JP3554189B2 - Multi-cavity ceramic wiring board - Google Patents

Multi-cavity ceramic wiring board Download PDF

Info

Publication number
JP3554189B2
JP3554189B2 JP11894498A JP11894498A JP3554189B2 JP 3554189 B2 JP3554189 B2 JP 3554189B2 JP 11894498 A JP11894498 A JP 11894498A JP 11894498 A JP11894498 A JP 11894498A JP 3554189 B2 JP3554189 B2 JP 3554189B2
Authority
JP
Japan
Prior art keywords
wiring board
ceramic
ceramic substrate
wiring
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11894498A
Other languages
Japanese (ja)
Other versions
JPH11312762A (en
Inventor
海 平澤
伸一 高橋
浩平 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11894498A priority Critical patent/JP3554189B2/en
Publication of JPH11312762A publication Critical patent/JPH11312762A/en
Application granted granted Critical
Publication of JP3554189B2 publication Critical patent/JP3554189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子や水晶振動子等の電子部品を搭載するための配線基板を広面積のセラミック基板中に縦横に多数個配列形成して成る多数個取りセラミック配線基板に関するものである。
【0002】
【従来の技術】
従来、半導体素子や水晶振動子等の電子部品を搭載するための配線基板は、例えば酸化アルミニウム質焼結体等のセラミック材料から成る略平板状の絶縁基体の上面中央部から側面を介して下面にかけて、電子部品の電極が接続されるタングステンやモリブデン等の高融点金属粉末メタライズから成る複数の配線導体が被着されて成る。
【0003】
そして、この配線基板によれば、絶縁基体の上面中央部に電子部品を搭載するとともにこの電子部品の各電極を半田やボンディングワイヤを介して配線導体に電気的に接続し、しかる後、絶縁基体の上面にポッティング樹脂や椀状の金属蓋体を電子部品を覆うようにして取着し、電子部品を気密に封止することによって最終製品としての電子装置となる。
【0004】
ところで、このような配線基板は近時の電子装置の小型化の要求に伴い、その大きさが数mm角程度の極めて小さなものとなってきており、多数個の配線基板の取り扱いを容易とするために、また配線基板および電子装置の製作を効率よくするために、1枚の広面積のセラミック母基板中から多数個の配線基板を同時集約的に得るようになした、いわゆる多数個取りセラミック配線基板の形態で製作される。
【0005】
このような多数個取りセラミック配線基板は、例えば図2に上面図で示すように、略長方形の広面積の母基板となるセラミック基板11の中央部に、配線基板となる多数個の配線基板部12が縦横に配列形成された製品領域11a(図2において2点鎖線で囲まれた領域)を有しており、その外周部には製品領域11aを取り囲む枠状の捨て代領域11bを有している。なお、製品領域11aは配線基板部12を形成するための領域であり、捨て代領域11bは多数個取りセラミック配線基板の取り扱いを容易とするためのものである。
【0006】
そして、この多数個取りセラミック配線基板は、セラミック基板11に形成された各配線基板部12の境界に、セラミック基板11を多数の配線基板に分割するための分割溝13が例えばレーザ加工によりセラミック母基板12の上面および/または下面に所定の深さに形成されており、この分割溝13に沿ってセラミック基板11から配線基板部12を分割すれば、多数個の配線基板が得られるようになっている。
【0007】
また、この多数個取りセラミック配線基板は、セラミック基板11の製品領域11aにおける分割溝13の例えば交点に略正方形の貫通孔14がその各頂点を分割溝13に一致させるようにして形成されている。
【0008】
そして、各配線基板部12においては、その上面から貫通孔14内面を介して下面に導出する複数のメタライズ配線導体15が各々被着されている。
【0009】
貫通孔14は、各配線基板部12における配線導体15をセラミック基板11上面から下面に導出させるための導出路を提供するとともに、このセラミック基板11を各配線基板部12に分割する際にその分割を容易とする、あるいは各配線基板上に金属蓋体を取着する際に蓋体に設けた脚部を固定する等の作用をなす。
【0010】
そして、この多数個取りセラミック配線基板は、各配線基板部12に電子部品を搭載するとともに電子部品の各電極と配線導体15とを電気的に接続し、しかる後、電子部品をポッティング樹脂や金属蓋体で封止し、最後にセラミック基板11を分割溝13に沿って分割すれば、多数個の電子装置が同時集約的に製作されることとなる。
【0011】
なお、この多数個取りセラミック配線基板においてセラミック基板11に形成された各配線基板部12に電子部品を搭載したりポッティング樹脂や金属蓋体を取着するには、一般に自動機が用いられている。そして、例えばセラミック基板11の長辺側の一辺が自動機により電子部品やポッティング樹脂等を各配線基板部12に位置決めするための実装位置決め用の基準辺として用いられてきた。
【0012】
【発明が解決しようとする課題】
上記のような多数個取りセラミック配線基板は、一般に従来周知のセラミックグリーンシート法により製作されている。
