JP3554821B2 - Method for synthesizing taurine from protein-containing substance using high-temperature high-pressure water - Google Patents

Method for synthesizing taurine from protein-containing substance using high-temperature high-pressure water Download PDF

Info

Publication number
JP3554821B2
JP3554821B2 JP2001140119A JP2001140119A JP3554821B2 JP 3554821 B2 JP3554821 B2 JP 3554821B2 JP 2001140119 A JP2001140119 A JP 2001140119A JP 2001140119 A JP2001140119 A JP 2001140119A JP 3554821 B2 JP3554821 B2 JP 3554821B2
Authority
JP
Japan
Prior art keywords
taurine
temperature
water
reaction
pressure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001140119A
Other languages
Japanese (ja)
Other versions
JP2002332272A (en
Inventor
幸一 藤江
裕之 大門
伸明 佐藤
Original Assignee
豊橋技術科学大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊橋技術科学大学長 filed Critical 豊橋技術科学大学長
Priority to JP2001140119A priority Critical patent/JP3554821B2/en
Publication of JP2002332272A publication Critical patent/JP2002332272A/en
Application granted granted Critical
Publication of JP3554821B2 publication Critical patent/JP3554821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生物学的廃棄物の再資源化を目的として、タンパク質を含む物質からタウリンを合成する方法に関する。タウリン(2−アミノエタンスルホン酸)は、坑血栓作用およびコレステロール低下作用のような有用な薬理作用を有する物質であり、また食品添加物として、または界面活性剤の原料としても用いられている。
【0002】
【従来の技術】
難分解性有機物質の分解および/または無機化を目的とした技術として、高温高圧の水を用いた処理法が注目されている。臨界点(374℃、22MPa)以上の状態にある超臨界水は、低極性有機化合物および酸化剤となる酸素とよく混合し、しかも水自身が高い反応性を示すことから、有機化学物質の酸化および/または無機化に適している。一方、臨界点未満の状態にある亜臨界水は、イオン積が高いので水自身が酸触媒的効果を有し、または超臨界水に比べて反応性が低い特徴を有することから、亜臨界水を反応溶媒として用い、プラスチックなどの高分子系廃棄物および化学製造残渣から化学原料を回収して再資源化するための研究が盛んに行われている。
【0003】
上記のような高温高圧の水を用いた反応の応用例として、魚のあら(内臓、骨、鱗)などの廃棄物から、亜臨界水を反応場として利用することにより、乳酸のような有機酸、アミノ酸、DHAおよびEPAのような長鎖不飽和脂肪酸などの有用な物質を製造する技術が報告されている。この技術は、亜臨界水によりタンパク質が加水分解されてアミノ酸および有機酸を生成する反応、並びに、魚のあらに本来的に含まれているDHAおよびEPAなどの長鎖脂肪酸が亜臨界水によって抽出され易くなる現象を利用したものである。しかし、これを更に反応させて別の有用物質を得ることについては未だ報告がない。
【0004】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたものであり、その課題は、タンパク質を含む生物学的廃棄物から、有用性の高いタウリンを合成できる方法を提供することである。
【0005】
【課題を解決するための手段】
本件発明者等は、魚腸骨、エビ殻、ホタテうろなどの水産加工廃棄物から、上記の高温高圧の水を用いた反応によるアミノ酸の生成反応について検討を行ったところ、アミノ酸、有機酸に加えて、タウリンが生成することを見出した。そして、他のアミノ酸の生成量と比較してタウリンの生成量が多いことから、タウリンが合成された可能性を検討した。その結果、アミノ酸を前駆体としてタウリンが合成される経路を見出し、本発明に到達したものである。
【0006】
即ち、本発明の第一は、タンパク質を含む生物学的物質を、高温高圧水の中で反応させる工程を具備したことを特徴とするタウリンの合成方法である。
また、本発明の第二は、含硫アミノ酸を、高温高圧水の中で反応させる工程を具備したことを特徴とするタウリンの合成方法である。
【0007】
【発明の実施の形態】
本発明において原料に用いる「タンパク質を含む生物学的物質」は、動物タンパク質および/または植物タンパク質を含む如何なる物質であってもよい。しかし、本発明の当初の目的からすれば、廃棄物として処分されるものを用いるのが好ましい。このような廃棄物の例としては、魚腸骨、エビ殻、ホタテうろなどの水産加工廃棄物、動物の羽、毛、表皮、人毛のようなケラチン含有物質が挙げられる。
【0008】
本発明において「高温高圧水」とは、超臨界領域および亜臨界領域にある水を意味する。超臨界領域にある水(即ち、超臨界水)とは、臨界点(374℃、22MPa)以上の特定の範囲の温度及び圧力状態の水を意味する。亜臨界領域にある水(即ち、亜臨界水)とは、臨界点未満で且つ臨界点近傍の領域にある水を意味する。
【0009】
本発明において「含硫アミノ酸」とは、システインを代表とする硫黄含有アミノ酸を意味する。
本発明の方法における反応温度は、100℃〜400℃、好ましくは200℃〜350℃、さらに好ましくは250℃〜300℃である。
本発明の方法における反応圧力は、飽和蒸気圧〜50MPa、好ましくは飽和蒸気圧〜40MPa、さらに好ましくは飽和蒸気圧〜30MPaである。
本発明の方法における反応時間は、1分〜3時間、好ましくは5分〜60分、さらに好ましくは20分〜40分である。
【0010】
本発明の方法における反応は、試料1gに対し、10mL〜500mLの水を用いて行われ、好ましくは50mL〜100mLの水を用いて行われる。
本発明の方法は、半回分式装置、回分式装置又は流通管型式反応装置を用いて行うことができる。
反応終了後、従来の方法により、アミノ酸の分離、回収、精製(例えば、イオン交換)を行うことができる。
本発明の方法に従って行った反応により得られる反応溶液は、アミノ酸自動分析装置を用いて、含有されるアミノ酸やタウリンを分析することができる。
【0011】
さらに、本発明の方法は、酸化剤として、過ギ酸、過酸化水素、有機酸(例えば、ギ酸、酢酸)等を添加してもよい。
【0012】
本発明の実施例を以下に示すが、これらは特許請求の範囲を限定するもの解釈されない。
【0013】
【実施例】
実施例1:半回分装置を用いた、ホタテうろの高温高圧水反応
半回分式反応装置を用い、反応容器に試料(ホタテうろ)10gを仕込み、圧力30MPaに一定に保ち、水を40mL/分でポンプを用いて供給しながら反応容器を昇温させた。一定時間ごとに反応溶液をサンプリングした。サンプリングした反応溶液に含まれるタウリンおよびアミノ酸について、アミノ酸自動分析装置を用いて分析した。
その結果、グリシン(Gly)やアラニン(Ala)などのアミノ酸の他に、タウリン(Tau)が含まれていることがわかった。結果を図1に示す。原料のうろに含まれるタンパク質由来のグリシンおよびアラニンなどのアミノ酸についで、タウリンの生成量が比較的多い。
【0014】
実施例2:タウリン合成経路の検証
タウリンの生成量がアミノ酸と比較して多いことから、さらにタウリンの合成経路を検討した。その結果、アミノ酸を前駆体としたタウリンの合成経路を推測した。高温高圧水により、システインが酸化され、システイン酸を経由することによって、システイン酸から脱炭酸反応が起こり、タウリンが生成すると考えられる(図2)。この推測は、生体内反応が高温高圧水中でも起こる可能性があることを示している。
また、酸化反応および脱炭酸反応を促進するために、該反応に酸化剤などの添加剤を加えることで、タウリンの生成量が向上できると考えられる。
高温高圧反応は酸化反応場として適していることから、含硫アミノ酸は容易に酸化されてタウリン前駆体と考えられるシステイン酸となる。従って、本実施例では、システイン酸を原料として高温高圧水反応を行い、タウリンが生成するかどうかを調べた。
【0015】
流通管型反応装置を用いて、システイン酸水溶液(濃度1mmol/L、即ち、水1000mL中、システイン酸169mg)を温度300℃、圧力30MPaにて、5分間反応させた。なお、システイン酸はシステインを過ギ酸を用いて酸化して得た。
回収したサンプルを分析した結果、システイン酸から生成したと考えられるタウリンのピークを確認することができた(図3)。
このように含硫アミノ酸であるシステインから、図2に記載する合成経路によりタウリンの生成が可能であることを確認できた。
【0016】
実施例3:回分式反応装置を用いた、人毛の高温高圧水反応
含硫アミノ酸であるシステインからタウリンの生成が確認できたことから、システインを多く含有するケラチンからのタウリン生成について検討した。
回分式反応装置を用いて、水50mL中でケラチン含有物質(人毛)1gを温度250℃、飽和蒸気圧にて、60分間反応させた。
結果を図4に示す。反応前の人毛にはタウリンが全く含まれていないのにもかかわらず、反応後にタウリンが生成していることが確認できた。
さらに、酸化剤として過ギ酸を添加することで、タウリンの生成量を増加させることが可能であることも見出した。
【0017】
【発明の効果】
本発明の方法により、従来は埋め立て処理されるか、又は堆肥としての用途しかなかったタンパク質含有廃棄物(水産加工廃棄物、ケラチン含有廃棄物等)を高温高圧水処理することで、有用性の高いタウリンを合成することが可能となる。
本発明の方法により、廃棄物の再資源化をはかることができ、それによって新たな利益を生み出すことが可能となり、従って本発明は循環型社会構築の優れた要素技術となり得る。
【図面の簡単な説明】
【図1】半回分式装置を用いて、ホタテうろを高温高圧水条件にて反応させた結果を示す図である。
【図2】アミノ酸を前駆体としたタウリンの合成経路を示す図である。
【図3】流通管型式反応装置を用いて、システイン酸水溶液を高温高圧水条件にて反応させた反応溶液のHPLCクロマトグラムを示す図である。
【図4】回分式装置を用いて、人毛を高温高圧水条件にて反応させた結果を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for synthesizing taurine from a protein-containing substance for the purpose of recycling biological waste. Taurine (2-aminoethanesulfonic acid) is a substance having useful pharmacological actions such as antithrombotic action and cholesterol lowering action, and is also used as a food additive or as a raw material for a surfactant.
[0002]
[Prior art]
As a technique for decomposing and / or mineralizing a hardly decomposable organic substance, a treatment method using high-temperature and high-pressure water has attracted attention. Supercritical water at a critical point (374 ° C., 22 MPa) or higher is well mixed with a low-polarity organic compound and oxygen as an oxidizing agent, and since water itself has high reactivity, the oxidation of organic chemicals is And / or suitable for mineralization. On the other hand, subcritical water in a state lower than the critical point has a high ionic product, so that water itself has an acid-catalytic effect, or has a characteristic of low reactivity compared to supercritical water. BACKGROUND ART Research has been actively conducted for recovering and recycling chemical raw materials from polymer-based wastes such as plastics and chemical production residues by using as a reaction solvent.
[0003]
As an application example of the above-mentioned reaction using high-temperature and high-pressure water, organic acids such as lactic acid can be obtained by utilizing subcritical water as a reaction field from waste such as fish ash (visceral organs, bones and scales). Techniques for producing useful substances such as amino acids, long chain unsaturated fatty acids such as DHA and EPA have been reported. This technology involves a reaction in which proteins are hydrolyzed by subcritical water to produce amino acids and organic acids, and long-chain fatty acids such as DHA and EPA, which are naturally contained in fish, are extracted by subcritical water. This is to make use of the phenomenon that becomes easy. However, there is no report yet about further reaction to obtain another useful substance.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of synthesizing highly useful taurine from biological waste containing proteins.
[0005]
[Means for Solving the Problems]
The present inventors studied the production reaction of amino acids by the above-mentioned reaction using high-temperature and high-pressure water from fishery processing wastes such as fish ilium, shrimp shells, and scallop scales. In addition, it has been found that taurine is produced. Then, since the production amount of taurine was larger than the production amount of other amino acids, the possibility that taurine was synthesized was examined. As a result, they have found a pathway for synthesizing taurine using amino acids as precursors, and have reached the present invention.
[0006]
That is, the first aspect of the present invention is a method for synthesizing taurine, comprising a step of reacting a biological substance containing a protein in high-temperature, high-pressure water.
A second aspect of the present invention is a method for synthesizing taurine, comprising a step of reacting a sulfur-containing amino acid in high-temperature, high-pressure water.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The “biological substance containing a protein” used as a raw material in the present invention may be any substance containing an animal protein and / or a plant protein. However, for the original purpose of the present invention, it is preferable to use what is disposed of as waste. Examples of such waste include marine processed waste such as fish ilium, shrimp shells, scallops, and keratin-containing materials such as animal wings, hair, epidermis, and human hair.
[0008]
In the present invention, “high-temperature high-pressure water” means water in a supercritical region and a subcritical region. The water in the supercritical region (that is, supercritical water) means water in a specific range of temperature and pressure above the critical point (374 ° C., 22 MPa). Water in the subcritical region (ie, subcritical water) means water that is below the critical point and in the region near the critical point.
[0009]
In the present invention, “sulfur-containing amino acid” means a sulfur-containing amino acid represented by cysteine.
The reaction temperature in the method of the present invention is from 100 ° C to 400 ° C, preferably from 200 ° C to 350 ° C, more preferably from 250 ° C to 300 ° C.
The reaction pressure in the method of the present invention is from saturated vapor pressure to 50 MPa, preferably from saturated vapor pressure to 40 MPa, and more preferably from saturated vapor pressure to 30 MPa.
The reaction time in the method of the present invention is 1 minute to 3 hours, preferably 5 minutes to 60 minutes, more preferably 20 minutes to 40 minutes.
[0010]
The reaction in the method of the present invention is performed using 10 mL to 500 mL of water, preferably 50 mL to 100 mL of water per 1 g of the sample.
The process of the present invention can be carried out using a semi-batch device, a batch device or a flow tube type reactor.
After completion of the reaction, amino acids can be separated, recovered, and purified (for example, ion exchange) by a conventional method.
The amino acid and taurine contained in the reaction solution obtained by the reaction performed according to the method of the present invention can be analyzed using an automatic amino acid analyzer.
[0011]
Furthermore, in the method of the present invention, formic acid, hydrogen peroxide, an organic acid (for example, formic acid, acetic acid) or the like may be added as an oxidizing agent.
[0012]
Examples of the present invention are shown below, but they should not be construed as limiting the claims.
[0013]
【Example】
Example 1: High-temperature, high-pressure water reaction of scallops using a semi-batch apparatus Using a semi-batch reactor, 10 g of a sample (scallop scale) was charged into a reaction vessel, the pressure was kept constant at 30 MPa, and water was 40 mL / min. The temperature of the reaction vessel was raised while supplying the solution by using a pump. The reaction solution was sampled at regular intervals. Taurine and amino acids contained in the sampled reaction solution were analyzed using an automatic amino acid analyzer.
As a result, it was found that taurine (Tau) was contained in addition to amino acids such as glycine (Gly) and alanine (Ala). The results are shown in FIG. Taurine is produced in a relatively large amount after amino acids such as glycine and alanine derived from proteins contained in the raw material scale.
[0014]
Example 2: Verification of taurine synthesis pathway Since the production amount of taurine was larger than that of amino acids, the synthesis pathway of taurine was further examined. As a result, a taurine synthesis pathway using amino acids as a precursor was estimated. It is considered that cysteine is oxidized by high-temperature and high-pressure water, and a decarboxylation reaction occurs from cysteic acid via cysteic acid, thereby producing taurine (FIG. 2). This speculation indicates that the in vivo reaction may occur even in high-temperature and high-pressure water.
Further, it is considered that by adding an additive such as an oxidizing agent to the reaction to promote the oxidation reaction and the decarboxylation reaction, the amount of taurine generated can be improved.
Since the high-temperature and high-pressure reaction is suitable as an oxidation reaction field, the sulfur-containing amino acid is easily oxidized to cysteic acid which is considered to be a taurine precursor. Therefore, in this example, a high-temperature high-pressure water reaction was performed using cysteic acid as a raw material, and it was examined whether or not taurine was produced.
[0015]
An aqueous cysteic acid solution (concentration: 1 mmol / L, ie, 169 mg of cysteic acid in 1000 mL of water) was reacted at a temperature of 300 ° C. and a pressure of 30 MPa for 5 minutes using a flow tube type reactor. Note that cysteic acid was obtained by oxidizing cysteine using formic acid.
As a result of analyzing the collected sample, a peak of taurine considered to be generated from cysteic acid could be confirmed (FIG. 3).
Thus, it was confirmed that taurine could be produced from cysteine, which is a sulfur-containing amino acid, by the synthetic route shown in FIG.
[0016]
Example 3 Production of taurine from cysteine, which is a sulfur-containing amino acid at a high temperature and a high pressure in a water reaction, was confirmed using a batch reactor, and the production of taurine from keratin containing a large amount of cysteine was examined.
Using a batch reactor, 1 g of a keratin-containing substance (human hair) was reacted in 50 mL of water at a temperature of 250 ° C. and a saturated vapor pressure for 60 minutes.
FIG. 4 shows the results. Although human hair before the reaction did not contain any taurine, it was confirmed that taurine was formed after the reaction.
Furthermore, it has been found that by adding formic acid as an oxidizing agent, it is possible to increase the production amount of taurine.
[0017]
【The invention's effect】
According to the method of the present invention, protein-containing wastes (fishery processing wastes, keratin-containing wastes, etc.) that have been conventionally landfilled or used only as compost can be treated with high-temperature and high-pressure water to obtain usefulness. High taurine can be synthesized.
According to the method of the present invention, it is possible to recycle waste and thereby to generate new profits. Therefore, the present invention can be an excellent elemental technology for building a recycling-based society.
[Brief description of the drawings]
FIG. 1 is a view showing the results of reacting scallop scales under high-temperature and high-pressure water conditions using a semi-batch type apparatus.
FIG. 2 is a view showing a synthetic pathway of taurine using an amino acid as a precursor.
FIG. 3 is a view showing an HPLC chromatogram of a reaction solution obtained by reacting a cysteic acid aqueous solution under high-temperature and high-pressure water conditions using a flow tube type reactor.
FIG. 4 is a diagram showing the results of reacting human hair under high-temperature and high-pressure water conditions using a batch apparatus.

Claims (5)

ケラチン含有物質、エビ殻、およびホタテうろからなる群から選択されるシステインを含有するタンパク質を、高温高圧水の中で反応させる工程を具備したことを特徴とするタウリンの合成方法。 A method for synthesizing taurine, comprising a step of reacting a protein containing cysteine selected from the group consisting of a keratin-containing substance, shrimp shell, and scallop scale in high-temperature, high-pressure water. 前記ケラチン含有物質は、動物の羽、毛、表皮、および人毛から成る群から選択される、請求項1に記載の方法 The method of claim 1, wherein the keratin-containing material is selected from the group consisting of animal wings, hair, epidermis, and human hair . 前記高温高圧水が温度100℃〜400℃、圧力飽和蒸気圧〜50MPaの水である、請求項1または2に記載の方法。The method according to claim 1, wherein the high-temperature high-pressure water is water having a temperature of 100 ° C. to 400 ° C. and a saturated vapor pressure of 50 MPa. 前記工程においてさらに酸化剤を用いる、請求項1〜3の何れか一項に記載の方法。The method according to any one of claims 1 to 3, wherein an oxidizing agent is further used in the step. 前記酸化剤が、過ギ酸、過酸化水素、または有機酸である、請求項4に記載の方法。The method according to claim 4, wherein the oxidizing agent is formic acid, hydrogen peroxide, or an organic acid.
JP2001140119A 2001-05-10 2001-05-10 Method for synthesizing taurine from protein-containing substance using high-temperature high-pressure water Expired - Lifetime JP3554821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140119A JP3554821B2 (en) 2001-05-10 2001-05-10 Method for synthesizing taurine from protein-containing substance using high-temperature high-pressure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140119A JP3554821B2 (en) 2001-05-10 2001-05-10 Method for synthesizing taurine from protein-containing substance using high-temperature high-pressure water

Publications (2)

Publication Number Publication Date
JP2002332272A JP2002332272A (en) 2002-11-22
JP3554821B2 true JP3554821B2 (en) 2004-08-18

Family

ID=18986778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140119A Expired - Lifetime JP3554821B2 (en) 2001-05-10 2001-05-10 Method for synthesizing taurine from protein-containing substance using high-temperature high-pressure water

Country Status (1)

Country Link
JP (1) JP3554821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764691A (en) * 2011-09-02 2014-04-30 旭硝子株式会社 Method for producing organic compound having sulfo group, method for producing liquid composition, and method for hydrolytically treating organic compound having fluorosulfonyl group

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117551A (en) * 2004-10-19 2006-05-11 Takai Seisakusho:Kk METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID
JP4802343B2 (en) * 2005-02-22 2011-10-26 和歌山県 Method for producing styrene derivative
JP4832009B2 (en) * 2005-06-14 2011-12-07 株式会社Adeka Sulfocarboxylic acid agent and sulfocarboxylic acid ester agent
JP4911750B2 (en) * 2005-09-30 2012-04-04 株式会社 オノモリ Active ingredient extraction method and waste reduction method from food waste, active ingredient extraction device and waste reduction device
JP2008222570A (en) * 2007-03-08 2008-09-25 Osaka Prefecture Univ Method for producing amino acid or organic acid
WO2009054240A1 (en) * 2007-10-24 2009-04-30 National University Corporation Nagoya University PROCESS FOR PRODUCTION OF DISULFONIC ACID COMPOUND, ASYMMETRIC MANNICH CATALYST, PROCESS FOR PRODUCTION OF β-AMINOCARBONYL DERIVATIVE, AND NOVEL DISULFONATE SALT
US11401239B1 (en) 2020-10-13 2022-08-02 Fxi Inc. Limited Process for converting disulfides to conversion products and process for producing cysteic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103764691A (en) * 2011-09-02 2014-04-30 旭硝子株式会社 Method for producing organic compound having sulfo group, method for producing liquid composition, and method for hydrolytically treating organic compound having fluorosulfonyl group
CN103764691B (en) * 2011-09-02 2016-03-02 旭硝子株式会社 There is the manufacture method of the organic compound of sulfo group, the manufacture method of liquid composition and there is the hydrolysis process for treating of organic compound of fluorosulfonyl

Also Published As

Publication number Publication date
JP2002332272A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
EP0592586B1 (en) Use of unpigmented fish skin, particularly from flat fish, as a novel industrial source of collagen, extraction method, and collagen and biomaterial thereby obtained
JP3554821B2 (en) Method for synthesizing taurine from protein-containing substance using high-temperature high-pressure water
US7396912B2 (en) Collagen production method
JP3644842B2 (en) Method for producing organic acid from waste organic matter
CN105969830A (en) Method for extracting active collagen peptide from pigskin
JPH0680934A (en) Method for recovering collagen from animal tissue
ES486893A1 (en) Method of preparation of collagen-based bone substitute material with improved biological stability and bone substitute material obtained by this method.
KR101489916B1 (en) A method for extracting high purity collagen from animal byproducts
CN102550824A (en) Method for producing small peptide amino acid microelement chelate by way of acid hydrolysis of protein
FR2474036A1 (en) PROCESS FOR PRODUCING OLIGOPEPTIDES FROM COLLAGEN
KR100699321B1 (en) The manufacturing method of organic fertilizer containing high amino acid content utilizing the animal by-products
FR2512030A1 (en) PROCESS FOR THE PREPARATION OF PARTIALLY HYDROLYZED SOLUBLE ELASTIN AND ITS HYDROLYSAT
KR200406374Y1 (en) The manufacturing apparatus of organic fertilizer containing high amino acid content utilizing the animal by-products and the fertilizing apparatus utilizing thereof
KR20040108147A (en) producing method of protein hydrolysates from fish scale
CN109354600A (en) A kind of preparation method of the novel Alaska pollock multifunctional polypeptide of taurine modification
KR100487994B1 (en) Process for preparing gelatin from fish
Nurhayati et al. Characteristics of papain soluble collagen from redbelly yellowtail fusilier (Caesio cuning)
EP0188582A1 (en) Separation process with recovery of proteins and fats from substances of animal origin, organic substances or refluent from working organic substances and a plant to carry out the process
KR102085775B1 (en) Method for separating and purifying DHA from tuna bark
JP2006152108A (en) Fish collagen composition and method for producing the same
JP2008162918A (en) Method for recovering collagen of scallop mantle and use of the collagen
JP3616046B2 (en) Method for treating shark skin and method for producing collagen
JPH0716081A (en) Production of essence of fishes and shellfishes
JP2012201616A (en) Method for producing collagen
RU2738455C2 (en) Method of producing keratin hydrolyzate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3554821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term