JP3556137B2 - ブラシレスモータの駆動制御装置 - Google Patents

ブラシレスモータの駆動制御装置 Download PDF

Info

Publication number
JP3556137B2
JP3556137B2 JP31791699A JP31791699A JP3556137B2 JP 3556137 B2 JP3556137 B2 JP 3556137B2 JP 31791699 A JP31791699 A JP 31791699A JP 31791699 A JP31791699 A JP 31791699A JP 3556137 B2 JP3556137 B2 JP 3556137B2
Authority
JP
Japan
Prior art keywords
current
duty ratio
commutation
phase
brushless motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31791699A
Other languages
English (en)
Other versions
JP2001136772A (ja
Inventor
博明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31791699A priority Critical patent/JP3556137B2/ja
Publication of JP2001136772A publication Critical patent/JP2001136772A/ja
Application granted granted Critical
Publication of JP3556137B2 publication Critical patent/JP3556137B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は台形状の磁束分布を有するブラシレスモータの矩形波駆動制御装置に関するもので、特にトルクリップル抑制に関するものである。
【0002】
【従来の技術】
ブラシレスモータは、永久磁石からなるロータの磁極位置を検出し、その検出信号によりステータコイルの通電モードを切り替えてロータを回転させる。このステータコイルの通電モード切り替え時(転流時)に電流が変動すると、トルクリップルが生じ、振動や騒音の原因となる。そこで、トルクリップルを減少させて振動や騒音を低下させるようにした台形波着磁型ブラシレスモータの矩形波駆動制御装置が提案されており、その例が、J.Cros他著のEPEA(ヨーロッパパワーエレクトロニクス協会)の1993年9月,Brighton大会の会報中266頁〜271頁(以下、文献1と略す)に開示されている。
【0003】
これによれば、非転流区間で非転流相の電流を制御する通常のPWM出力Mod.1と、非転流相の電流が減少しないように、転流時は電流がゼロとなる相(以下、単に転流相と称す)の端子電圧を制御するPWM出力Mod.2で構成することが開示されている。図10は文献1に示された装置の動作を示す構成図であり、図において、Mod.1は非転流相のスイッチング素子に選択接続され、Mod.2は転流相のスイッチング素子に選択接続されている。非転流モードおよび低速の転流モードでは、切替スイッチが下側に選択されて、目標電流Idと非転流相の相電流Isが一致するように、P又はPI制御演算され、演算結果の通電率は、Mod.1から出力され、非転流相の通電率を変えることで、目標値電流になるよう制御している。一方、Mod.2は通電率0%で接続されているスイッチング素子はオフ状態である。
【0004】
次に、転流モードでは、前記切替スイッチは上側に選択されて、Mod.1は通電率は100%になり、一方、Mod.2には前記P又はPI制御演算結果の通電率が出力され、転流相のスイッチング素子の通電率を変えることで、転流相にかかる電圧を減少させて、非転流相電流の低下を制限している。Mod.1用出力には、低速時の転流時に理論値である出力電圧=4E(ここで、E=発電電圧/相)の関係になる通電率上限値が設定される。Mod.2用には、高速時の転流時のEの関数である上限値が設定される。転流時は、低速回転時のMod.1、高速回転時のMod.2ともその出力通電率はこれらの上限値に飽和するようP又はPI制御演算が設定される。
【0005】
【発明が解決しようとする課題】
従来の矩形波駆動制御は以上のようになされていたので、転流時は実質的に上限値で決まるオープン制御であり、これらの上限値はブラシレスモータの抵抗やインダクタンスなどのパラメータによって変化する上に、転流中に発電電圧Eが変化する場合は、補償が難しく実用的ではないという問題点があった。
【0006】
この発明は上記のような問題点を解消するためになされたものであり、電流の目標値追従制御性を確保すると同時に、トルクリップルを低減できる、台形波着磁型ブラシレスモータの矩形波駆動制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