【0013】
これを具体的に説明すると、例えば、まずセラミック基板11となるセラミックグリーンシートを準備するとともにこのセラミックグリーンシートの製品領域11aとなる領域に貫通孔14となる貫通孔を従来周知の打ち抜き法を採用して形成する。次に、このセラミックグリーンシートの配線基板部12となる各領域の上面から貫通孔14となる貫通孔内面および下面にかけて、配線導体15となるタングステンやモリブデン等の高融点金属ぺーストを従来周知のスクリーン印刷法を採用して所定のパターンに印刷塗布する。そして、このセラミックグリーンシートおよび金属ペーストを還元雰囲気中、約1600℃の高温で焼成し、製品領域11aに多数の配線基板部12が形成されたセラミック基板11を得るとともに、このセラミック基板11における各配線基板部12の境界に例えばレーザにより分割溝13を形成することによって製作される。
【0014】
ところで、このセラミックグリーンシート法により製作された多数個取りセラミック配線基板は、セラミック基板11となるセラミックグリーンシートを焼成する際に焼成収縮が起きる。そしてセラミックグリーンシートの製品領域11aとなる部分には貫通孔14となる貫通孔が多数形成されているものの、セラミックグリーンシートの捨て代領域11bとなる部分には貫通孔が形成されていないので、製品領域11aが捨て代領域11bよりも大きく焼成収縮してしまい、その結果、セラミック基板11の各外周側辺における製品領域11aに対応する部分がセラミック基板11の中央部側に凹んだ形状となってしまい、略長方形状のセラミック基板11の各辺に湾曲をもたらすこととなる。
【0015】
このようにセラミック基板11の各辺が湾曲してしまうと、その一辺を基準辺としてセラミック基板11の各配線基板部12に電子部品やポッティング樹脂・金属蓋体等を自動機により位置決めする際に電子部品やポッティング樹脂・金属蓋体等を各配線基板部12に対して正確に位置決めすることができず、その結果、電子部品の電極と配線基板部12の配線導体15とを電気的に正常に接続することができなくなったり、あるいは電子部品をポッティング樹脂や金属蓋体により気密性高く封止することができなくなってしまうという欠点を有していた。
【0016】
本発明は、かかる従来の欠点に鑑み案出されたものであり、その目的は、母基板となるセラミック基板に配列形成された多数の配線基板部の各配線導体に電子部品やポッティング樹脂・金属蓋体等を自動機を使って正確に位置決めし、電子部品と配線基板の配線導体とを電気的に正常に接続することができるとともに電子部品をポッティング樹脂や金属蓋体により気密性高く封止することが可能な多数個取りセラミック配線基板を提供することにある。
【0017】
【課題を解決するための手段】
本発明の多数個取りセラミック配線基板は、一辺を実装位置決め用の基準辺とする略四角平板状のセラミック基板の中央部に配置された前記基準辺と平行な辺を有する略四角形状の製品領域内に、分割溝により区切られ、該分割溝上に所定パターンで貫通孔が形成されているとともに配線導体が被着されて成る多数の配線基板部が配列され、かつ前記製品領域に対して前記基準辺に平行な方向の延長領域に、前記貫通孔と平面的に同じパターンでダミー貫通孔が形成されていることを特徴とするものである。また、本発明の多数個取りセラミック配線基板は、好ましくは、前記セラミック基板は、前記基準辺を長辺とする長方形状であり、前記ダミー貫通孔は、前記延長領域にのみ形成されているものである。
【0018】
本発明の多数個取りセラミック配線基板によれば、母基板となるセラミック基板の外周部に形成された捨て代領域のうち、セラミック母基板の中央部に形成された製品領域に対して基準辺に平行な方向の延長領域に、製品領域に設けられた貫通孔と平面的に同じパターンのダミー貫通孔が形成されていることから、母基板における基準辺に直交する方向の焼成収縮が各部で略均一となり、その結果、セラミック基板の基準辺が湾曲するのが防止され、この基準辺を利用して自動機を使って多数の配線基板部の各配線導体に電子部品やポッティング樹脂・金属蓋体等を性格に位置決めし、電子部品と配線基板の配線導体とを電気的に正常に接続することができるとともに電子部品をポッティング樹脂や金属蓋体により気密封止することができる。
【0019】
【発明の実施の形態】
以下、本発明の多数個取り配線基板について添付の図面を基に説明する。
【0020】
図1は本発明の多数個取りセラミック配線基板の実施の形態の一例を示す上面図であり、1は多数個取りセラミック配線基板の母基板となるセラミック基板、2は配線基板部である。
【0021】
セラミック基板1は、例えば酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・窒化珪素質焼結体・炭化珪素質焼結体・ガラスセラミックス等の電気絶縁材料から成る略四角形状の平板であり、その中央部に多数の配線基板部2が配列形成された製品領域1aを有しており、その外周部には製品領域1a(図1において2点鎖線で囲まれた領域)を取り囲むように枠状の捨て代領域1bを有している。
【0022】
そして、セラミック基板1の一辺、例えば図1の例では図中の上下の辺(略長方形状の基板の長辺)のいずれかが、自動機による実装位置決め用の基準辺Gとして利用され、上記の製品領域1aはこの基準辺Gと平行な辺を有する略四角形状の領域として配置されている。
【0023】
セラミック基板1は、例えば酸化アルミニウム質焼結体からなる場合であれば、酸化アルミニウム・酸化珪素・酸化カルシウム・酸化マグネシウム等の原料粉末に適当な有機バインダおよび溶剤を添加混合して泥漿状となすとともに、これを従来周知のドクターブレード法を採用してシート状に形成してセラミックグリーンシートを得、しかる後、このセラミックグリーンシートに適当な打ち抜き加工を施すとともに還元雰囲気中、約1600℃の温度で焼成することによって製作される。
【0024】
また、セラミック基板1の製品領域1aに配列形成された各配線基板部2の境界には、セラミック基板1を多数個の配線基板部2に分割するための分割溝3が形成されている。
【0025】
分割溝3はセラミック基板1の上面および/または下面に所定の深さに形成されており、この分割溝3に沿ってセラミック基板1をチョコレートブレークすることによって、セラミック基板1が各配線基板部2から成る多数個の配線基板に分割される。
【0026】
なお、分割溝3は、セラミック基板1の上面および/または下面にレーザにより所定の深さの溝を形成したり、あるいはセラミック基板1となるセラミックグリーンシートの上面および/または下面に金型や切断刃等により所定深さの切り込みを入れておくことによって形成される。
【0027】
また、セラミック基板1の製品領域1aにおける分割溝3上、例えばその交点には、所定パターン、この例では略正方形の貫通孔の繰り返しパターンで、貫通孔4がその各頂点を分割溝3に一致させるようにして形成されている。
【0028】
貫通孔4は、各配線基板部2の上面から下面にかけて後述する配線導体5を導出させるための導出路を提供するとともに、セラミック基板1を分割溝3に沿って分割する際に分割を容易かつ確実とする、あるいは各配線基板上に金属蓋体を取着する際に蓋体に設けた脚部を固定する等の作用をなす。
【0029】
なお、貫通孔4は、セラミック基板1となるセラミックグリーンシートの製品領域1aとなる領域に、例えば正方形の貫通孔を打ち抜き法により打ち抜いておくことによってセラミック基板1の製品領域1aにおける分割溝3の交点にその各頂点を分割溝3に一致させるようにして形成される。
【0030】
また、製品領域1aの各配線基板部2におけるセラミック基板1の上面から下面にかけては、貫通孔4内面を介して導出する複数のメタライズ配線導体等から成る配線導体5が被着形成されている。
【0031】
配線導体5は、例えばタングステンやモリブデン・銅・銀等の金属粉末焼結体から成り、配線基板部2に搭載される電子部品を外部に電気的に接続するための導電路として機能し、配線基板部2の上面部位には電子部品の各電極が半田やボンディングワイヤ等の電気的接続手段を介して電気的に接続され、また配線基板部2の下面部位は外部電気回路基板の配線導体に電気的に接続される。
【0032】
配線導体5は、セラミック基板1となるセラミックグリーンシートに貫通孔4となる貫通孔を打ち抜いた後、このセラミックグリーンシートの各配線基板部2となる領域の上面および下面ならびに貫通孔4となる貫通孔内面に配線導体5となる金属ペーストを従来周知のスクリーン印刷法を採用して所定のパターンに印刷塗布しておき、これをセラミックグリーンシートとともに焼成することによって、各配線基板部2におけるセラミック基板1の上面から下面にかけて貫通孔4内面を介して導出するようにして被着形成される。
【0033】
なお、配線導体5と金属ペーストは、例えば配線導体5がタングステン粉末焼結体からなる場合であれば、タングステン粉末に適当な有機バインダや溶剤等を添加混合してペースト状となしたものが用いられる。
【0034】
そして、セラミック基板1には、捨て代領域1bであって、製品領域1aに対して基準辺Gと平行な方向の延長領域1b’に、製品領域1aに形成された貫通孔4と同じパターン、すなわち実質的に同じ形状・同じ大きさ・同じ配列間隔でダミー貫通孔6が形成されている。
【0035】
ダミー貫通孔6は、セラミック基板1の上記延長領域1b’について基板収縮率の調整用として機能し、セラミック基板1の幅方向、すなわち基準辺Gに直交する方向の焼成収縮を均一なものとする作用をなす。
【0036】
本発明の多数個取りセラミック配線基板によれば、セラミック基板1の捨て代領域1bであって、製品領域1aに対して基準辺Gに平行な方向の延長領域1b’に、製品領域1aに形成された貫通孔4と同じパターンでダミー貫通孔6が形成されていることから、セラミック基板1の幅方向における焼成収縮量が均一なものとなり、その結果、セラミック基板1の基準辺Gが湾曲してしまうようなことはない。従って、この基準辺Gを実装位置決めの基準として、自動機により電子部品やポッティング樹脂・金属蓋体等を各配線基板部2に対して正確に位置決めして実装することができ、電子部品の各電極と配線基板部2の配線導体5とが電気的に正確に接続されるとともに配線基板部2に搭載された電子部品をポッティング樹脂・金属蓋体等により気密性高く封止することが可能となる。
【0037】
なお、ダミー貫通孔6は、セラミック基板1となるセラミックグリーンシートに貫通孔4となる貫通孔を打ち抜く際に、これと同時にダミー貫通孔6となる貫通孔をセラミックグリーンシートの捨て代領域1bのうち製品領域1aに対して基準辺Gと平行な方向の延長領域1b’に、製品領域1aの貫通孔4の所定パターンと同じように所定の形状・所定の大きさ・所定の配列で打ち抜いておくことによって、セラミック基板1の製品領域1aに対して基準辺Gと平行な方向の延長領域1b’に製品領域1aに形成された貫通孔4と同じパターンで形成される。
【0038】
かくして、本発明の多数個取りセラミック配線基板によれば、湾曲していない長辺のひとつを実装位置決め用の基準辺Gとして、自動機により各配線基板部2に電子部品を位置決めして搭載するとともに電子部品の各電極と各配線基板部2の配線導体5とを半田やボンディングワイヤ等の電気的接続手段を介して電気的に接続し、次に各配線基板部2の上面に電子部品を覆うようにしてポッティング樹脂や金属蓋体を位置決めして取着し、最後にセラミック基板1をこれに形成した分割溝3に沿ってチョコレートブレークして分割することにより多数の電子装置が正確かつ容易に同時集約的に製作されることとなる。
【0039】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更・改良を施すことは何ら差し支えない。
【0040】
例えば、上記の例では貫通孔およびダミー貫通孔をともに分割溝の交点にその各頂点を一致させるようにして形成した略正方形状の貫通孔としたが、これら貫通孔・ダミー貫通孔の形状は正方形状の他にも長方形状や菱形状・円形状・楕円形状・長穴状等の種々の形状のものであってもよく、それらを組み合わせて分割溝上に分割溝に沿って形成したものであってもよい。また、貫通孔・ダミー貫通孔の大きさも、いくつかの大きさのものを組み合わせて形成したものであってもよい。
【0041】
また、ダミー貫通穴を設ける領域としては、上記の延長領域において基板端部までの領域とすることが最も効果的に基準辺の湾曲防止が行なえる点から好適であるが、基準辺に要求される精度とその精度が必要な範囲に対応して、製品領域と基板端部との間までの領域としてもよい。
【0042】
【発明の効果】
本発明の多数個取りセラミック配線基板によれば、一辺を実装位置決め用の基準辺とする略四角形状のセラミック基板の中央部に基準辺と平行な辺を有する略四角形状に形成された製品領域に所定パターンの貫通孔が形成されて多数の配線基板部が配列形成されており、その製品領域の周囲の捨て代領域のうち製品領域に対して基準辺に平行な方向の延長領域に、製品領域に設けられた貫通孔と同じパターンでダミー貫通孔が設けられていることから、セラミック基板における基準辺に直交する方向の焼成収縮量が各領域に対応する各部で略均一となり、その結果、このセラミック基板の基準辺が湾曲するのが防止される。従って、この基準辺を実装位置決め用の基準として、自動機により電子部品やポッティング樹脂・金属蓋体等を各配線基板に対して正確に位置決めして実装することができ、電子部品の各電極と配線基板の配線導体とが電気的に正確に接続することができるとともに配線基板に搭載された電子部品をポッティング樹脂や金属蓋体等により気密性高く封止することが可能となる。
【図面の簡単な説明】
【図1】本発明の多数個取りセラミック配線基板の実施の形態の一例を示す上面図である。
【図2】従来の多数個取りセラミック配線基板の例を示す上面図である。
【符号の説明】
1・・・セラミック基板
1a・・・・製品領域
1b・・・・捨て代領域
1b’・・・延長領域
G・・・・・基準辺
2・・・配線基板部
4・・・貫通孔
5・・・配線導体
6・・・ダミー貫通孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-cavity ceramic wiring board in which a large number of wiring boards for mounting electronic components such as a semiconductor element and a crystal unit are arranged vertically and horizontally on a wide-area ceramic substrate.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a wiring board for mounting electronic components such as a semiconductor element and a quartz oscillator has a lower surface through a side surface from a central portion of an upper surface of a substantially flat insulating base made of a ceramic material such as an aluminum oxide sintered body. , A plurality of wiring conductors made of a metallized metal powder of a high melting point such as tungsten or molybdenum to which the electrodes of the electronic component are connected.
[0003]
According to this wiring board, the electronic component is mounted on the central portion of the upper surface of the insulating base, and each electrode of the electronic component is electrically connected to the wiring conductor via solder or a bonding wire. A potting resin or a bowl-shaped metal lid is attached to the upper surface of the electronic device so as to cover the electronic component, and the electronic component is hermetically sealed to provide an electronic device as a final product.
[0004]
By the way, such a wiring board has become extremely small with a size of about several mm square in accordance with recent demands for miniaturization of electronic devices, and facilitates handling of a large number of wiring boards. In order to efficiently manufacture wiring boards and electronic devices, a so-called multi-cavity ceramic in which a large number of wiring boards are simultaneously and intensively obtained from one large-area ceramic mother board. It is manufactured in the form of a wiring board.
[0005]
As shown in the top view of FIG. 2, for example, such a multi-piece ceramic wiring board is provided with a large number of wiring board parts serving as wiring boards at the center of a ceramic substrate 11 serving as a substantially rectangular large-area mother board. 12 has a product region 11a (region surrounded by a two-dot chain line in FIG. 2) arranged and formed in a matrix, and has a frame-shaped discard margin region 11b surrounding the product region 11a on its outer peripheral portion. ing. The product area 11a is an area for forming the wiring board section 12, and the disposal area 11b is for facilitating the handling of a multi-piece ceramic wiring board.
[0006]
In the multi-cavity ceramic wiring board, a dividing groove 13 for dividing the ceramic substrate 11 into a large number of wiring boards is formed at the boundary of each wiring board portion 12 formed on the ceramic substrate 11 by, for example, laser processing. A plurality of wiring boards can be obtained by dividing the wiring board portion 12 from the ceramic substrate 11 along the dividing grooves 13 at a predetermined depth on the upper surface and / or the lower surface of the substrate 12. ing.
[0007]
In the multi-cavity ceramic wiring board, a substantially square through-hole 14 is formed at, for example, an intersection of the dividing groove 13 in the product region 11a of the ceramic substrate 11 so that each apex thereof coincides with the dividing groove 13. .
[0008]
In each of the wiring board portions 12, a plurality of metallized wiring conductors 15 extending from the upper surface to the lower surface via the inner surface of the through hole 14 are respectively attached.
[0009]
The through-hole 14 provides a lead-out path for leading the wiring conductor 15 in each wiring board unit 12 from the upper surface to the lower surface of the ceramic substrate 11, and when the ceramic substrate 11 is divided into each wiring board unit 12, Or fix the legs provided on the cover when attaching the metal cover to each wiring board.
[0010]
In the multi-cavity ceramic wiring board, the electronic components are mounted on the respective wiring board portions 12 and the respective electrodes of the electronic components are electrically connected to the wiring conductors 15. By sealing with a lid and finally dividing the ceramic substrate 11 along the dividing groove 13, a large number of electronic devices can be manufactured simultaneously and intensively.
[0011]
In this multi-cavity ceramic wiring board, an automatic machine is generally used to mount electronic components or attach a potting resin or a metal lid to each wiring board portion 12 formed on the ceramic substrate 11. . For example, one side of the long side of the ceramic substrate 11 has been used as a reference side for mounting and positioning for positioning electronic components, potting resin, and the like on each wiring board unit 12 by an automatic machine.
[0012]
[Problems to be solved by the invention]
The multi-cavity ceramic wiring board as described above is generally manufactured by a conventionally known ceramic green sheet method.
[0013]
More specifically, for example, first, a ceramic green sheet serving as a ceramic substrate 11 is prepared, and a through hole serving as a through hole 14 is formed in a region serving as a product region 11a of the ceramic green sheet by a conventionally known punching method. Formed. Next, a high-melting metal paste such as tungsten or molybdenum serving as a wiring conductor 15 is formed from the upper surface of each region of the ceramic green sheet serving as the wiring board portion 12 to the inner surface and the lower surface of the through hole 14 serving as the wiring conductor 15. A predetermined pattern is printed and applied by using a screen printing method. Then, the ceramic green sheet and the metal paste are fired at a high temperature of about 1600 ° C. in a reducing atmosphere to obtain a ceramic substrate 11 having a large number of wiring board portions 12 formed in a product region 11a. It is manufactured by forming a dividing groove 13 at the boundary of the wiring board portion 12 by, for example, a laser.
[0014]
By the way, in the multi-piece ceramic wiring board manufactured by the ceramic green sheet method, firing shrinkage occurs when firing the ceramic green sheet to be the ceramic substrate 11. Although a large number of through holes serving as the through holes 14 are formed in the portion serving as the product region 11a of the ceramic green sheet, the through holes are not formed in the portion serving as the disposal region 11b of the ceramic green sheet. The product region 11a shrinks by firing more than the waste allowance region 11b. As a result, a portion corresponding to the product region 11a on each outer peripheral side of the ceramic substrate 11 has a shape recessed toward the center of the ceramic substrate 11. As a result, each side of the substantially rectangular ceramic substrate 11 is curved.
[0015]
When each side of the ceramic substrate 11 is curved in this way, when positioning one electronic component, a potting resin, a metal cover, or the like on each wiring board portion 12 of the ceramic substrate 11 with an automatic machine using one side as a reference side. The electronic component, the potting resin, the metal lid, and the like cannot be accurately positioned with respect to each wiring board portion 12, and as a result, the electrodes of the electronic component and the wiring conductor 15 of the wiring board portion 12 are electrically normal. Or the electronic component cannot be hermetically sealed with a potting resin or a metal lid.
[0016]
The present invention has been devised in view of the conventional drawbacks, and an object of the present invention is to provide an electronic component, a potting resin, a metal, and the like for each of the wiring conductors of a large number of wiring boards arranged and formed on a ceramic substrate serving as a mother board. The lid and other parts are accurately positioned using an automatic machine, and the electronic components and the wiring conductors on the wiring board can be electrically connected properly and the electronic components are sealed with a potting resin or metal lid with high airtightness. It is another object of the present invention to provide a multi-cavity ceramic wiring board capable of performing the above-mentioned steps.
[0017]
[Means for Solving the Problems]
A multi-cavity ceramic wiring board according to the present invention is a substantially square product area having a side parallel to the reference side disposed at the center of a substantially square plate-shaped ceramic substrate having one side as a reference side for mounting and positioning. A plurality of wiring board portions each of which is divided by a dividing groove, a through-hole is formed in a predetermined pattern on the dividing groove, and a wiring conductor is attached thereto, and the reference is made with respect to the product area. A dummy through-hole is formed in an extended region in a direction parallel to the side in the same pattern as the through-hole in a plan view. Further, in the multi-cavity ceramic wiring board of the present invention, preferably, the ceramic substrate has a rectangular shape having the reference side as a long side, and the dummy through-hole is formed only in the extension region. It is.
[0018]
According to the multi-cavity ceramic wiring board of the present invention, of the disposal area formed on the outer peripheral portion of the ceramic substrate serving as the motherboard, the reference side with respect to the product area formed in the center of the ceramic motherboard. Since dummy through-holes having the same pattern as the through-holes provided in the product area are formed in the extended area in the parallel direction, the firing shrinkage in the direction orthogonal to the reference side of the mother board is substantially reduced in each part. As a result, the reference side of the ceramic substrate is prevented from bending, and electronic parts, potting resin, metal lids, etc. are applied to the wiring conductors of a large number of wiring boards using an automatic machine using the reference side. The electronic components can be electrically connected normally to the wiring conductors of the wiring board, and the electronic components can be hermetically sealed with a potting resin or a metal lid.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a multi-cavity wiring board of the present invention will be described with reference to the accompanying drawings.
[0020]
FIG. 1 is a top view showing an example of an embodiment of a multi-cavity ceramic wiring board according to the present invention, wherein 1 is a ceramic substrate serving as a mother board of the multi-cavity ceramic wiring board, and 2 is a wiring board unit.
[0021]
The ceramic substrate 1 is made of an electrically insulating material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon nitride sintered body, a silicon carbide sintered body, or a glass ceramic. It is a rectangular flat plate, and has a product region 1a in which a large number of wiring board portions 2 are arranged and formed at the center thereof, and a product region 1a (surrounded by a two-dot chain line in FIG. Area) is surrounded by a frame-shaped waste allowance area 1b.
[0022]
Then, one side of the ceramic substrate 1, for example, one of the upper and lower sides (the long side of the substantially rectangular substrate) in the figure in the example of FIG. 1 is used as a reference side G for mounting and positioning by the automatic machine. The product region 1a is arranged as a substantially rectangular region having a side parallel to the reference side G.
[0023]
When the ceramic substrate 1 is made of, for example, an aluminum oxide sintered body, a suitable organic binder and a solvent are added to and mixed with raw material powders of aluminum oxide, silicon oxide, calcium oxide, magnesium oxide, etc. to form a slurry. At the same time, a ceramic green sheet is obtained by forming the ceramic green sheet into a sheet shape by employing a well-known doctor blade method. Thereafter, the ceramic green sheet is subjected to an appropriate punching process, and at a temperature of about 1600 ° C. in a reducing atmosphere. It is manufactured by firing.
[0024]
A dividing groove 3 for dividing the ceramic substrate 1 into a large number of wiring substrate portions 2 is formed at the boundary between the wiring substrate portions 2 arranged and formed in the product region 1a of the ceramic substrate 1.
[0025]
The dividing groove 3 is formed at a predetermined depth on the upper surface and / or the lower surface of the ceramic substrate 1, and the ceramic substrate 1 is chocolate-breaked along the dividing groove 3 so that the ceramic substrate 1 is separated from each of the wiring board portions 2. Is divided into a number of wiring boards.
[0026]
The dividing groove 3 is formed by forming a groove of a predetermined depth on the upper surface and / or lower surface of the ceramic substrate 1 by a laser, or by forming a die or cutting on the upper surface and / or lower surface of the ceramic green sheet to be the ceramic substrate 1. It is formed by cutting a predetermined depth with a blade or the like.
[0027]
Also, on the dividing groove 3 in the product region 1a of the ceramic substrate 1, for example, at the intersection thereof, a predetermined pattern, in this example, a repetitive pattern of substantially square through holes, the through hole 4 has its vertex coincident with the dividing groove 3. It is formed in such a manner as to make it.
[0028]
The through-hole 4 provides a lead-out path for leading a wiring conductor 5 described later from the upper surface to the lower surface of each wiring board portion 2, and facilitates division when dividing the ceramic substrate 1 along the dividing groove 3. It acts to ensure the reliability or to fix the legs provided on the lid when attaching the metal lid to each wiring board.
[0029]
In addition, the through hole 4 is formed by punching, for example, a square through hole in a region to be the product region 1a of the ceramic green sheet to be the ceramic substrate 1 by a punching method, thereby forming the divided groove 3 in the product region 1a of the ceramic substrate 1. The vertices are formed at the intersections so that their vertices coincide with the division grooves 3.
[0030]
A wiring conductor 5 composed of a plurality of metallized wiring conductors and the like led out through the inner surface of the through hole 4 is formed on the ceramic substrate 1 in each wiring board portion 2 of the product region 1a from the upper surface to the lower surface.
[0031]
The wiring conductor 5 is made of, for example, a sintered metal powder of tungsten, molybdenum, copper, silver, or the like, and functions as a conductive path for electrically connecting an electronic component mounted on the wiring board 2 to the outside. Each electrode of the electronic component is electrically connected to the upper surface portion of the substrate portion 2 via electrical connection means such as solder or bonding wire, and the lower surface portion of the wiring substrate portion 2 is connected to the wiring conductor of the external electric circuit board. It is electrically connected.
[0032]
The wiring conductor 5 is formed by punching out a through hole to be a through hole 4 in a ceramic green sheet to be a ceramic substrate 1, and then forming an upper surface and a lower surface of a region to be each wiring board portion 2 of the ceramic green sheet and a through hole to be a through hole 4. A metal paste to be the wiring conductor 5 is printed and applied in a predetermined pattern on the inner surface of the hole by using a conventionally well-known screen printing method, and is fired together with the ceramic green sheet. 1 is formed so as to be led out from the upper surface to the lower surface through the inner surface of the through hole 4.
[0033]
When the wiring conductor 5 is made of a sintered tungsten powder, for example, the wiring conductor 5 and the metal paste are formed by adding and mixing an appropriate organic binder, a solvent, and the like to the tungsten powder to form a paste. Can be
[0034]
The ceramic substrate 1 has the same pattern as the through-holes 4 formed in the product region 1a in the extension region 1b ′ in the direction parallel to the reference side G with respect to the product region 1a. That is, the dummy through holes 6 are formed with substantially the same shape, the same size, and the same arrangement interval.
[0035]
The dummy through-holes 6 function to adjust the substrate shrinkage of the extended region 1b 'of the ceramic substrate 1, and make uniform firing shrinkage in the width direction of the ceramic substrate 1, that is, the direction orthogonal to the reference side G. Works.
[0036]
According to the multi-cavity ceramic wiring board of the present invention, the product area 1a is formed in the extension area 1b 'in the direction parallel to the reference side G with respect to the product area 1a. Since the dummy through holes 6 are formed in the same pattern as the formed through holes 4, the firing shrinkage in the width direction of the ceramic substrate 1 becomes uniform, and as a result, the reference side G of the ceramic substrate 1 is curved. There is no such thing as. Therefore, the electronic component, the potting resin, the metal cover, and the like can be accurately positioned and mounted on each wiring board portion 2 by an automatic machine using the reference side G as a mounting positioning reference. The electrodes and the wiring conductors 5 of the wiring board 2 are electrically and accurately connected, and the electronic components mounted on the wiring board 2 can be hermetically sealed with a potting resin, a metal cover, or the like. Become.
[0037]
The dummy through-holes 6 are formed by punching out the through-holes to be the through holes 4 in the ceramic green sheet to be the ceramic substrate 1 and simultaneously forming the through holes to be the dummy through-holes 6 in the ceramic green sheet disposal area 1b. In the extension area 1b 'in the direction parallel to the reference side G with respect to the product area 1a, punching is performed in a predetermined shape, a predetermined size, and a predetermined arrangement in the same manner as the predetermined pattern of the through holes 4 in the product area 1a. By doing so, the same pattern as the through holes 4 formed in the product region 1a is formed in the extension region 1b 'in the direction parallel to the reference side G with respect to the product region 1a of the ceramic substrate 1.
[0038]
Thus, according to the multi-cavity ceramic wiring board of the present invention, one of the long sides that are not curved is set as the reference side G for mounting positioning, and the electronic component is positioned and mounted on each wiring board unit 2 by an automatic machine. At the same time, each electrode of the electronic component is electrically connected to the wiring conductor 5 of each wiring board 2 through an electrical connection means such as solder or bonding wire, and then the electronic component is mounted on the upper surface of each wiring board 2. By positioning and attaching a potting resin or a metal lid so as to cover, and finally dividing the ceramic substrate 1 by chocolate breaking along the dividing grooves 3 formed therein, a large number of electronic devices can be accurately and easily manufactured. Will be manufactured simultaneously and intensively.
[0039]
It should be noted that the present invention is not limited to the above-described embodiments, and various changes and improvements may be made without departing from the spirit of the present invention.
[0040]
For example, in the above example, the through-hole and the dummy through-hole are both substantially square-shaped through-holes formed so that their vertices coincide with the intersections of the divided grooves, but the shapes of these through-holes and dummy through-holes are In addition to the square shape, various shapes such as a rectangular shape, a rhombic shape, a circular shape, an elliptical shape, a long hole shape, and the like may be used, and a combination thereof is formed on the dividing groove along the dividing groove. There may be. Also, the size of the through hole / dummy through hole may be a combination of several sizes.
[0041]
In addition, the area where the dummy through hole is provided is preferably an area extending to the end of the substrate in the above-described extended area, since it is most effective in preventing the reference side from being bent. Depending on the accuracy required and the range in which the accuracy is required, the region may be a region between the product region and the end of the substrate.
[0042]
【The invention's effect】
According to the multi-cavity ceramic wiring board of the present invention, a product area formed in a substantially square shape having a side parallel to the reference side at the center of the substantially square ceramic substrate having one side as a reference side for mounting and positioning. A predetermined pattern of through-holes are formed in the substrate, and a large number of wiring board portions are arrayed and formed. Since the dummy through-holes are provided in the same pattern as the through-holes provided in the regions, the amount of firing shrinkage in the direction orthogonal to the reference side of the ceramic substrate becomes substantially uniform in each portion corresponding to each region, and as a result, The reference side of the ceramic substrate is prevented from being curved. Therefore, the electronic component, the potting resin, the metal cover, and the like can be accurately positioned and mounted on each wiring board by an automatic machine using the reference side as a mounting positioning reference. It is possible to electrically accurately connect to the wiring conductor of the wiring board, and it is possible to hermetically seal the electronic components mounted on the wiring board with a potting resin, a metal cover, or the like.
[Brief description of the drawings]
FIG. 1 is a top view showing an example of an embodiment of a multi-cavity ceramic wiring board according to the present invention.
FIG. 2 is a top view showing an example of a conventional multi-cavity ceramic wiring board.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ceramic board | substrate 1a ... Product area 1b ... Discard allowance area | region 1b '... Extension area G ... Reference side 2 ... Wiring board part 4 ... Through-hole 5 ... Wiring conductor 6 ... Dummy through hole

Claims (2)

一辺を実装位置決め用の基準辺とする略四角平板状のセラミック基板の中央部に配置された前記基準辺と平行な辺を有する略四角形状の製品領域内に、分割溝により区切られ、該分割溝上に所定パターンで貫通孔が形成されているとともに配線導体が被着されて成る多数の配線基板部が配列され、かつ前記製品領域に対して前記基準辺に平行な方向の延長領域に、前記貫通孔と平面的に同じパターンでダミー貫通孔が形成されていることを特徴とする多数個取りセラミック配線基板。In a substantially square-shaped product region having a side parallel to the reference side arranged at the center of a substantially square plate-shaped ceramic substrate having one side as a reference side for mounting and positioning, the divided part is divided by a dividing groove. A large number of wiring board portions formed with through holes formed in a predetermined pattern on the grooves and covered with wiring conductors are arranged, and the extended region in the direction parallel to the reference side with respect to the product region, A multi-cavity ceramic wiring board, wherein dummy through holes are formed in the same pattern as the through holes in a plane . 前記セラミック基板は、前記基準辺を長辺とする長方形状であり、前記ダミー貫通孔は、前記延長領域にのみ形成されていることを特徴とする請求項1記載の多数個取りセラミック配線基板。The multi-cavity ceramic wiring board according to claim 1, wherein the ceramic substrate has a rectangular shape with the reference side as a long side, and the dummy through-hole is formed only in the extension region.
JP11894498A 1998-04-28 1998-04-28 Multi-cavity ceramic wiring board Expired - Fee Related JP3554189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11894498A JP3554189B2 (en) 1998-04-28 1998-04-28 Multi-cavity ceramic wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11894498A JP3554189B2 (en) 1998-04-28 1998-04-28 Multi-cavity ceramic wiring board

Publications (2)

Publication Number Publication Date
JPH11312762A JPH11312762A (en) 1999-11-09
JP3554189B2 true JP3554189B2 (en) 2004-08-18

Family

ID=14749115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11894498A Expired - Fee Related JP3554189B2 (en) 1998-04-28 1998-04-28 Multi-cavity ceramic wiring board

Country Status (1)

Country Link
JP (1) JP3554189B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221193B1 (en) * 1999-01-20 2001-04-24 International Business Machines Corporation Defect reduction method for screened greensheets and article produced therefrom
JP6329978B2 (en) * 2016-03-02 2018-05-23 太陽誘電株式会社 Manufacturing method of multilayer ceramic electronic component

Also Published As

Publication number Publication date
JPH11312762A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
JP4373547B2 (en) Multiple wiring board
JP3554189B2 (en) Multi-cavity ceramic wiring board
JP3426988B2 (en) Multi-cavity wiring board
JP2000307200A (en) Multi-section ceramic wiring board
JP3472492B2 (en) Multi-cavity wiring board
JP3404352B2 (en) Multi-cavity ceramic wiring board
JP4651152B2 (en) Multi-cavity ceramic wiring board
JP3488826B2 (en) Multi-cavity board for wiring board
JP2001068799A (en) Multi-element ceramic wiring board
JP2002299520A (en) Wiring board and multi-product wiring board
JP3894841B2 (en) Multiple wiring board
JP2005217099A (en) Multicavity wiring board
JP4272506B2 (en) Multiple wiring board
JP2004023051A (en) Multi-wiring board
JP2004047821A (en) Multiple-piece taking wiring board
JP2006147659A (en) Multiple pattern wiring board and electronic device
JP2004063501A (en) Ceramic substrate for many chips and method of manufacturing the same
JP4303539B2 (en) Multiple wiring board
JP2004288661A (en) Wiring board
JP2003283067A (en) Multiple wiring board
JP3801935B2 (en) Electronic component mounting board
JP2003163421A (en) Multiple wiring board
JP2002289748A (en) Substrate for mounting electronic component
JP2003068920A (en) Wiring board
JP2001308469A (en) Ceramic wiring board for batch process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees