JP2017172910A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2017172910A
JP2017172910A JP2016061157A JP2016061157A JP2017172910A JP 2017172910 A JP2017172910 A JP 2017172910A JP 2016061157 A JP2016061157 A JP 2016061157A JP 2016061157 A JP2016061157 A JP 2016061157A JP 2017172910 A JP2017172910 A JP 2017172910A
Authority
JP
Japan
Prior art keywords
refrigerant
sensor
air conditioner
indoor fan
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016061157A
Other languages
Japanese (ja)
Inventor
板倉 俊二
Shunji Itakura
俊二 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2016061157A priority Critical patent/JP2017172910A/en
Publication of JP2017172910A publication Critical patent/JP2017172910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of effectively suppressing heating by a heater and also reducing temporal deterioration of a refrigerant sensor while preventing a leaking refrigerant having an inflammable concentration.SOLUTION: The present invention relates to an air conditioner 1 that coordinates air in a room using an inflammable refrigerant, and that comprises: an indoor fan 7 blowing an air current out into a room; a semiconductor type refrigerant sensor 10 detecting a refrigerant leaking in a heating state by a heater 10b; and a control part 9 controlling the indoor fan 7 and the heater 10b of the refrigerant sensor 10, the control part 9 performing control to suppress electricity feeding to the heater 10b of the refrigerant sensor 10 when the indoor fan 7 is operating at a rotating speed high enough to diffuse the leaking refrigerant to lower than an inflammable concentration.SELECTED DRAWING: Figure 4

Description

本発明は、半導体式冷媒センサを備える空気調和機に関する。   The present invention relates to an air conditioner including a semiconductor refrigerant sensor.

従来、可燃性の冷媒が漏洩した場合の検知手段として、半導体式冷媒センサ(半導体式ガスセンサ)を空気調和機に搭載することが提案されている。半導体式冷媒センサは、ヒーターによりセンサ素子を高温(300〜400℃)に加熱した状態で使用されるため、熱の影響でセンサ素子が経時劣化することが知られている。   Conventionally, it has been proposed to mount a semiconductor type refrigerant sensor (semiconductor type gas sensor) in an air conditioner as a detection means when a flammable refrigerant leaks. Since the semiconductor refrigerant sensor is used in a state where the sensor element is heated to a high temperature (300 to 400 ° C.) with a heater, it is known that the sensor element deteriorates with time due to the influence of heat.

そこで、ヒーターによる加熱を抑制することにより、半導体式冷媒センサの経時劣化を低減させることが提案されている。例えば、特許文献1には、ヒーターを間欠的に発熱させるとともに、ヒーターの発熱によるセンサ素子の加熱目標温度を「高温(450℃)」と「低温(250〜300℃)」との2種類にしてセンサ素子への加熱量を抑制することにより、半導体式冷媒センサの経時劣化を抑制させる技術が開示されている。   Therefore, it has been proposed to reduce the deterioration of the semiconductor refrigerant sensor over time by suppressing the heating by the heater. For example, in Patent Document 1, the heater is heated intermittently and the heating target temperature of the sensor element due to the heat generated by the heater is set to two types of “high temperature (450 ° C.)” and “low temperature (250 to 300 ° C.)”. Thus, there is disclosed a technique for suppressing the deterioration of the semiconductor refrigerant sensor with time by suppressing the amount of heating to the sensor element.

特開平8−220047号公報JP-A-8-220047

しかしながら、特許文献1による半導体式冷媒センサの加熱方法では、「低温(250〜300℃)」加熱時におけるセンサ素子の冷媒への反応性が低下するため、可燃性の冷媒が漏洩した場合の検知手段として半導体式冷媒センサを搭載する空気調和機への適用は困難であった。一方で、可燃性の冷媒は空気中の濃度が可燃濃度とならなければ燃焼しない。つまり、可燃濃度になる恐れが無い場合は、センサ素子の冷媒への反応性を低下させてもよい。   However, in the method for heating a semiconductor refrigerant sensor according to Patent Document 1, since the reactivity of the sensor element to the refrigerant during “low temperature (250 to 300 ° C.)” heating decreases, detection when a flammable refrigerant leaks is detected. As a means, application to an air conditioner equipped with a semiconductor refrigerant sensor has been difficult. On the other hand, the flammable refrigerant does not burn unless the concentration in the air reaches the flammable concentration. That is, when there is no possibility of becoming a flammable concentration, the reactivity of the sensor element to the refrigerant may be reduced.

そこで、本発明は、上記の問題点に鑑みなされたものであって、可燃性冷媒の濃度に着目してヒーターによる加熱を制御することで、冷媒センサの経時劣化を抑制できる空気調和機の提供を目的とする。   Accordingly, the present invention has been made in view of the above-described problems, and provides an air conditioner that can suppress deterioration with time of a refrigerant sensor by controlling heating by a heater while paying attention to the concentration of a combustible refrigerant. With the goal.

本発明は上記目的を達成するために提案されたものであり、請求項1の発明は、室内に気流を吹き出す室内ファンと、内蔵されるヒーターによる加熱状態で冷媒の漏洩を検知する半導体式の冷媒センサと、前記室内ファン及び前記冷媒センサを制御する制御部と、を備え、前記室内ファンが漏洩した冷媒を拡散可能な回転数で動作しているとき、前記制御部が前記冷媒センサの加熱量を制御することを特徴とする。   The present invention has been proposed in order to achieve the above object, and the invention of claim 1 is a semiconductor type that detects leakage of a refrigerant in a heated state by an indoor fan that blows an air flow into a room and a built-in heater. And a control unit that controls the indoor fan and the refrigerant sensor, and the control unit heats the refrigerant sensor when the indoor fan is operating at a rotational speed capable of diffusing the leaked refrigerant. It is characterized by controlling the amount.

請求項2の発明は、請求項1に記載の空気調和機であって、前記室内ファンが漏洩した冷媒を拡散可能な回転数で動作しているとき、前記制御部が前記冷媒センサに対する通電をオフに制御することを特徴とする。   A second aspect of the present invention is the air conditioner according to the first aspect, wherein when the indoor fan is operating at a rotation speed capable of diffusing the leaked refrigerant, the control unit energizes the refrigerant sensor. It is characterized by controlling off.

請求項3の発明は、請求項1に記載の空気調和機であって、前記室内ファンが漏洩した冷媒を拡散可能な回転数で動作しているとき、前記制御部が前記冷媒センサに対する通電をオン/オフ繰り返しに制御することを特徴とする。   A third aspect of the present invention is the air conditioner according to the first aspect, wherein when the indoor fan is operating at a rotation speed capable of diffusing the leaked refrigerant, the control unit energizes the refrigerant sensor. It is characterized by controlling on / off repeatedly.

請求項4の発明は、請求項1〜3のいずれか1項に記載の空気調和機であって、前記空気調和機が床置き式室内機であることを特徴とする。   The invention of claim 4 is the air conditioner according to any one of claims 1 to 3, wherein the air conditioner is a floor-standing indoor unit.

本発明によれば、冷媒センサの経時劣化を抑制できる空気調和機の提供が可能になる。   According to the present invention, it is possible to provide an air conditioner that can suppress deterioration with time of the refrigerant sensor.

本発明の実施形態に係る空気調和機の室内機を示す斜視図である。It is a perspective view which shows the indoor unit of the air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和機の室内機を示す分解斜視図である。It is a disassembled perspective view which shows the indoor unit of the air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和機の制御構成を示すブロック図である。It is a block diagram which shows the control structure of the air conditioner which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和機の冷媒センサの加熱制御を示すフローチャートである。It is a flowchart which shows the heating control of the refrigerant | coolant sensor of the air conditioner which concerns on embodiment of this invention. 冷媒センサの加熱制御の変形例を示すフローチャートである。It is a flowchart which shows the modification of the heating control of a refrigerant | coolant sensor. 変形例に係る冷媒センサの加熱制御の効果を示すタイミングチャートである。It is a timing chart which shows the effect of heating control of the refrigerant sensor concerning a modification.

以下、本発明に係る好適な実施形態について、図面を参照しながら詳細に説明する。なお、実施形態の説明の全体を通じて同じ要素には同じ符号を付して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the drawings. Note that the same reference numerals are given to the same elements throughout the description of the embodiment.

図1は、本発明の実施形態に係る空気調和機の室内機を示す斜視図、図2は、本発明の実施形態に係る空気調和機の室内機を示す分解斜視図、図3は、本発明の実施形態に係る空気調和機の制御構成を示すブロック図である。図1〜図3に示すように、空気調和機1は、室内に設置される室内機2と、室外に設置される室外機3とを備えており、室内機2と室外機3との間を循環する冷媒と空気との熱交換に基づいて、室内機2から室内に向けて冷風や温風を吹き出し、室内の冷房、暖房、除湿などを行うように構成されている。   1 is a perspective view showing an indoor unit of an air conditioner according to an embodiment of the present invention, FIG. 2 is an exploded perspective view showing the indoor unit of an air conditioner according to an embodiment of the present invention, and FIG. It is a block diagram which shows the control structure of the air conditioner which concerns on embodiment of invention. As shown in FIGS. 1 to 3, the air conditioner 1 includes an indoor unit 2 that is installed indoors and an outdoor unit 3 that is installed outdoor, and between the indoor unit 2 and the outdoor unit 3. On the basis of heat exchange between the refrigerant circulating in the air and the air, cool air or warm air is blown out from the indoor unit 2 into the room, and the room is cooled, heated, dehumidified, or the like.

図1に示すように、本実施形態の室内機2は、床面に設置される床置き式であり、その正面に設けられる吸込口4と、吸込口4の上下に設けられる上下の上吹出口5x(吹出口5)、下吹出口5y(吹出口5)とを備えている。そして、図2に示すように、室内機2の内部には、吸込口4と吹出口5とを結ぶ空気通路に熱交換器6が備えられている。なお、本実施例では、各要素の上下の区別を符号枝番x/yで表し、上下の区別をしないときは符号枝番x/yを付さないで説明する。   As shown in FIG. 1, the indoor unit 2 of the present embodiment is a floor-standing type installed on the floor surface, and a suction port 4 provided on the front surface thereof and an upper and lower upper blower provided above and below the suction port 4. An outlet 5x (air outlet 5) and a lower air outlet 5y (air outlet 5) are provided. And as shown in FIG. 2, the heat exchanger 6 is provided in the air path which connects the suction inlet 4 and the blower outlet 5 inside the indoor unit 2. As shown in FIG. In this embodiment, the upper / lower distinction of each element is represented by a code branch number x / y, and when no upper / lower distinction is made, the description will be made without attaching the code branch number x / y.

空気通路のうち上送風路21x(送風路21)には上モータ22x(モータ22)によって回転する上室内ファン7x(室内ファン7)が設けられており、上室内ファン7xは、上吹出口5xを構成する上ケーシング23x(ケーシング23)によって覆われている。同様に、下送風路21y(送風路21)には下モータ22y(モータ22)によって回転する下室内ファン7y(室内ファン7)が設けられており、下室内ファン7yは、下吹出口5yを構成する下ケーシング23y(ケーシング23)によって覆われている。なお、室内機2には、そのほかに、後述する制御部9を構成する電装品箱24や、室内機2の運転状態を表示する表示部25、温度センサ26が設けられている。   An upper indoor fan 7x (indoor fan 7) that is rotated by an upper motor 22x (motor 22) is provided in the upper air passage 21x (air passage 21) in the air passage, and the upper indoor fan 7x is connected to the upper outlet 5x. Is covered by an upper casing 23x (casing 23). Similarly, the lower air passage 21y (air passage 21) is provided with a lower indoor fan 7y (indoor fan 7) that is rotated by a lower motor 22y (motor 22). The lower indoor fan 7y opens the lower air outlet 5y. It is covered with the lower casing 23y (casing 23) which comprises. In addition, the indoor unit 2 is further provided with an electrical component box 24 constituting a control unit 9 to be described later, a display unit 25 for displaying the operating state of the indoor unit 2, and a temperature sensor 26.

床置き式の室内機2から冷媒(例えばR32)が漏洩した場合、床面付近で漏洩冷媒が高濃度となりやすく、床面付近で可燃濃度に到達する可能性がある。しかし、床面付近に滞留する漏洩冷媒を拡散できれば、可燃濃度に到達するリスクを抑えることができ、例えば、室内ファン7の動作によって漏洩した冷媒を室内に拡散させることができる。   When a refrigerant (for example, R32) leaks from the floor-standing indoor unit 2, the leaked refrigerant tends to have a high concentration near the floor surface and may reach a combustible concentration near the floor surface. However, if the leaked refrigerant staying in the vicinity of the floor can be diffused, the risk of reaching the flammable concentration can be suppressed. For example, the refrigerant leaked by the operation of the indoor fan 7 can be diffused indoors.

図3に示すように、空気調和機1には、赤外線リモコン、赤外線受光部などで構成される操作部8の設定操作に応じて、室外機3や、室内機2の室内ファン7、などを制御する制御部9が設けられている。さらに、制御部9には、冷媒の漏洩を検知する半導体式の冷媒センサ10と、警報音を出力する警報機11とが接続されており、冷媒センサ10による冷媒の漏洩検知に基づいて警報機11が動作する。   As shown in FIG. 3, the air conditioner 1 includes an outdoor unit 3, an indoor fan 7 of the indoor unit 2, and the like according to a setting operation of the operation unit 8 including an infrared remote controller and an infrared light receiving unit. A control unit 9 for controlling is provided. Furthermore, a semiconductor-type refrigerant sensor 10 that detects refrigerant leakage and an alarm device 11 that outputs an alarm sound are connected to the control unit 9, and an alarm device is detected based on the refrigerant leak detection by the refrigerant sensor 10. 11 operates.

半導体式の冷媒センサ10は、加熱状態(例えば、300〜400℃)において冷媒の漏洩を検知する検知部10aと、検知部10aを加熱するヒーター10bとを備えている。検知部10aは、可燃性の冷媒が存在するとセンサ素子の電気抵抗が下がり、この変化が冷媒濃度に依存することを利用して冷媒の漏洩を検知するものであり、センサ素子は、半導体特性を有する金属酸化物(例えば、酸化スズ)の焼結体を備えている。   The semiconductor refrigerant sensor 10 includes a detection unit 10a that detects leakage of the refrigerant in a heated state (for example, 300 to 400 ° C.) and a heater 10b that heats the detection unit 10a. The detector 10a detects the leakage of the refrigerant by utilizing the fact that the electrical resistance of the sensor element decreases when this combustible refrigerant is present and this change depends on the refrigerant concentration. A sintered body of a metal oxide (for example, tin oxide) is provided.

このような検知部10aのセンサ素子をヒーター10bの発熱で300〜400℃に加熱すると、冷媒のような還元性ガスを含まない大気中では、空気中の酸素が一定量その表面に負電荷吸着(酸素が酸化スズの電子を捉えて表面に吸着)し、抵抗値が高い状態となる。ここに可燃性の冷媒のような還元性のガスが接触すると、吸着酸素と反応を起こして吸着酸素が脱離するのに伴い、捉えていた電子が解放されて抵抗値が減少する。このような抵抗値の変化に基づいて、冷媒の漏洩や漏洩した冷媒濃度を検知することが可能になる。   When the sensor element of the detection unit 10a is heated to 300 to 400 ° C. by the heat generated by the heater 10b, a certain amount of oxygen in the air is adsorbed on the surface of the air in the atmosphere that does not contain a reducing gas such as a refrigerant. (Oxygen captures the tin oxide electrons and adsorbs them on the surface), resulting in a high resistance value. When a reducing gas such as a flammable refrigerant comes into contact therewith, a reaction with adsorbed oxygen occurs and adsorbed oxygen is desorbed, so that the captured electrons are released and the resistance value decreases. Based on such a change in resistance value, it is possible to detect the leakage of the refrigerant and the concentration of the leaked refrigerant.

しかしながら、半導体式の冷媒センサ10は、ヒーター10bの加熱による影響で経時劣化することが知られている。その理由は、酸化スズの結晶粒子が、長期間にわたってヒーター10bで加熱されることで、酸化活性が低下するからであり、経時劣化すると、抵抗値が低い状態のままになり、反応が鋭敏化してしまう。すなわち、ごく微量な還元性のガスにも反応してしまうため、例えば生鮮食品から発生する僅かなガスにも反応してしまう(誤検知)。このような冷媒センサ10の経時劣化は、ヒーター10bによる加熱量の抑制により低減することが可能である。   However, it is known that the semiconductor-type refrigerant sensor 10 deteriorates with time due to the influence of heating of the heater 10b. This is because tin oxide crystal particles are heated by the heater 10b for a long period of time, so that the oxidation activity decreases. When the tin oxide crystal particles deteriorate with time, the resistance value remains low, and the reaction becomes sensitized. End up. That is, since it reacts with a very small amount of reducing gas, it reacts with, for example, a slight amount of gas generated from fresh food (false detection). Such deterioration over time of the refrigerant sensor 10 can be reduced by suppressing the amount of heating by the heater 10b.

一方、本実施形態の室内機2は、仮に冷媒が漏洩しても、室内ファン7の動作中であれば、漏洩した冷媒を部屋全体に拡散させることができるので、漏洩した冷媒量が部屋体積などに基づいて算出される安全基準を越えなければ、漏洩した冷媒が可燃濃度に達することを防止できる。なお、安全基準は、下記の式で算出することができる。
冷媒量<安全率×部屋体積×LFL
LFL:Lower Flammable Limit
安全率:1/4(フロンガスの場合)
On the other hand, the indoor unit 2 of the present embodiment can diffuse the leaked refrigerant throughout the room if the indoor fan 7 is operating even if the refrigerant leaks. If the safety standard calculated based on the above is not exceeded, the leaked refrigerant can be prevented from reaching the flammable concentration. The safety standard can be calculated by the following formula.
Refrigerant amount <safety factor x room volume x LFL
LFL: Lower Flammable Limit
Safety factor: 1/4 (CFC gas)

つまり、室内機2の室内ファン7が、漏洩した冷媒を可燃濃度未満に拡散できる回転数以上で動作しているときは、冷媒センサ10による冷媒の漏洩検知を省略することが可能であり、冷媒センサ10のヒーター10bへの通電をオフにして冷媒センサ10の経時劣化を低減することができる。   That is, when the indoor fan 7 of the indoor unit 2 is operating at a rotational speed that can diffuse the leaked refrigerant below the flammable concentration, it is possible to omit detection of refrigerant leakage by the refrigerant sensor 10. By energizing the heater 10b of the sensor 10 to turn off, the deterioration of the refrigerant sensor 10 over time can be reduced.

漏洩した冷媒を可燃濃度未満に拡散できる室内ファン7の回転数、すなわち冷媒センサ10のヒーター10bに対する通電の閾値となる回転数は、開発段階における実験や数値解析(シミュレーション)の結果と、室内機2を設置する部屋の体積や、設置場所による風量の低下などを考慮した安全率とに基づいて決定されることが好ましい。しかし、より簡易的には、冷房運転、暖房運転、除湿運転及び送風運転中の室内ファン7の回転数は当該回転数以上であるものとする。また、冷房運転、暖房運転及び除湿運転時において、室内温度が設定温度に到達して室外機3に搭載される図示しない圧縮機が停止した状態(サーモオフ状態と呼ばれる)となったときの回転数は当該回転数に満たないものとする。   The number of rotations of the indoor fan 7 that can diffuse the leaked refrigerant below the flammable concentration, that is, the number of rotations that is a threshold for energization of the heater 10b of the refrigerant sensor 10, is the result of experiments and numerical analysis (simulation) in the development stage, 2 is preferably determined based on the volume of the room in which 2 is installed and the safety factor in consideration of a decrease in air volume depending on the installation location. However, more simply, the rotational speed of the indoor fan 7 during the cooling operation, the heating operation, the dehumidifying operation, and the air blowing operation is assumed to be equal to or higher than the rotational speed. In the cooling operation, the heating operation, and the dehumidifying operation, the rotation speed when the room temperature reaches the set temperature and the compressor (not shown) mounted on the outdoor unit 3 is stopped (referred to as a thermo-off state). Is less than the number of revolutions.

図4は、本発明の実施形態に係る空気調和機の冷媒センサの加熱制御を示すフローチャートである。この図に示すように、制御部9は、上記のような冷媒センサ10の加熱制御を実現するために、空気調和機1の電源投入後、室内ファン7の回転数を監視し、室内ファン7の回転数が所定値未満、すなわち漏洩した冷媒を可燃濃度未満に拡散できる回転数未満であるか否かを判断する(ステップS1)。   FIG. 4 is a flowchart showing the heating control of the refrigerant sensor of the air conditioner according to the embodiment of the present invention. As shown in this figure, the control unit 9 monitors the rotational speed of the indoor fan 7 after the air conditioner 1 is turned on in order to realize the heating control of the refrigerant sensor 10 as described above. Is determined to be less than a predetermined value, that is, less than the number of rotations at which the leaked refrigerant can be diffused below the flammable concentration (step S1).

この判断結果がYESである場合は(ステップS1:YES)、冷媒センサ10のヒーター10bに対する通電をオンにして冷媒センサ10による冷媒の漏洩検知を有効にする(ステップS2)。一方、判断結果がNOである場合は(ステップS1:NO)、冷媒センサ10のヒーター10bに対する通電をオフにすることで(ステップS3)、冷媒センサ10の加熱による経時劣化を抑制する。   If the determination result is YES (step S1: YES), energization of the refrigerant sensor 10 to the heater 10b is turned on to enable refrigerant leakage detection by the refrigerant sensor 10 (step S2). On the other hand, when the determination result is NO (step S1: NO), the energization of the refrigerant sensor 10 to the heater 10b is turned off (step S3), thereby suppressing deterioration with time due to heating of the refrigerant sensor 10.

以上に述べた本実施形態によれば、室内に気流を吹き出す室内ファン7と、内蔵されるヒーター10bによる加熱状態で冷媒の漏洩を検知する半導体式の冷媒センサ10と、室内ファン7及び冷媒センサ10を制御する制御部9とを備えた空気調和機1であって、室内ファン7が漏洩した冷媒を可燃濃度未満に拡散可能な回転数で動作しているときは、制御部9が冷媒センサ10に対する通電を抑制的に制御するので、漏洩した冷媒の可燃濃度の発生を防止しつつ、ヒーター10bによる加熱量を抑制し、冷媒センサ10の経時劣化を低減できる。   According to this embodiment described above, the indoor fan 7 that blows out airflow into the room, the semiconductor-type refrigerant sensor 10 that detects leakage of refrigerant in the heating state by the built-in heater 10b, the indoor fan 7, and the refrigerant sensor When the air conditioner 1 includes a control unit 9 that controls 10 and the indoor fan 7 is operating at a rotational speed that can diffuse the leaked refrigerant below the flammable concentration, the control unit 9 is a refrigerant sensor. Since the energization of the refrigerant 10 is controlled in a controlled manner, the amount of heating by the heater 10b can be suppressed while the flammable concentration of the leaked refrigerant is prevented, and the deterioration of the refrigerant sensor 10 over time can be reduced.

また、本実施形態では、室内ファン7が漏洩した冷媒を可燃濃度未満に拡散可能な回転数で動作しているとき、制御部9が冷媒センサ10に対する通電をオフに制御するので、ヒーター10bによる加量熱を確実に抑制できるだけでなく、制御を単純化することができる。   Moreover, in this embodiment, when the indoor fan 7 is operating at a rotational speed at which the refrigerant leaked can be diffused below the combustible concentration, the control unit 9 controls the energization to the refrigerant sensor 10 to be turned off. Not only can heat of addition be reliably suppressed, but also control can be simplified.

また、本実施形態の冷媒センサ10は、漏洩した冷媒が床面に滞留して可燃濃度に達する可能性があるものの、室内ファン7の動作によって漏洩した冷媒を室内に拡散させやすい床置き式の室内機2に搭載されているので、本発明の効果が顕著になる。   Further, the refrigerant sensor 10 of the present embodiment is a floor-standing type in which the leaked refrigerant may stay on the floor and reach a flammable concentration, but the refrigerant leaked by the operation of the indoor fan 7 is easy to diffuse into the room. Since it is mounted in the indoor unit 2, the effect of the present invention becomes remarkable.

つぎに、冷媒センサ10の加熱制御の変形例について、図5及び図6を参照して説明する。   Next, a modification of the heating control of the refrigerant sensor 10 will be described with reference to FIGS.

図5は、冷媒センサの加熱制御の変形例を示すフローチャートである。この図に示す変形例のフローチャートは、空気調和機1の電源投入後、室内ファン7の回転数を監視し、室内ファン7の回転数が所定値未満、すなわち漏洩した冷媒を可燃濃度未満に拡散できる回転数未満であるか否かを判断するステップS1と、この判断結果がYESである場合に(ステップS1:YES)、冷媒センサ10のヒーター10bに対する通電をオンにして冷媒センサ10による冷媒の漏洩検知を有効にするステップS2は、図4に示すフローチャートと同様であるが、ステップS1の判断結果がNOである場合に(ステップS1:NO)、冷媒センサ10のヒーター10bに対する通電を完全にオフにするのではなく、オン/オフを繰り返す間欠的な通電制御を行うことで(ステップS3b)、冷媒センサ10の加熱を抑制する点が図4に示すフローチャートと相違している。   FIG. 5 is a flowchart showing a modification of the heating control of the refrigerant sensor. In the flowchart of the modification shown in this figure, after the air conditioner 1 is turned on, the rotational speed of the indoor fan 7 is monitored, and the rotational speed of the indoor fan 7 is less than a predetermined value, that is, the leaked refrigerant is diffused below the flammable concentration. Step S1 for determining whether or not the number of revolutions is less than this, and if this determination result is YES (step S1: YES), energization to the heater 10b of the refrigerant sensor 10 is turned on and the refrigerant of the refrigerant by the refrigerant sensor 10 is turned on. Step S2 for enabling leakage detection is similar to the flowchart shown in FIG. 4, but when the determination result in step S1 is NO (step S1: NO), the energization of the refrigerant sensor 10 to the heater 10b is completely performed. The heating of the refrigerant sensor 10 is suppressed by performing intermittent energization control that repeats on / off instead of turning off (step S3b). That point is different from the flowchart shown in FIG.

図6は、変形例に係る冷媒センサの加熱制御の効果を示すタイミングチャートである。この図の下側に示すように、ヒーター10bの間欠的な通電制御によれば、冷媒センサ10による冷媒の漏洩検知を行わない状態でも、冷媒センサ10のセンサ素子をある程度の温度(例えば、100℃)を維持するスタンバイ状態に保つことができるので、冷媒センサ10による冷媒の漏洩検知を再開する際、センサ素子が検知可能な所定の温度(例えば、300℃)に達するまでの経過時間を短縮することができる。   FIG. 6 is a timing chart showing the effect of heating control of the refrigerant sensor according to the modification. As shown in the lower side of the figure, according to the intermittent energization control of the heater 10b, the sensor element of the refrigerant sensor 10 is kept at a certain temperature (for example, 100) even in the state where the refrigerant leakage detection by the refrigerant sensor 10 is not performed. ° C) can be maintained in a standby state, and when the refrigerant leak detection by the refrigerant sensor 10 is resumed, the elapsed time until the sensor element reaches a predetermined temperature (for example, 300 ° C) that can be detected is shortened. can do.

以上、本発明の好ましい実施形態について詳述したが、本発明は上述した実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications may be made within the scope of the gist of the present invention described in the claims. It can be changed.

例えば、上述した実施形態は、床置き式の室内機を例として説明したが、本発明は壁掛け式の室内機でも実施することができる。   For example, although the above-described embodiment has been described using a floor-standing indoor unit as an example, the present invention can also be implemented with a wall-mounted indoor unit.

また、本実施形態のヒーター10bの発熱によるセンサ素子の加熱目標温度を「高温(450℃)」と「低温(250〜300℃)」との2種類にし、図4に示すフローチャートのステップS2の処理をヒーター10bの加熱目標温度が「高温」となるように制御することに置き換え、ステップS3にの処理をヒーター10bの加熱目標温度が「低温」となるように制御することに置き換えてもセンサ素子への加熱量を抑制できる。   In addition, the heating target temperature of the sensor element due to the heat generation of the heater 10b of the present embodiment is set to two types, “high temperature (450 ° C.)” and “low temperature (250 to 300 ° C.)”. Even if the process is replaced with control so that the heating target temperature of the heater 10b becomes "high temperature", and the process in step S3 is replaced with control so that the heating target temperature of the heater 10b becomes "low temperature", the sensor. The amount of heating to the element can be suppressed.

1…空気調和機、2…室内機、3…室外機、4…吸込口、5…吹出口、6…熱交換器、7…室内ファン、8…操作部、9…制御部、10…冷媒センサ、10a…検知部、10b…ヒーター、11…警報機   DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Indoor unit, 3 ... Outdoor unit, 4 ... Suction port, 5 ... Air outlet, 6 ... Heat exchanger, 7 ... Indoor fan, 8 ... Operation part, 9 ... Control part, 10 ... Refrigerant Sensor, 10a ... detection unit, 10b ... heater, 11 ... alarm

Claims (4)

室内に気流を吹き出す室内ファンと、
ヒーターによる加熱状態で冷媒の漏洩を検知する半導体式の冷媒センサと、
前記室内ファン及び前記冷媒センサを制御する制御部と、を備えた空気調和機であって、
前記室内ファンが漏洩した冷媒を拡散可能な回転数で動作しているとき、前記制御部が前記冷媒センサに対する通電を抑制的に制御することを特徴とする空気調和機。
An indoor fan that blows out airflow into the room,
A semiconductor-type refrigerant sensor that detects leakage of refrigerant in a heating state by a heater;
A controller for controlling the indoor fan and the refrigerant sensor, and an air conditioner comprising:
When the indoor fan is operating at a rotational speed capable of diffusing the leaked refrigerant, the controller controls the energization of the refrigerant sensor in a suppressive manner.
前記室内ファンが漏洩した冷媒を拡散可能な回転数で動作しているとき、前記制御部が前記冷媒センサに対する通電をオフに制御することを特徴とする請求項1に記載の空気調和機。   2. The air conditioner according to claim 1, wherein when the indoor fan is operating at a rotation speed capable of diffusing the leaked refrigerant, the control unit controls the energization of the refrigerant sensor to be off. 前記室内ファンが漏洩した冷媒を拡散可能な回転数で動作しているとき、前記制御部が前記冷媒センサに対する通電をオン/オフ繰り返しに制御することを特徴とする請求項1に記載の空気調和機。   2. The air conditioner according to claim 1, wherein when the indoor fan is operating at a rotation speed capable of diffusing the leaked refrigerant, the control unit controls energization to the refrigerant sensor repeatedly on and off. Machine. 前記空気調和機が床置き式室内機であることを特徴とする請求項1〜3のいずれか1項に記載の空気調和機。   The air conditioner according to any one of claims 1 to 3, wherein the air conditioner is a floor-standing indoor unit.
JP2016061157A 2016-03-25 2016-03-25 Air conditioner Pending JP2017172910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016061157A JP2017172910A (en) 2016-03-25 2016-03-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016061157A JP2017172910A (en) 2016-03-25 2016-03-25 Air conditioner

Publications (1)

Publication Number Publication Date
JP2017172910A true JP2017172910A (en) 2017-09-28

Family

ID=59973736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016061157A Pending JP2017172910A (en) 2016-03-25 2016-03-25 Air conditioner

Country Status (1)

Country Link
JP (1) JP2017172910A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940750A (en) * 2017-10-20 2018-04-20 青岛海尔空调器有限总公司 A kind of electric heater unit and air conditioner
CN107975914A (en) * 2017-10-20 2018-05-01 青岛海尔空调器有限总公司 A kind of electric heating controlling method
CN110044033A (en) * 2019-04-29 2019-07-23 广东美的制冷设备有限公司 Refrigerant leakage detection method, system and the air-conditioning of air-conditioning
CN113390564A (en) * 2021-05-27 2021-09-14 珠海格力智能装备有限公司 Refrigerant leakage detection equipment and method
WO2023140145A1 (en) * 2022-01-21 2023-07-27 ダイキン工業株式会社 Cooling device, refrigerant leakage detection device, and refrigerant leakage detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220047A (en) * 1995-02-14 1996-08-30 Ricoh Co Ltd Gas detector
JPH0933089A (en) * 1995-07-19 1997-02-07 Daikin Ind Ltd Operation control device for air conditioner
JPH09250794A (en) * 1996-03-19 1997-09-22 Hitachi Ltd Air conditioner
JP2016029322A (en) * 2014-07-15 2016-03-03 三菱電機株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220047A (en) * 1995-02-14 1996-08-30 Ricoh Co Ltd Gas detector
JPH0933089A (en) * 1995-07-19 1997-02-07 Daikin Ind Ltd Operation control device for air conditioner
JPH09250794A (en) * 1996-03-19 1997-09-22 Hitachi Ltd Air conditioner
JP2016029322A (en) * 2014-07-15 2016-03-03 三菱電機株式会社 Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940750A (en) * 2017-10-20 2018-04-20 青岛海尔空调器有限总公司 A kind of electric heater unit and air conditioner
CN107975914A (en) * 2017-10-20 2018-05-01 青岛海尔空调器有限总公司 A kind of electric heating controlling method
CN107975914B (en) * 2017-10-20 2020-04-24 青岛海尔空调器有限总公司 Electric heating control method
CN107940750B (en) * 2017-10-20 2020-05-29 青岛海尔空调器有限总公司 Electric heating device and air conditioner
CN110044033A (en) * 2019-04-29 2019-07-23 广东美的制冷设备有限公司 Refrigerant leakage detection method, system and the air-conditioning of air-conditioning
CN113390564A (en) * 2021-05-27 2021-09-14 珠海格力智能装备有限公司 Refrigerant leakage detection equipment and method
WO2023140145A1 (en) * 2022-01-21 2023-07-27 ダイキン工業株式会社 Cooling device, refrigerant leakage detection device, and refrigerant leakage detection method
JP2023106859A (en) * 2022-01-21 2023-08-02 ダイキン工業株式会社 Refrigerating device, refrigerant leakage detection device, and refrigerant leakage detection method
JP7332954B2 (en) 2022-01-21 2023-08-24 ダイキン工業株式会社 Refrigerating device, refrigerant leak detection device, and refrigerant leakage detection method

Similar Documents

Publication Publication Date Title
JP2017172910A (en) Air conditioner
JP6289757B2 (en) Refrigeration cycle apparatus and refrigeration cycle system
JP6876375B2 (en) Fan drive circuit of heat pump device
JP6598878B2 (en) Refrigeration cycle equipment
WO2018142509A1 (en) Air conditioner
JP6668879B2 (en) Air conditioner
JP6173405B2 (en) Ventilation control device, ventilation system, ventilation control method, and ventilation control program
JP2009298274A (en) Vehicular ventilating and air-conditioning device
JP2015094566A (en) Indoor unit for air conditioner
US11971184B2 (en) Air mover refrigerant leak detection and risk mitigation
JPWO2018220810A1 (en) Air conditioner
CN108072153A (en) Control method, radiation air-conditioner and the storage medium of radiation air-conditioner
JP2010002068A (en) Air cleaner
JP2024060087A (en) Air Conditioning System
JPWO2017187483A1 (en) Indoor unit and air conditioner
JP2015094512A (en) Indoor unit for floor-installed air conditioner
JP6219107B2 (en) Air conditioning method and air conditioning system used in the air conditioning method
WO2020261794A1 (en) Outside air treatment device and air conditioning system
JP7159748B2 (en) air conditioner
JP6431366B2 (en) Air conditioning system
KR101790690B1 (en) Ventilator having function of dew condensation prevention and the controlling method the same
EP4160101A1 (en) A ventilation system for a room
JP6915959B2 (en) Indoor unit equipped with a discharge device
JP7484082B2 (en) Air conditioners
JP2016038107A (en) heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526