この発明の請求項1に係るブラシレスモータの駆動制御装置は、直流電源の正極と負極の間に直列に接続した複数のスイッチング素子と、このスイッチング素子の接続点とブラシレスモータとを接続し、当該接続路を流れる電流を検出する電流検出器と、このブラシレスモータの磁極位置を検出する位置検出器と、ブラシレスモータの駆動コイルに発生する1相当たりの誘起電圧を算出するモータ発電電圧計算手段と、位置検出器から得た位置検出信号に基づいて、スイッチング素子を選択的に通電する駆動信号発生手段と、電流検出器により検出された検出電流に基づくフィードバック電流と目標電流が一致するように駆動信号発生手段の出力たる第1通電率を演算する第1演算手段と、直流電源の電圧とモータ発電電圧計算手段の出力と目標電流に基づき、ブラシレスモータの中立点電位変動を少なくするように、転流電流がゼロとなる相に接続されたスイッチング素子に対する第2通電率を演算する第2演算手段と、第2通電率に基づき第1通電率を補正する補正手段とを有するものである。
【0008】
この発明の請求項2に係るブラシレスモータの駆動制御装置は、回路をn相とし、1相当たりの回路抵抗をR、目標電流をId、電源電圧をVd、1相当たりの発電電圧をEsとしたとき、第2通電率は nId・R+(n+1)Es−Vdの関数としたものである。
【0009】
この発明の請求項3に係るブラシレスモータの駆動制御装置は、回路をn相とし、1相当たりの回路抵抗をR、目標電流をId、電源電圧をVd、1相当たりの発電電圧をEs、目標電流Idとフィードバック電流Isとの偏差を目標電流Idで除算した値に比例した回路抵抗補正量をYとしたとき、第2通電率は nId(R+Y)+(n+1)Es−Vdの関数としたものである。
【0010】
この発明の請求項4に係るブラシレスモータの駆動制御装置は、第1通電率が所定の最大値以下になるように、転流電流がゼロとなる相に接続されたスイッチング素子に対する第2通電率を演算するものである。
【0011】
この発明の請求項5に係るブラシレスモータの駆動制御装置は、第1通電率の最大値を第1通電率の関数としたものである。
【0012】
この発明の請求項6に係るブラシレスモータの駆動制御装置は、回路をn相とし、1相当たりの回路抵抗をR、目標電流をId、電源電圧をVd、1相当たりの発電電圧をEs、最大値をD1maxとしたとき、第2通電率は nId・R+(n+1)Es−Vd+n(1−D1max)Vdの関数としたものである。
【0013】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施形態1を図に基づいて説明する。図1に示すように、ブラシレスモータ1は、表面に永久磁石を有するロータ2及び3相の駆動コイル3(u,v,w相)と位置検出器4a,4b,4cより構成されている。それぞれの駆動コイル3は、一端が共通接続され、他端は上アームスイッチング素子Q,Q,Q及びスイッチング素子の各々に逆並列に接続した還流ダイオードD,D,Dを介して直流電源5の正極に接続するとともに、下アームスイッチング素子Q,Q,Q及びダイオードD,D,Dを介して直流電源5の負極に接続されている。
【0014】
駆動コイル3の内2相に相電流検出器6u,6wがあり、駆動コイル3に流れる電流に応じた信号をマイクロコンピュータ7に送っている。検出器のない残り1相の電流値は、相電流の総和は常に0という関係から計算される。ブラシレスモータ1のロータ2の位置検出のための位置検出器4a,4b,4cにはそれぞれホール素子があり、それらの位置信号H,H,Hはマイクロコンピュータ7に入力される。
また、スイッチング素子に供給される電源電圧Vdを検出するための信号もマイクロコンピュータ7に入力される。マイクロコンピュータ7はこれらの入力値に基づいて、スイッチング素子のゲート端子に適切な駆動信号、PWM信号を出力する。
【0015】
次に、位置信号H,H,Hとステップについて図2で説明する。位置信号Hは、ロータ2が回転し駆動コイル3のU相に現れる発電電圧(emf)Euの波形が最大値の+Eになってから最低値の−Eになるまでの間はハイレベルの信号で、その他の区間がローレベルの信号となるよう設定されている。同様に、位置信号HはV相に現れる発電電圧Evに、また位置信号HはW相に現れる発電電圧Ewに対応した信号になっている。
【0016】
これら位置信号H,H,Hで区分けされる6つの区間(電気角でπ/3、機械角では磁極が4極であるからπ/6となる)に1〜6のステップ番号を割り当て、制御に使用している。例えばステップが1の場合、発電電圧と同極性に対応する相電流を流す。即ち図2に示すように、U相電流Iuをプラス方向に、W相電流Iwをマイナス方向に流すために、スイッチング素子QとQを通電状態にする。このことにより、モータはIu×Eu+Iw×Ewの正方向トルクが発生し、負荷トルクが小さければステップ2の方向に回転する。
【0017】
各ステップにおけるスイッチング素子の通電状態を図3の表に示す。図3には、下アームのスイッチング素子の通電率を記載してないが、対応する下アームのスイッチング素子の通電率は、上アームの補数である(上アームがDなら下アームは1−D)。通電率Dが0.5以上の場合、Dとあるのが上流側で、1−Dが下流側となるが、通電率Dが0.5以下の場合は、上流と下流が逆に、即ち電流の向きが逆になり、負方向のトルクが発生するので、負荷トルクが小さければ、逆方向(ステップ1→6→5→4)に回転する。また、図3中のoffはスイッチング素子が非通電状態であることを示す。
【0018】
ステップが変更になるとき、電流の流れる相が変化し、これを転流と称する。以下、電流が0に成る相を単に転流相と略す。図2の波形で説明すると、ステップ6からステップ1になったとき、V相電流が0になり、U相電流は流れ始め、W相電流は変化しない。この場合、V相を転流相、W相を非転流相と称す。
【0019】
駆動コイル3に関して対称性があるとすると、駆動コイル端子電圧Vu,Vv,Vwと駆動コイル相電流Iu,Iv,Iwとの関係は、数式(1)のようになる。
【0020】
【数1】
Figure 0003556137
【0021】
ここで、Rは1相当たりの抵抗、Lは1相当たりの等価インダクタンス、Vnは駆動コイル中性点電位、Eu,Ev,Ewは各相の発電電圧(emf電圧)である。PWM周期が回路の時定数L/Rに比べて短かければ、いわゆる状態平均値化法が適用できて、端子電圧はそれぞれ図3の通電率と電源電圧Vdで表現でき、例えば、ステップ1の非転流状態では、数式(1)はU相とW相だけの式となり、次の数式(2)のようになる。
【0022】
【数2】
Figure 0003556137
【0023】
上記数式(2)の辺々を加え、Iu+Iw=0を適用し整理すると、Vnは数式(3)のようになる。
Vn=Vd/2 ………(3)
又、ステップ1の転流状態では、数式(1)は次の数式(4)のようになる(ただし、ダイオードの順方向電圧降下は無視している)。
【0024】
【数3】
Figure 0003556137
【0025】
数式(4)の辺々を加え、Iu+Iv+Iw=0を適用し整理すると、Vnは(転流相の電流が正の場合)次の数式(5)のようになる。
Vn=Vd/2−(Vd/2−Ew)/3 ………(5)
同様にして、ステップ2の場合の転流時のVnは(転流相の電流が負の場合)次の数式(6)のようになる。
Vn=Vd/2+(Vd/2−Ew)/3 ………(6)
【0026】
この関係を図2の中立点電位の波形で示している。このように、中立点電位Vnは転流区間で急変するため、非転流相の電流も数式(1)の関係で影響を受けることになり変動する。これがモータのトルクリップルとなり、振動や騒音を引き起こす。この電圧変動に応動して、電流がその目標値に保持されるように制御されるように、制御機器を設計、調節しなければならない。特に、制御機器の出力が飽和(通電率が最大値に固定)して、一時的に制御が不能になるようなことがあってはいけない。
【0027】
次に、マイクロコンピュータ7の働きを図4に示す。図4において、電源電圧Vd、電流Iu,Iw、そしてモータ回転位置H,H,Hのそれぞれの信号は、図示しないインターフェース回路によってデジタル化された内部信号になる。モータ回転位置決定手段8では、前記モータ回転位置信号H,H,Hの組合せ論理により、図2に示したようにステップ1〜6の何番かを決定する。モータ角速度計算手段9では、連続する2回のステップ変化点の時間間隔を測定し、1ステップに相当する角度(一定値)をこの時間間隔で除算することで、モータの角速度ωを算出する。モータ発電電圧計算手段10では、駆動コイル3に発生する1相当たりの誘起電圧Eに相当する量Esをemf係数Km(一定値)と前記角速度ωの積として算出する。
【0028】
FB電流選択手段11では、転流域でも電流が変化しない相の電流=非転流相電流をフィードバック制御演算に使用するため、前記ステップに対応して相電流Iu,Iv,Iw(ただしIvはIv=−Iu−Iwより算出)のうちいずれか1つを選ぶとともに、その極性を必要に応じて変更する。この作業をFB電流とステップの表にしたものが図3である。図中のCWとCCWはモータの回転方向で、回転方向(ステップの変化順により決定:→1→2→3→の方向をCWとし、この逆方向をCCWとしている)により、選択されるフィードバック電流が異なる。電流制御演算手段12は、目標電流生成手段13で生成された目標電流Idとフィードバック電流Isが一致するように、前記通電率D及びDを演算する。尚、演算の詳細は後述する。
【0029】
制御出力相選択手段14は、電流制御演算手段12で演算された通電率D及びDとそれらの補数を次段の3相PWM回路15にある6個の前記スイッチング素子Q〜Qに対応するPWM発生回路のいずれに設定するかを決定する。この設定作業をステップとスイッチング素子との表にしたものが図3及び図5である。これらの表中には上アームのスイッチング素子のみを表記しているが、対応する下アームのスイッチング素子用のPWM発生回路には、対になっている上アームのスイッチング素子の通電率の補数の通電率が設定される。
例えばDが35%で、ステップが1の場合、スイッチング素子Q,Qにはそれぞれ35%と65%の通電率が設定される。
【0030】
また図3、図5の表中のoffの表記は、対となる上下アームのスイッチング素子の両方とも非通電状態に設定することを意味している。3相PWM回路15は、表記しない三角波(周波数は騒音とスイッチング損失の両方を考慮して20KHz程度が選ばれることが多い)と前記通電率に対応するレベルとの比較によりon/off信号が発生し、次段の駆動回路16に出力するよく知られた通常のPWM発生回路で、前記スイッチング素子Q〜Qに対応した6個の回路を有する。
【0031】
前記電流制御演算手段12の詳細な動作を図6によるフローチャートで説明する。図において、S101では電流制御演算手段12の入力である前記モータ回転位置決定手段8、モータ角速度計算手段9、モータ発電電圧計算手段10、FB電流選択手段11及び目標電流生成手段13の各機能を実行している。
次に、S102では、いわゆるフィードフォワード付PI(比例・積分)制御演算をする。即ち以下、数式(7)〜数式(9)の演算を行なう。
ε=Id―Is ………(7)
=Ki・ε+Y(前回値) ………(8)
=Rm×Id+Kp・ε+Y+Es+Vd/2 ………(9)
ここで、Id:目標電流,Is:実電流(フィードバック電流),ε:偏差,Y:積分値,Ki:積分ゲイン,Y:出力電圧,Rm:1相当たりの公称抵抗値,Kp:比例ゲイン,Es:1相当たりの発電電圧(emf電圧),Vd:直流電源電圧,である。
【0032】
次に、S103で転流中かどうかを判断して、転流中であるとS104に、そうでないならS109に移動する。転流終了の判断は、第1例として、転流状態にあって、転流電流が0又は0近くの値になった場合、転流終了とする方法、第2例として、転流状態にあって、転流初期電流値とemf電圧と、回路抵抗、回路インダクタンスより計算できる予定転流時間を経過した場合、転流終了とする方法が考えられる。転流中かどうかは、転流開始より転流終了までの間かどうかで判断する。
【0033】
転流中の場合の第1演算手段であるところのS104では、転流時と非転流時の中性点電位の差の分 (Vd/2+Es)×sgn(Ic)/3を前記Yに加算した出力電圧Yから第1通電率Dを計算する。即ち、
【0034】
=Y+(Vd/2+Es)×sgn(Ic)/3………(10)
=Y/Vd ………(11)
ここで、sgn( )は符号関数で、引数が0のとき関数も0、引数が0以外のとき関数は引数の符号となる。ここでの引数Icは転流電流で、図3の表中のoffの相に過渡的に流れる電流である。
【0035】
S105、S106、S107及びS108が実施の形態1における第2演算手段に相当する部分で、まずS105では補償電圧Vcmpを次の数式(12)で計算する。
Vcmp=3Rm・Id+4Es−Vd ………(12)
回路をn相とすると、数式(12)はVcmp=nId・R+(n+1)Es−Vdとなる。
この式は、例えば数式(4)の第一式に数式(6)のVnを代入して整理すると、次の数式(13)のようになる。
Vd・D=R・Iu+LdIu/dt+E+Vd/2+Vd/6−Ew/3………(13)
ここで、非転流電流IuをIdに一致するように制御できる限界条件:Iu=Id,D=1,Ew=−Es,dId/dt≒0として数式(13)に代入して整理すると(ただし、発電電圧Eは同推定値のEsを、抵抗Rは同公称値のRmで代用する)次の数式(14)が考えられる。
Vd> 3Rm・Id+4Es ………(14)
数式(14)の関係を補償電圧Vcmp(>0)を使用して、等式表現にしたものが数式(12)である。
【0036】
転流時に、転流相の端子電圧をVcmp又はVd−Vcmp(転流電流が負の場合が前者、正の場合が後者)に制御した場合、数式(4)に対応した式は次の数式(15)となる。この場合、V相端子電圧=Vd−Vcmp=Vd−D・Vd
【0037】
【数4】
Figure 0003556137
【0038】
数式(4)から数式(5)を導出したのと同様にすると、このときの中立点電位Vnは数式(16)のようになる。
Vn=Vd/2−(Vd/2+Ev−Vcmp)/3 ………(16)
同様に転流電流が負の場合の数式(5)に対応するVnは次の数式(17)となる。
Vn=Vd/2+(Vd/2+Ev−Vcmp)/3 ………(17)
いずれの場合も、転流時の中性点電位の非転流時の値Vd/2からの変化分がVcmp/3だけ減少している。
【0039】
このことは、非転流電流の電流制御できる条件である数式(15)と同等のことを意味している。即ち、第2通電率Dによる転流相の端子電圧を適切に制御することで、転流中の中性点電位の変化を減少させることができるので、第1通電率Dによる非転流相の電流制御のための電圧幅が確保され(=端子電圧が飽和することなく)、転流中の電流が目標値に制御されるため、転流中もトルクリップルが起きない。しかも、数式(16)及び数式(17)を見て分かるように、中性点電位は第1通電率Dとは無関係で、第2通電率Dのみ(∵Vcmp=D・Vd)に関係するので、非転流電流を制御するDによる制御と中性点電位Vnを制御するDによる制御干渉がなく、制御系を構築しやすい条件となっている。
【0040】
Vcmpが負又は0なら転流相の端子電圧を制御する必要がないから、S106ではVcmpを下限値0の処理を行う。即ちS106でVcmpが負の場合は、S107でVcmp=0の処理を行う。
S108では、転流相の端子電圧を制御するための第2通電率Dの計算=Vcmp/Vdを行う。
S109においては、第2通電率Dに基づき第1通電率Dを補正する補正手段が示されており、先にVcmp=0での計算した非転流相電流制御のための第1通電率D1に対して、Vcmp分の補正を次の数式(18)で行う。
=D−D・sgn(Ic)/3 ………(18)
【0041】
この式の根拠は、数式(5)と数式(16)との差、又は数式(6)と数式(17)の差がVcmp/3であり、Vcmp/3=D・Vd/3の関係から明白である。
続いて、S111に移る。
S103で転流中でない場合は、S110で第1通電率Dの計算D=Y/Vdを行う。同時に転流中にのみ使用する第2通電率D=0の処理も行い、S111に移る。
S111では、第1通電率D、第2通電率Dを、図4の制御出力相選択手段14及び3相PWM回路15にこれらの説明のところで述べた設定作業を実施する。
【0042】
この発明の台形波着磁型ブラシレスモータの矩形波駆動制御装置は、以上説明したように構成されているので、転流区間での中性点電位変動幅を必要量減少させることで、より広範囲に渡って制御器の出力が飽和(通電率が最大値に固定)することがなくなり、非転流電流がその目標値に保持される連続したフィードバック制御が可能となり、結果として、モータのトルクリップルが大幅に減少でき、騒音や振動を低下できる。
【0043】
実施の形態2.
図7はこの発明の実施の形態2による電流制御演算手段12の動作を示すフローチャートである。
実施の形態2と実施の形態1の違いは、転流中の非転流電流制御の動的範囲を確実にするために(動的にも第1通電率Dの飽和が起きないように)、予め第1通電率Dの上限値D1maxを定めておき、この上限値D1maxを越えないように第2通電率Dを制御するようにしたことにある。そのための条件は数式(13)から数式(14)に変形した条件の内、D=1をD=D1max<1に置き換えて同様の変形をすると、数式(13)は次の数式(19)に変形できる。
Vd>3Rm・Id+4Es+3(1−D1max)Vd………(19)
【0044】
次に、前述した数式(14)と数式(12)の関係と同じく、数式(19)をVcmpを使用して等式表現すると、次式となる。
Vcmp=3Rm・Id+4Es−Vd+3(1−D1max)Vd………(20)
回路をn相とすると、数式(20)はVcmp=nRm・Id+(n+1)Es−Vd+n(1−D1max)Vdとなる。
即ち、実施の形態1と実施の形態2の違いは、数式(12)の代わりに数式(19)を適用することにある。
図7のフローチャートにおいて、図6と同処理ブロックについては同じ番号(100番台)を用いており、同一内容なので説明を省略する。S201においてD1maxは一定値(例えば0.85)でも良いが、Dの関数として設定すると動的補償をするのに更に好適である。この関数の例を図8に示す。
次に、S202では、数式(20)の演算を行う。以下は実施の形態1の場合と同じ手順が実行されるので説明を省く。
【0045】
実施の形態3.
図9はこの発明の実施の形態3による電流制御演算手段12の動作を示すフローチャートである。実施の形態3と実施の形態1の違いは、構成部品の特性ばらつきや変化に対して、転流中の非転流電流制御のロバスト性を向上させるために、前記補償電圧Vcmpを調整する機能を付加したものである。特に、ブラシレスモータの巻線抵抗、各部の配線抵抗、スイッチング素子の内部抵抗などの回路抵抗Rのばらつきや温度変化による抵抗値変化(抵抗Rと公称抵抗Rmの差)が大きくなる可能性があるため、主としてこれを補償する。図9において、図6と同処理ブロックについては同じ番号(100番台)を付すものとし、同一内容なので説明を省略する。
【0046】
S301では次の転流区間のために、現在の転流区間での偏差εを目標電流Idで除して電流に対して正規化した後、評価係数Ktを掛けた値を積分していく演算を行う。この補正積分値はYに格納される。S302では、前回の補正積分値Yを使用して補償電圧Vcmpを次の数式(21)で計算する。
Vcmp=3(Rm+R)Id+4Es−Vd………(21)
回路をn相とすると、数式(21)は Vcmp=n(Rm+Y)Id+(n+1)Es−Vdとなる。
即ち、前回の転流時に、第1通電率Dが飽和して、目標電流Idに実電流Isが届かなかった場合(ε>0だからY>0)、今回は補償電圧VcmpをYに比例して大きくすることで、第1通電率Dの飽和を防止する方向に修正され、ブラシレスモータのトルクリップルを減少させることになる。
【0047】
ここで、Yは前回転流区間だけの積分値であるが、前々回またはそれ以前の積分値を反映した値であっても良い。
S303とS304では、今回の転流中の最終積分値であるYを次回のVcmp計算(S302)に使用するYに移し替えると共に、次に転流時のY演算のためにYを初期化(Y=0)する。以下の動作については、実施の形態1の場合と同様のため説明を省略する。
【0048】
【発明の効果】
この発明の請求項1に係るブラシレスモータの駆動制御装置によれば、直流電源の正極と負極の間に直列に接続した複数のスイッチング素子と、このスイッチング素子の接続点とブラシレスモータとを接続し、当該接続路を流れる電流を検出する電流検出器と、このブラシレスモータの磁極位置を検出する位置検出器と、ブラシレスモータの駆動コイルに発生する1相当たりの誘起電圧を算出するモータ発電電圧計算手段と、位置検出器から得た位置検出信号に基づいて、スイッチング素子を選択的に通電する駆動信号発生手段と、電流検出器により検出された検出電流に基づくフィードバック電流と目標電流が一致するように駆動信号発生手段の出力たる第1通電率を演算する第1演算手段と、直流電源の電圧とモータ発電電圧計算手段の出力と目標電流に基づき、ブラシレスモータの中立点電位変動を少なくするように、転流電流がゼロとなる相に接続されたスイッチング素子に対する第2通電率を演算する第2演算手段と、第2通電率に基づき第1通電率を補正する補正手段とを設けたので、転流区間での中性点電位変動幅を必要量減少させることができ、より広範囲に渡って制御器の出力が飽和(通電率が最大値に固定)することがなくなり、非転流電流がその目標値に保持される連続したフィードバック制御が可能となり、結果として、モータのトルクリップルが大幅に減少でき、騒音や振動を低下できる。
【0049】
この発明の請求項2に係るブラシレスモータの駆動制御装置によれば、回路をn相とし、1相当たりの回路抵抗をR、目標電流をId、電源電圧をVd、1相当たりの発電電圧をEsとしたとき、第2通電率は nId・R+(n+1)Es−Vdの関数としたので、検知信号に基づき中性点電位変動を予測して制御できるため、良好な制御応答性が実現できる。
【0050】
この発明の請求項3に係るブラシレスモータの駆動制御装置によれば、回路をn相とし、1相当たりの回路抵抗をR、目標電流をId、電源電圧をVd、1相当たりの発電電圧をEs、目標電流Idとフィードバック電流Isとの偏差を目標電流Idで除算した値に比例した回路抵抗補正量をYとしたとき、第2通電率は nId(R+Y)+(n+1)Es−Vdの関数としたので、部品のばらつきや変化に対し補正することができ、より好適な制御ができる。
【0051】
この発明の請求項4に係るブラシレスモータの駆動制御装置によれば、第1通電率が所定の最大値以下になるように、転流電流がゼロとなる相に接続されたスイッチング素子に対する第2通電率を演算するので、構成部品のばらつきや変化に対応した非転流電流制御の動的制御範囲を確保でき、好適な制御が可能となる。
【0052】
この発明の請求項5に係るブラシレスモータの駆動制御装置によれば、最大値は第1通電率の関数としたので、構成部品のばらつきや変化に対応した非転流電流制御の動的制御範囲を確保でき、好適な制御が可能となる。
【0053】
この発明の請求項6に係るブラシレスモータの駆動制御装置によれば、回路をn相とし、1相当たりの回路抵抗をR、目標電流をId、電源電圧をVd、1相当たりの発電電圧をEs、最大値をD1maxとしたとき、第2通電率は nId・R+(n+1)Es−Vd+n(1−D1max)Vdの関数としたので、構成部品のばらつきや変化に対応した非転流電流制御の動的制御範囲を確保でき、より好適な制御が可能となる。
【図面の簡単な説明】
【図1】この発明の実施の形態1によるブラシレスモータの駆動制御装置を示すシステム構成図である。
【図2】各部の電気信号波形図である。
【図3】ステップと通電率並びにFB電流選択の例を示す表である。
【図4】駆動制御装置の制御ブロック図である。
【図5】ステップと通電率並びにFB電流選択の例を示す表である。
【図6】駆動制御装置の動作を示す制御フローチャートである。
【図7】この発明の実施の形態2による駆動制御装置の動作を示す制御フローチャートである。
【図8】D1maxとDとの関係を示す図である。
【図9】この発明の実施の形態3による駆動制御装置の動作を示す制御フローチャートである。
【図10】従来のブラシレスモータの駆動制御装置を示す制御ブロック図である。
【符号の説明】
1 ブラシレスモータ、3 駆動コイル、4a,4b,4c 位置検出器、5直流電源、6u,6w 電流検出器、10 モータ発電電圧計算手段、Q〜Q スイッチング素子。

Claims (6)

  1. 直流電源の正極と負極の間に直列に接続した複数のスイッチング素子と、このスイッチング素子の接続点とブラシレスモータとを接続し、当該接続路を流れる電流を検出する電流検出器と、このブラシレスモータの磁極位置を検出する位置検出器と、上記ブラシレスモータの駆動コイルに発生する1相当たりの誘起電圧を算出するモータ発電電圧計算手段と、上記位置検出器から得た位置検出信号に基づいて、上記スイッチング素子を選択的に通電する駆動信号発生手段と、上記電流検出器により検出された検出電流に基づくフィードバック電流と目標電流が一致するように上記駆動信号発生手段の出力たる第1通電率を演算する第1演算手段と、上記直流電源の電圧と上記モータ発電電圧計算手段の出力と上記目標電流に基づき、上記ブラシレスモータの中立点電位変動を少なくするように、転流電流がゼロとなる相に接続された上記スイッチング素子に対する第2通電率を演算する第2演算手段と、上記第2通電率に基づき上記第1通電率を補正する補正手段とを有することを特徴とするブラシレスモータの駆動制御装置。
  2. 回路をn相とし、1相当たりの回路抵抗をR、目標電流をId、電源電圧をVd、1相当たりの発電電圧をEsとしたとき、第2通電率は nId・R+(n+1)Es−Vdの関数であることを特徴とする請求項1記載のブラシレスモータの駆動制御装置。
  3. 回路をn相とし、1相当たりの回路抵抗をR、目標電流をId、電源電圧をVd、1相当たりの発電電圧をEs、上記目標電流Idとフィードバック電流Isとの偏差を上記目標電流Idで除算した値に比例した回路抵抗補正量をYとしたとき、第2通電率は nId(R+Y)+(n+1)Es−Vdの関数であることを特徴とする請求項1記載のブラシレスモータの駆動制御装置。
  4. 第1通電率が所定の最大値以下になるように、転流電流がゼロとなる相に接続されたスイッチング素子に対する第2通電率を演算することを特徴とする請求項1記載のブラシレスモータの駆動制御装置。
  5. 最大値は第1通電率の関数であることを特徴とする請求項4記載のブラシレスモータの駆動制御装置。
  6. 回路をn相とし、1相当たりの回路抵抗をR、目標電流をId、電源電圧をVd、1相当たりの発電電圧をEs、最大値をD1maxとしたとき、第2通電率は nId・R+(n+1)Es−Vd+n(1−D1max)Vdの関数であることを特徴とする請求項4又は請求項5記載のブラシレスモータの駆動制御装置。
JP31791699A 1999-11-09 1999-11-09 ブラシレスモータの駆動制御装置 Expired - Fee Related JP3556137B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31791699A JP3556137B2 (ja) 1999-11-09 1999-11-09 ブラシレスモータの駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31791699A JP3556137B2 (ja) 1999-11-09 1999-11-09 ブラシレスモータの駆動制御装置

Publications (2)

Publication Number Publication Date
JP2001136772A JP2001136772A (ja) 2001-05-18
JP3556137B2 true JP3556137B2 (ja) 2004-08-18

Family

ID=18093487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31791699A Expired - Fee Related JP3556137B2 (ja) 1999-11-09 1999-11-09 ブラシレスモータの駆動制御装置

Country Status (1)

Country Link
JP (1) JP3556137B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100457360B1 (ko) * 2002-06-22 2004-11-16 한국과학기술연구원 커뮤테이션 토크리플을 저감하는 비엘디씨 모터 구동시스템 및 그 방법
JP3686962B2 (ja) 2003-02-05 2005-08-24 ローム株式会社 モータドライバ
US7141943B2 (en) 2004-12-30 2006-11-28 Korean Institute Of Science And Technology Brushless DC motor system and method of controlling the same
JP4677852B2 (ja) * 2005-08-11 2011-04-27 株式会社日立製作所 永久磁石同期モータのベクトル制御装置

Also Published As

Publication number Publication date
JP2001136772A (ja) 2001-05-18

Similar Documents

Publication Publication Date Title
US8963479B2 (en) Power conversion device for a rotary electric machine
JP4772044B2 (ja) モータ駆動用電圧ブースト制御
JP3489285B2 (ja) 電動車両用モータ制御装置
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
JP5354369B2 (ja) 電力変換装置
US20060176005A1 (en) Motor-drive control device and electric power steering device using the same
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP2004328814A (ja) 電動パワーステアリング装置
JP3531428B2 (ja) モータの制御装置及び制御方法
WO2001080416A1 (fr) Controleur de moteur
US8810180B2 (en) Electric motor operation apparatus and method
CN109728761B (zh) 马达驱动控制装置
JP5136839B2 (ja) モータ制御装置
JP3561453B2 (ja) 電動パワーステアリング制御装置
JPH1023756A (ja) 電圧形インバータ装置及びその制御方法
JP3556137B2 (ja) ブラシレスモータの駆動制御装置
JP2005110470A (ja) 電動機の運転制御装置
JPH11127600A (ja) 永久磁石形同期電動機の制御装置
JPH05103498A (ja) 電動機制御装置
JP4147826B2 (ja) ブラシレスモータ駆動制御装置
JP2004023920A (ja) 交流モータ制御装置
JP2005045990A (ja) 速度起電力検出装置及び方法、並びにインバータ制御装置等
JP3309828B2 (ja) モータ駆動制御装置
JP2010252523A (ja) 交流モータの制御装置および制御方法
JP3552380B2 (ja) ブラシレスモータ駆動装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees