段は、利用者の環境情報の設定値と利用者の環境情報の検出値または推定値との偏差を演算する偏差演算手段と、基準状態におけるこの偏差と冷凍サイクルの制御量との関係を記憶するサイクル制御推定量記憶手段と、前記偏差演算手段の出力を用いて前記サイクル制御推定量記憶手段に記憶された情報を参照して基準となる冷凍サイクルの制御量を演算する標準サイクル制御量演算手段と、少なくともこの空気調和機に使用される冷媒と空気の物性値が記憶された物性値記憶手段と、この空気調和機の緒言を記憶する空気調和機諸元記憶手段と、前記標準サイクル制御量演算手段と前記偏差演算手段の出力と空気調和機の運転情報とを用いて前記物性値記憶手段と前記空気調和機諸元記憶手段を参照して標準能力因子演算量を演算する標準能力因子演算手段と、前記能力因子及びその増減率と前記快適優先度との関係を記憶する能力因子増減率推定量記憶手段と、前記標準能力因子演算手段の出力と前記快適優先度情報とを用いて前記能力因子増減率推定量記憶手段に記憶された情報を参照して能力因子の増減率の目標値を演算する目標能力因子増減率演算手段とを備えたことを特徴とする請求項2に記載の空気調和機。The control target determining means is a deviation calculating means for calculating a deviation between a set value of the user's environmental information and a detected value or an estimated value of the user's environmental information, and this deviation in the reference state and the control amount of the refrigeration cycle. And a standard for calculating a reference refrigeration cycle control amount by referring to information stored in the cycle control estimated amount storage means using an output of the deviation calculating means. Cycle control amount calculating means, physical property value storing means in which physical properties of at least refrigerant and air used in the air conditioner are stored, air conditioner specification storing means for storing an introduction of the air conditioner, Using the outputs of the standard cycle control amount calculation means and the deviation calculation means and the operation information of the air conditioner, refer to the physical property value storage means and the air conditioner specification storage means to obtain a standard performance factor performance. Standard capacity factor calculating means for calculating the quantity; capacity factor change rate estimation amount storing means for storing the capacity factor and the relationship between the change rate and the comfort priority; output of the standard capacity factor calculating means and the comfort level; Target performance factor change rate calculating means for calculating a target value of the change rate of the performance factor with reference to the information stored in the capacity factor change rate estimation amount storage means using priority information. The air conditioner according to claim 2, wherein
JP06247996A 1996-03-19 1996-03-19 Air conditioner Expired - Fee Related JP3562114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06247996A JP3562114B2 (en) 1996-03-19 1996-03-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06247996A JP3562114B2 (en) 1996-03-19 1996-03-19 Air conditioner

Publications (2)

Publication Number Publication Date
JPH09250794A JPH09250794A (en) 1997-09-22
JP3562114B2 true JP3562114B2 (en) 2004-09-08

Family

ID=13201372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06247996A Expired - Fee Related JP3562114B2 (en) 1996-03-19 1996-03-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP3562114B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360530B2 (en) * 1996-06-28 2002-12-24 ダイキン工業株式会社 Control device for air conditioner
JP3374754B2 (en) * 1998-07-16 2003-02-10 松下電器産業株式会社 Air conditioning system controller
JP4495755B2 (en) 2004-04-12 2010-07-07 ヨーク・インターナショナル・コーポレーション Cooler sound reduction control system and method
JP4848210B2 (en) * 2006-06-05 2011-12-28 三菱重工業株式会社 Air conditioning system and operation control method thereof
JP4642100B2 (en) * 2008-09-01 2011-03-02 三菱電機株式会社 Heat pump equipment
JP5056794B2 (en) * 2009-04-30 2012-10-24 ダイキン工業株式会社 Air conditioner
JP5804774B2 (en) * 2011-05-30 2015-11-04 三菱電機株式会社 Refrigeration cycle equipment
JP2013002717A (en) * 2011-06-15 2013-01-07 Fujitsu General Ltd Air conditioner
JP6029460B2 (en) * 2012-12-27 2016-11-24 三菱重工業株式会社 Multi-type air conditioner and operation method thereof
JP2017172910A (en) * 2016-03-25 2017-09-28 株式会社富士通ゼネラル Air conditioner
JP2019178811A (en) * 2018-03-30 2019-10-17 株式会社富士通ゼネラル Air conditioner
CN113825956B (en) * 2020-04-21 2023-06-13 日立江森自控空调有限公司 Air conditioner and management device
WO2022145417A1 (en) * 2020-12-29 2022-07-07 三菱電機株式会社 Learning device, air conditioner, communication terminal, air conditioning system, and method for learning control of air conditioner
CN115143607B (en) * 2022-06-15 2023-12-29 北京斑羚在线网络科技有限公司 Office environment control system based on multi-source data

Also Published As

Publication number Publication date
JPH09250794A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
JP3562114B2 (en) Air conditioner
CN102042659B (en) Humidity estimation device and method
US10352602B2 (en) Portable method and apparatus for monitoring refrigerant-cycle systems
US9534797B2 (en) Air-conditioning apparatus
JP2884249B2 (en) Optimal control method of pleasure and efficiency of variable speed heat pump and air conditioner
JP5058325B2 (en) Air conditioning system controller and air conditioning system
EP0192140B1 (en) Air conditioning method
CN105042795B (en) Wall-mounted transducer air conditioning control method
CN1325849C (en) Air conditioner with constant air outlet temperature and control method therefor
Alahmer et al. Simulation and optimization of multi-split variable refrigerant flow systems
JP5127871B2 (en) Air conditioning system
CN105180357B (en) Wall-hanging air conditioner control method
JP5404556B2 (en) Air conditioner control device and refrigeration device control device
WO2021019761A1 (en) Air conditioning system and system control device
CN103851744A (en) Method and device for controlling air conditioner
JPH1194327A (en) Controller for air conditioner
JPH11201523A (en) Air conditioner and method for controlling it
KR20000034767A (en) Method of controlling air conditioner
JP2012007887A (en) Air conditioning system and air-conditioning management device
Lun et al. Sustainable energy
JP3877955B2 (en) Operation evaluation device for variable control system
JPS63156968A (en) Air conditioning control device
JPS5952330B2 (en) Air conditioner control circuit
Ke Design of test method and detailed ratings of variable air volume fan-coil units
KR20100052204A (en) Air-conditioner and the control method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees