JP3552971B2 - アクティブフェイズドアレイアンテナ - Google Patents

アクティブフェイズドアレイアンテナ Download PDF

Info

Publication number
JP3552971B2
JP3552971B2 JP35337899A JP35337899A JP3552971B2 JP 3552971 B2 JP3552971 B2 JP 3552971B2 JP 35337899 A JP35337899 A JP 35337899A JP 35337899 A JP35337899 A JP 35337899A JP 3552971 B2 JP3552971 B2 JP 3552971B2
Authority
JP
Japan
Prior art keywords
phased array
array antenna
active phased
antenna
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35337899A
Other languages
English (en)
Other versions
JP2000236207A (ja
Inventor
秀樹 桐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP35337899A priority Critical patent/JP3552971B2/ja
Publication of JP2000236207A publication Critical patent/JP2000236207A/ja
Application granted granted Critical
Publication of JP3552971B2 publication Critical patent/JP3552971B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アクティブフェイズドアレイアンテナに関するものであり、特に移動体識別用無線機や衛星放送受信機等の通信機器におけるマイクロ波を送受信するアクティブフェイズドアレイアンテナや、その他、例えば自動車の衝突防止レーダー等のミリ波を送受信するアクティブフェイズドアレイアンテナに関するものである。
【0002】
【従来の技術】
従来より、マイクロ波・ミリ波を送受信するアンテナとして、いわゆるアクティブフェイズドアレイアンテナが一般的に用いられている。
この、従来より用いられているアクティブフェイズドアレイアンテナについて、図面を参照しつつ説明する。
(a)は、従来のアクティブフェイズドアレイアンテナ100の構成を模式的に示す図であり、図(b)は、アクティブフェイズドアレイアンテナ100を構成する部材の1つである移相器707の構成の一例を示している。
【0003】
従来のアクティブフェイズドアレイアンテナ100は、誘電体基板上に配列された複数のアンテナパッチ706a…706pと、給電端子711に印加された高周波信号を各アンテナパッチ706に分配する給電線710とを有している。また、アクティブフェイズドアレイアンテナ100は、給電線710上に配設され、通過する高周波信号の位相を変化させる、各アンテナパッチ706に対応する移相器707a…707pと、各移相器707毎に、対応する所要の直流制御電圧を印加して、各移相器707を通過する高周波信号の移相量を制御する制御回路708を有している。尚、アンテナパッチ706及び移相器707は図ではそれぞれ16個づつ設けられているが、あくまでもこれは例示に過ぎない。
また、図(b)は、アクティブフェイズドアレイアンテナ100に使用されている移相器707の構成を示す図である。なお、全ての移相器707は同一構成となっている。
【0004】
移相器707は、入力された高周波信号を伝送する伝送路として、給電線710に接続された入力側及び出力側の第1伝送路14a、20aと、直流電源に高周波阻止素子21、27を介して接続された入力側及び出力側の第2伝送路14b、20bと、直流電源に高周波阻止素子24を介して接続された中間伝送路17と、それぞれ高周波阻止素子24を介して第1の制御線V1、第1の反転制御線NV1に接続された、長さの異なる第1、第2の切替用伝送路15、16と、それぞれ高周波阻止素子25、26を介して第2の制御線V2、第2の反転制御線NV2に接続された、長さの異なる第3、第4の切替用伝送路18、19とを有している。
【0005】
そして、入力側の第1伝送路14aと第2伝送路14bの間には直流電力を阻止する直流阻止素子12が、また、出力側の第1伝送路20aと第2伝送路20bの間には直流電力を阻止する直流阻止素子13がそれぞれ接続されている。
また、第1及び第2の切替用伝送路15及び16は、中間の伝送路17と入力側の第2伝送路14bの間に配置されている。
【0006】
第1切替用伝送路15の入力側端と入力側の第2伝送路14bの出力側端の間には、PINダイオード31aが第2伝送路14bから第1切替用伝送路15に向けて順方向となるよう、また、第1切替用伝送路15の出力側端と中間伝送路17の入力側端の間には、PINダイオード31bが中間伝送路17から第1切替用伝送路15に向けて順方向となるよう、それぞれ接続されている。
【0007】
第2切替用伝送路16の入力側端と入力側の第2伝送路14bの出力側端の間には、PINダイオード32aが第2伝送路14bから第2切替用伝送路16に向けて順方向となるよう、また、第2切替用伝送路16の出力側端と中間伝送路17の入力側端の間には、PINダイオード32bが中間伝送路17から第2切替用伝送路16に向けて順方向となるよう接続されている。
さらに、上記中間伝送路17と出力側の第2伝送路20bの間には、第3及び第4の切替用伝送路18及び19が配置されている。
【0008】
第3切替用伝送路18の入力側端と中間伝送路17の出力側端の間には、PINダイオード33aが中間伝送路17から第3切替用伝送路18に向けて順方向となるよう、また、第3切替用伝送路18の出力側端と出力側の第2伝送路20bの入力側端の間には、PINダイオード33bが第2伝送路20bから第3切替用伝送路18に向けて順方向となるよう接続されている。
【0009】
第4切替用伝送路19の入力側端と中間伝送路17の出力側端の間には、PINダイオード34aが中間伝送路17から第4切替用伝送路19に向けて順方向となるよう、また、第4切替用伝送路19の出力側端と出力側の第2伝送路20bの入力側端の間には、PINダイオード34bが第2伝送路20から第4切替用伝送路19に向けて順方向となるよう接続されている。
【0010】
このように構成される移相器707を備えたアクティブフェイズドアレイアンテナ100の動作について説明する。
まず、給電端子711に高周波電力が印加されると、高周波電力は各移相器707を介して各アンテナパッチ706に供給される。このとき各移相器707には対応する所要の制御電圧が印加されており、各移相器707では、制御回路708からの制御電圧に基づいて、高周波電力の移相を所定の移相量だけ進めたり、遅らせたりする処理が行われる。これにより、各アンテナパッチ706から所定の位置の高周波電力が出射される。
【0011】
このように、アクティブフェイズドアレイアンテナ100では、制御回路708から各移相器707へ直接制御電圧を印加して移相量を変化させることにより、アンテナの指向特性の制御を行っている。
【0012】
次に移相器707の動作について説明する。
給電線710を介して移相器707に供給された高周波電力は、入力側の第1伝送路14a、直流阻止素子12、入力側の第2伝送路14b、第1、第2の切替用伝送路15、16のどちらか一方、中間伝送路17、第3、第4の切替用伝送路18、19のどちらか一方、出力側の第2伝送路20b、直流阻止素子13、及び出力側の第1伝送路20aの順に通過して、アンテナパッチ706に伝播する。
【0013】
このとき、各制御線V1、V2、NV1、NV2からは、対応するPINダイオード31、32、33、34のON/OFFを切り替える制御電圧が各伝送路15、16、18、19へ印加されており、各PINダイオード31、32、33、34は制御電圧に基づきON/OFFする。これにより、高周波電力が移相器707内で通過する伝送路の長さが変化することになり、高周波電力は所定の移相量だけ位相を進められたり、遅らせられたりして出力される。
【0014】
【発明が解決しようとする課題】
ところが、上記のような構成を有する従来のアクティブフェイズドアレイアンテナ100を構成する移相器707では、内部の伝送路を制御電圧により切り替えて移相量を変化させているため、移相変化は連続的ではなく段階的に行われることとなり、しかもこの段階数(ステップ数)に対応した伝送路切替えのための回路構成、つまり切替用伝送路、高周波阻止素子や制御線等が必要となり問題であった。
【0015】
言い換えると、小刻みなステップで移相変化が行われ、しかも大きな移相量が得られる構成を実現しようとすると、多くの伝送路切替えのための回路構成が必要となるという問題が存在する、ということである。
また、アンテナパッチ数を多くして、利得の大きなアンテナを得ようとする場合においても、移相器を構成する回路構成や配線が複雑になるという問題があった。
【0016】
また、従来のアクティブフェイズドアレイアンテナに用いる移相器として、マイクロストリップハイブリッドカプラにバラクタダイオードを組合せたものもあるが、バラクタダイオードは連続的な指向性の変化が可能である反面、PN接合の接合容量を利用しているため制御電圧が数ボルトと低く、このため移相器内を通過する高周波信号の通過電力が大きいと、その信号電圧により接合容量が変化してしまい、これにより高調波が多く発生してしまうという問題があったので、このような構成を有する移相器を用いることは一般的ではなかった。
【0018】
そこで本発明はこのような問題点に鑑みて為されたものであり、その目的は、より簡単な構造で、連続的なアンテナ指向特性を変化させることが可能な、低コストのアクティブフェイズドアレイアンテナを提供することである。
【0019】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に記載のアクティブフェイズドアレイアンテナでは、誘電体基板上に、複数のアンテナパッチと、前記誘電体基板に高周波電力を印加する給電端子と、を備え、前記各アンテナパッチと前記給電端子とを、前記給電端子から分岐した給電線路で接続し、前記各給電線路上を通過する高周波信号の位相を電気的に変化させる移相器を、前記給電線路の一部を構成するように配置した構造を有し、前記移相器が、常誘電体を基材とするマイクロストリップハイブリッドカプラと、強誘電体を基材とし、かつ前記マイクロストリップハイブリッドカプラと電気的に接続されるマイクロストリップスタブとを組み合わされてなり、前記マイクロストリップスタブに直流の制御電圧を加えて通過移相量を変化させるように構成したアクティブフェイズドアレイアンテナにおいて、前記複数のアンテナパッチは、行方向及び列方向に等間隔になるようにマトリクス状に配置し、前記給電線路は、行方向及び列方向において、全て2分岐で構成するとともに、入力端子から全ての分岐端までの分岐数が同じであり、各行の各アンテナパッチから給電端子までの間に入る前記移相器の数が、隣接する行の各アンテナパッチから給電端子までの間に入る前記移相器の数より、順次1つだけ多くなるように、かつ、各列の各アンテナパッチから給電端子までの間に入る前記移相器の数が、隣接する列の各アンテナパッチから給電端子までの間に入る前記移相器の数より、順次1つだけ多くなるように、前記移相器を配置してなり、なおかつ、前記移相器が全て同一特性のものであること、を特徴とする。
【0022】
本発明の請求項に記載のアクティブフェイズドアレイアンテナでは、請求項1に記載のフェイズドアレイアンテナにおいて、少なくとも、強誘電体及び強磁性体を基材とする開放端スタブと、常誘電体を基材とするマイクロストリップハイブリッドカプラと、を有する移相器を備えたこと、を特徴とする。
【0023】
本発明の請求項に記載のアクティブフェイズドアレイアンテナでは、請求項2に記載のアクティブフェイズドアレイアンテナにおいて、前記開放端スタブを、接地導体、強誘電体、ストリップ導体、強磁性体の順に積層して構成したこと、を特徴とする。
【0024】
本発明の請求項に記載のアクティブフェイズドアレイアンテナでは、請求項2に記載のアクティブフェイズドアレイアンテナにおいて、前記開放端スタブを、接地導体、強誘電体、強磁性体、ストリップ導体の順に積層して構成し、前記接地導体と前記ストリップ導体の間に、前記強誘電体と前記強磁性体を、前記接地導体面に平行する面方向に積層して構成してなること、を特徴とする。
【0031】
本発明の請求項に記載のアクティブフェイズドアレイアンテナでは、請求項1ないし請求項に記載のアクティブフェイズドアレイアンテナにおいて、前記接地導体を絞り加工したこと、を特徴とする。
【0032】
本発明の請求項に記載のアクティブフェイズドアレイアンテナでは、請求項5に記載のアクティブフェイズドアレイアンテナにおいて、全ての前記給電線路が、同一の断面形状を有する線状導体により構成したストリップ導体を備えたこと、を特徴とする。
【0034】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。尚、ここで示す実施の形態はあくまでも一例であって、必ずしもこの実施の形態に限定されるものではない。
【0035】
(実施の形態1)
まず、本発明に係るアクティブフェイズドアレイアンテナを第1の実施の形態として、図面を参照しつつ説明する。
図1(a)は、本実施の形態に係るアクティブフェイズドアレイアンテナ200の構成の一例を説明するブロック図である。
【0036】
このアクティブフェイズドアレイアンテナ200は、誘電体基板上に行方向及び列方向の間隔が等間隔になるようマトリックス(行列)状に配列された複数のアンテナパッチ106a…106pと、高周波電力が印加される、接地された給電端子108と、行方向指向性制御電圧を発生する第1制御電圧発生手段111と、列方向指向性制御電圧を発生する第2制御電圧発生手段112と、を有している。また、複数のアンテナパッチ106は、それぞれが給電端子108から分岐した給電線121により、給電端子108と複数のアンテナパッチ106が接続されている。そして後述するように、複数個備えられた移相器107が給電線121の一部を構成するように配置されている。
【0037】
また、誘電体基板上では、複数のアンテナパッチ106のマトリクス状配列における第1行から第4行の各行に対応する第1から第4の接続ノードN1…N4が形成されており、各接続ノードN1…N4と第1制御電圧発生手段111との間にはそれぞれ高周波阻止素子109a…109dが接続されている。
複数のアンテナパッチ106のマトリクス状配列における第1列の第1行、第2行、第3行、第4行に対応するアンテナパッチ106a、106e、106i、106mは、それぞれ第1〜第4の接続ノードN1…N4に直接接続されている。
【0038】
第2列の第1行、第2行、第3行、第4行に対応するアンテナパッチ106b、106f、106j、106nは、それぞれ移相器107a1、107a5、107a9、107a13を介して、第1〜第4の接続ノードN1…N4に接続されている。
【0039】
第3列の第1行、第2行、第3行、第4行に対応するアンテナパッチ106c、106g、106k、106oは、それぞれ、直列接続した2つの移相器107a3及び107a4、直列接続した2つの移相器107a7及び107a8、直列接続した2つの移相器107a11及び107a12、直列接続した2つの移相器107a15及び107a16を介して、第1〜第4の接続ノードN1…N4に接続されている。
【0040】
第4列の第1行、第2行、第3行、第4行に対応するアンテナパッチ106d、106h、106l、106pは、それぞれ、直列接続した3つの移相器107a2〜107a4、直列接続した3つの移相器107a6〜107a8、直列接続した3つの移相器107a10〜107a12、直列接続した3つの移相器107a14〜107a16を介して、第1〜第4の接続ノードN1…N4に接続されている。
つまり図1から明らかなように給電線路は、行方向の入力端子である接続ノードN1…N4から全ての分岐端までの分岐数が同じであり、さらに初段分岐を除いて、分岐前の線路に挿入されていた移相器数の1/2の移相器を分岐後の片方の線路にのみ挿入している。
【0041】
また、第1行の接続ノードN1は、直流阻止素子110aと、直列接続した3つの移相器107b3〜107b1と、を介して給電端子108に接続され、第2行の接続ノードN2は、直流阻止素子110bと、直列接続した2つの移相器107b2、107b1とを介して、給電端子108に接続され、第3行の接続ノードN3は、直流阻止素子110cと、移相器107b4とを介して、給電端子108に接続され、第4行の接続ノードN4は、直流阻止素子110dを介して、給電端子108に接続されている。
そして第2の制御電圧発生手段112は高周波阻止素子109eを介して上記給電端子108に接続されている。
つまり図1から明らかなように給電線路は、列方向の入力端子である給電端子108から全ての分岐端までの分岐数が同じであり、さらに初段分岐を除いて、分岐前の線路に挿入されていた移相器数の1/2の移相器を分岐後の片方の線路にのみ挿入している。
【0042】
なお、移相器107a1〜107a16は、第1制御電圧発生手段111により、制御電圧によりアクティブフェイズドアレイアンテナ200の行方向指向性を制御するための行方向指向性制御用移相器であり、移相器107b1〜107b4は、第2制御電圧発生手段112の制御電圧により、アクティブフェイズドアレイアンテナ200の列方向指向性を制御するための列方向指向性制御用移相器である。また、全ての移相器107a1〜107a16、及び107b1〜107b4は、全て同一の特性を有している。
【0043】
このような構成を有するアクティブフェイズドアレイアンテナ200では、第1行〜第4行の各行の行方向アンテナパッチ群と給電端子108との間に位置する列方向指向性制御用移相器の数が、第4行から第1行にかけて順次1個ずつ増加し、第1列〜第4列の各列の列方向アンテナパッチ群と給電端子108との間に位置する行方向指向性制御用移相器の数が、第1列から第4列にかけて順次1個ずつ増加するように移相器が配置される構成となっており、なおかつ、移相器107の特性が全て同一なものとしているため、列方向及び行方向の指向性の制御がそれぞれ1つの制御電圧により行われることとなる。
【0044】
これを具体的に説明する。まず、行方向指向性制御用移相器107a1〜107a4をそれぞれ通過する高周波電力の位相を移相量Φだけ遅らせるものとし、各移相器107の配置間隔を距離dとする。
ここで、図1(b)に示すように、第1行のアンテナパッチ106aに入射された高周波電力は、位相の変化なく接続ノードN1に供給される。
これに対し、第1行のアンテナパッチ106bに入射された高周波電力は、移相器107a1により、その位相が移相量Φだけ遅らせられて接続ノードN1に供給される。
そして、第1行のアンテナパッチ106cに入射された高周波電力は、移相器107a3及び107a4により、その位相が移相量2Φだけ遅らせられて接続ノードN1に供給される。
さらに、第1行のアンテナパッチ106dに入射された高周波電力は、移相器107a2から107a4により、その位相が移相量3Φだけ遅らせられて接続ノードN1に供給される。
【0045】
以上を言い換えると、第1行のアンテナパッチ106aから106dの配列方向に対して、所定の角度Θ(Θ=cos−1(Φ/d))をなす方向Dが、第1行のアンテナパッチ106aから106dによる受信電波の最大感度方向となる。尚、図中w1からw3は、同一位相の受信電波の波面を示している。
また、その他の行,つまり第2行〜第4行におけるアンテナパッチ群による指向特性も、第1行のアンテナパッチ群による指向特性と全く同一である。
従って、第1制御電圧発生手段111による行方向指向性制御電圧を変化させることにより、各移相器107a1…107a16による移相量Φが連続的に変化することとなり、最大感度方向と行方向のなす角度Θが列方向と垂直な面内で変化する。
【0046】
一方、第4行に対応する接続ノードN4に供給された高周波電力は、その位相の変化を生ずることなく、給電端子108に供給される。
【0047】
次いで、第3行に対応する接続ノードN3に供給された高周波電力は、移相器107b4により、その位相が移相量Φだけ遅らせられて給電端子108に供給される。
そして、第2行に対応する接続ノードN2に供給された高周波電力は、移相器107b2及び107b1により、その位相が移相量2Φだけ遅らせられて給電端子108に供給される。
さらに、第1行に対応する接続ノードN1に供給された高周波電力は、移相器107b3から107b1によりその位相が移相量3Φだけ遅らせられて給電端子108に供給される。
従って、第2制御電圧発生手段112による列方向指向性制御電圧を変化させることにより、各移相器107b1…107b4による移相量Φが連続的に変化することとなり、最大感度方向と列方向のなす角度が行方向と垂直な面内で変化する。
【0048】
また、第4行に対応する接続ノードN4と給電端子108との間には直流阻止素子110dが、そして第1行〜第3行に対応する接続ノードN1…N3と対応する移相器107b3、107b2、107b4との間には直流阻止素子110a、110b、110cが設けられているため、各制御電圧発生手段111及び112からの制御電圧による移相器107の制御は、行方向の移相器は行方向の移相器だけで、列方向の移相器は列方向の移相器だけで、それぞれ独立して行われる。これによりアクティブフェイズドアレイアンテナ200では、指向方向をアンテナパッチの数に関係なく、アンテナの電波送受信面,つまり行方向及び列方向を含む平面上で任意の方向に設定可能となっている。
【0049】
次にアクティブフェイズドアレイアンテナ200を構成する部材の1つである移相器107について説明する。
図2(a)は、アクティブフェイズドアレイアンテナ200に用いられる移相器107の構成を示す斜視図である。
この移相器107は、給電線121の一部を構成している、常誘電体基材101を用いたマイクロストリップハイブリッドカプラ103と、強誘電体基材102を用い、かつマイクロストリップハイブリッドカプラ103と接して形成されている、マイクロストリップスタブ104と、を備えている。そして、マイクロストリップスタブ104に印加する直流の制御電圧により、マイクロストリップハイブリッドカプラ103を通過する高周波電力の移相量が変化するよう構成されている。
【0050】
つまり、移相器107の基材は、常誘電体基材101と強誘電体基材102とから構成されている。
そして常誘電体基材101上には矩形状の環状導体層103aが配置されており、この環状導体層103aと常誘電体基材101とによりマイクロストリップハイブリッドカプラ103が構成されている。
また、強誘電体基材102上には、矩形状の環状導体層103aの対向する2つの直線部分103a1、103a2の延長上に位置し、かつ2つの直線部分103a1、103a2の一端にそれぞれつながるよう、2つの直線状導体層104a1、104a2が配置されており、2つの直線状導体層104a1、104a2と強誘電体基材102と、からマイクロストリップスタブ104が構成されている。
【0051】
さらに、常誘電体基材101上には、2つの直線部分103a1、103a2の延長上に位置し、かつ2つの直線部分103a1、103a2の他端にそれぞれつながるよう、導体層11a、120aが配置されている。
そしてこの導体層11aと常誘電体基材101と、により入力線路11が構成され、導体層120aと常誘電体基材101と、により出力線路120が構成されている。
【0052】
なお、環状導体層103aの直線部分103a1の一端側、及び他端側が、それぞれマイクロストリップハイブリッドカプラ103のポート2、ポート1となっており、環状導体層103aの直線部分103a2の一端側、及び他端側がそれぞれマイクロストリップハイブリッドカプラ103のポート3、ポート4となっている。つまり、移相器107は、マイクロストリップスタブ104に直流の制御電圧を加えることにより、通過する高周波電力の移相量が変化する構成となっている。
【0053】
これをさらに詳しく説明する。
正しく設計されたマイクロストリップハイブリッドカプラ103の隣合う2つのポート(ポート2およびポート3)に同一の反射素子(マイクロストリップスタブ104)を接続した構成の移相器107では、入力ポート(ポート1)から入った高周波電力は、この入力ポートからは出力されず、反射素子での反射電力を反映した高周波電力が出力ポート(ポート4)へのみ出力される。ここで反射素子であるマイクロストリップスタブ104での反射は、図2(a)に示すように、制御電圧が作るバイアス電界105がマイクロストリップスタブ104を伝播する高周波電力の作る電界と同一方向にあるため、図2(b)に示すように、制御電圧を変化させると、高周波電力に対するマイクロストリップスタブ104の実効誘電率も変化する。これにより、高周波電力に対するマイクロストリップスタブ104の等価電気長が変化してマイクロストリップスタブ104での移相も変化する。
【0054】
ここでマイクロストリップスタブ104の実効誘電率を変化させるのに要するバイアス電界105は、一般の強誘電体基材においては数キロボルト/ミリメートルから10数キロボルト/ミリメートルであるので、マイクロストリップスタブ104上を伝搬する高周波電力が作る電界により実効誘電率が影響を受けて高調波が発生することはない。
【0055】
このように、アクティブフェイズドアレイアンテナ200を構成する移相器107では、制御電圧を変化させると連続的に高周波電力の移相量が変化し、さらに移相器107および給電線121が1つの導体層により構成されているので、複数の移相器107に対して1本の給電線121により制御電圧を供給することが可能となっている。
【0056】
次に、アクティブフェイズドアレイアンテナ200の具体的構造について説明する。
図3は、アクティブフェイズドアレイアンテナ200の構造を説明する分解斜視図である。ここで、図3に示された4つのアンテナパッチ202は、図1(a)に示すアクティブフェイズドアレイアンテナ200のアンテナパッチ106i、106j、106m、106nに相当する。その他の部分はここでは特に図示しない。
【0057】
図1及び図3を参照しつつさらに説明すると、アクティブフェイズドアレイアンテナ200は、板状誘電体基材205を有しており、その周囲には周壁205aが形成されている。
誘電体基材205の表面には給電線支持溝213が形成されており、給電線支持溝213内には、給電線121と、マイクロストリップハイブリッドカプラ103及びマイクロストリップスタブ104と、直流阻止素子110及び高周波阻止素子109と、を構成する導体層204が挿入されて固定されている。
【0058】
導体層204の、直流阻止素子110を構成する部分の上には、直流阻止素子110(容量素子)を構成する絶縁フィルム(直流阻止容量用フィルム)219を介して、直流阻止素子110を構成する導体片(直流阻止容量用導体片)211が積層されている。
導体層204の、マイクロストリップスタブ104を構成する部分の上には、強誘電体部材206が配置されている。
誘電体基材205上には、導体層204と、直流阻止容量用導体片211と、強誘電体部材206と、を覆うよう、導体層204から所定距離離して共有接地導体層203が配置されている。
【0059】
共有接地導体層203の、給電線121のアンテナパッチ202側端に対応する部分には、結合窓207が形成されている。
共有接地導体層203上には、共有接地導体層203との間に所定の間隔が形成されるように板状誘電体部材201が配置されている。
板状誘電体部材201は、共有接地導体層203に形成された部品貫通口203aを貫通する支持部材201aで、誘電体基材205上に支持されている。
板状誘電体部材201における結合窓207に対向する部分には、アンテナパッチ支持溝212が形成されており、このアンテナパッチ支持溝212にはアンテナパッチ202が嵌め込まれて固定されている。
【0060】
なお、214は給電線121の一端に形成された給電端子であり、215はX方向(行方向)の指向性を制御するための制御電圧を印加するための制御端子、216はY方向(列方向)の指向性を制御するための制御電圧を印加するための制御端子である。また208はX方向指向性制御用移相器であり、209はY方向指向性制御用移相器である。さらに210は高周波阻止スタブ、211は直流阻止容量用導体片である。
【0061】
板状誘電体基材205の周壁205aにおける給電端子214に対向する部分には、給電端子取り出し用開口217が形成され、板状誘電体基材205の周壁205aにおける制御端子215及び216に対向する部分には、制御端子取り出し用開口218が形成されている。
【0062】
この図3に示したアクティブフェイズドアレイアンテナ200は、図4に示すような断面構造を有している。尚、ここで示した断面図は、より具体的には、図1(a)に示すアクティブフェイズドアレイアンテナ200のアンテナパッチ106j及び移相器107a9に相当する部分の近傍の断面構造を示したものである。
【0063】
このアクティブフェイズドアレイアンテナ200において、各層を最上層から順に第1層、…、第7層とすると、全体で7つの層から構成されており、第1層の誘電体部材201と、第3層の空気層123aと、第5層の空気層123b及び強誘電体部材206と、第7層の誘電体基材205とを誘電体とし、第2層のアンテナパッチ202と、第4層の共有接地導体層203と、第6層の給電線121及び移相器204とを導体とし、これらを積層することにより構成されている。また、第1層、第2層、第3層、第4層により第1マイクロストリップ構造126が、第4層、第5層、第6層、第7層により第2マイクロストリップ構造127が形成されており、第1マイクロストリップ構造126と第2マイクロストリップ構造127とは第4層を接地層として共有する。
そして、共有接地導体層203に形成された結合窓207を通して、アンテナパッチ202と給電線121は、電磁界的に結合し、高周波電力の受け渡しを行うようになっている。
【0064】
以上説明したように、本実施の形態に係るアクティブフェイズドアレイアンテナ200では、アンテナパッチ202(106)や給電線121を伝播する高周波電力は、ほとんどアンテナパッチ202を構成する導体層204と共有接地導体層203の間、及び給電線121を構成する導体層204と共有接地導体層203の間に集中して流れているので、これらの導体層204、203の間の誘電体基材として、損失が極めて少なくかつ誘電率の安定している空気を使用している。
【0065】
そして、高周波電力が集中しないために、低損失及び誘電率の安定性を求める必要のない、アンテナパッチ202及び給電線121を構成する導体層204の表面外側の誘電体基材としては、アンテナパッチ202及び給電線121を構成する導体層204を支持する誘電体基材205をそのまま用いている。
またこの誘電体基材205はアクティブフェイズドアレイアンテナ200表面の保護層を兼ねる場合もある。
【0066】
このように構成することにより、高周波電力の伝播特性をコントロールするとともに、アンテナパッチや給電線導体を支持する役割が求められるものの、高周波特性として損失が少なく誘電率が安定している必要がある、マイクロストリップ構造の誘電体基材の価格によって、アクティブフェイズドアレイアンテナの価格が決定されてしまう、という従来の問題を解消し、アクティブフェイズドアレイアンテナを、簡単な構造で、かつ低コストにより実現可能なものとできる。
【0067】
以上説明した本実施の形態に係るアクティブフェイズドアレイアンテナ200の動作について説明する。
まず、アンテナパッチ106a…106pに高周波電力が入射されると、各アンテナパッチ106からは、高周波電力が対応する直流阻止素子、或いは移相器を介して給電端子108に供給される。
【0068】
具体的には、アンテナパッチ202(106)に入射された高周波電力は、結合窓207を通して給電線121へ受け渡される。給電線121に高周波電力が受け渡されると、高周波電力は、給電線121を通って移相器107へ供給される。このとき、各移相器107には、第1制御電圧発生手段111及び第2制御電圧発生手段112から、行方向指向性制御電圧及び列方向指向性制御電圧が供給される。このため、高周波電力のこれらの電圧により決まる移量だけその位相が変化させられて給電線を介して給電端子に供給される。
【0069】
このように本実施の形態では、アクティブフェイズドアレイアンテナ200を構成する移相器107を、給電線121の一部を構成し、常誘電体を基材とするマイクロストリップハイブリッドカプラ103と、強誘電体を基材とし、マイクロストリップハイブリッドカプラ103と電気的に接続されるマイクロストリップスタブ104と、を備え、マイクロストリップハイブリッドカプラ103に印加する直流制御電圧により、マイクロストリップハイブリッドカプラ103を通過する高周波電力の移相量を変化させるようにしたので、高周波電力の移相量を連続的に変化させることができる。
【0070】
また、マイクロスストリップハイブリッドカプラ103は給電線121の一部を構成し、そしてマイクロストリップスタブ104はマイクトストリップハイブリッドカプラ103と電気的に接続されているので、1本の給電線121に複数の移相器107を接続させ、移相器107及び給電線121を1つの導体層204により構成することが可能となるので、複数の移相器107に対して1本の給電線121により制御電圧を供給することが可能となり、配線を単純にすることができる。
【0071】
また、移相器107及び給電線121を1つの導体層204により構成することが可能となるので、マトリックス状に配列する複数の各アンテナパッチ106と給電端子108との間に配置する移相器107の数を調節することにより、給電線121の両端側から印加する制御電圧を変化させるだけで、アンテナパッチ106の数に関係なく、アクティブフェイズドアレイアンテナ200の指向特性を連続的に制御することができる。
【0072】
また、本実施の形態に係るアクティブフェイズドアレイアンテナ200では、行方向の移相器107と列方向の移相器107とで信号の移相が独立に行われるよう、第1制御電圧発生手段111及び第2制御電圧発生手段112の間に直流阻止素子110を設けているので、指向方向をアンテナパッチ106の数に関係なく、各制御電圧発生手段111、112により、アクティブフェイズドアレイアンテナ200の最大感度方向を行方向及び列方向を含む平面上で任意の方向に設定することができる。
【0073】
さらに、マイクロストリップ構造の導体層の間の誘電体基材には、高周波電力の損失が極めて少なく誘電率の安定している空気を使用し、給電線導体の表面外側の誘電体基材には、アンテナパッチと給電線導体を支持する誘電体部材を使用したので、これによりアンテナ表面の保護層を兼ねることもでき、簡単な構造で低コスト化を図ることができる。
【0074】
なお、本実施の形態においては、アンテナパッチ数が4×4の場合で示したが、これら以外のパッチ数でもよい。また、各アンテナパッチから給電端子までの移相器以外の給電線路長が等しくなるように設計されたアンテナについて説明を行ったが、指向特性の方向に予めオフセットを持たせるために、各アンテナパッチから給電端子までの移相器以外の給電線路長にオフセット用の伝送線路を設けて実現可能なことも言うまでもない。
【0075】
さらに、本実施の形態では、アンテナパッチ及び給電線を構成する導体層は、誘電体基材に形成した凹構造の溝に埋めて固定する方法を示したが、上記導体層は、凸構造の柱として誘電体基材上に固定してもよく、さらに、上記導体層を誘電体基材の誘電率の影響を受け難い方法により支持する支持構造も実現可能なことは言うまでもない。
【0076】
(実施の形態2)
図2に示すように、上述した、第1の実施の形態に係るアクティブフェイズドアレイアンテナ200における移相器107は、給電線121の一部を構成している、常誘電体を基材とするマイクロストリップハイブリッドカプラ103と、強誘電体を基材とし、かつマイクロストリップハイブリッドカプラ103と接して形成されている、マイクロストリップスタブ104と、を備えているが、一般に強誘電体の比誘電率は大きく、マイクロストリップスタブ104の線路インピーダンスは一般に低下する傾向がある。従って、マイクロストリップハイブリッドカプラ103とマイクロストリップスタブ104との接続部で高周波の電力反射が大きく、高周波電力の多くはマイクロストリップスタブ104には入らずにマイクロストリップハイブリッドカプラ103へと戻ってしまう、その結果、有効な移相量が得られないことが多い。その為、アンテナの指向特性変化量も狭い範囲に制限されてしまうこととなる。
【0077】
そこで、図5に示すように、アクティブフェイズドアレイアンテナに用いる移相器351において、強誘電体基材357を用いるマイクロストリップスタブ361に近接して強磁性体層356を設けることにより、強誘電体基材357により低下したマイクロストリップスタブ361の線路インピーダンスを高くすることが可能となり、ひいては上述した欠点を解消できる。
【0078】
そこで、少なくとも強誘電体及び強磁性体を基材とする開放端スタブと、常誘電体を基材とするマイクロストリップハイブロッドカプラと、を有する移相器を備えた、アクティブフェイズドアレイアンテナを、第2の実施の形態として、図面を参照しつつ説明する。
【0079】
図5は上述のとおり、本実施の形態におけるアクティブフェイズドアレイアンテナに用いる移相器の斜視図及び、開放端スタブの断面図である。
まず、図5(a)〜(c)に示した移相器351の構成について説明する。
352及び353は開放端スタブである。ここで、開放端スタブ352は、接地導体、強誘電体、ストリップ導体、強磁性体の順に積層して構成されたものであり、開放端スタブ353は、接地導体とストリップ導体の間に、強誘電体と強磁性体を、接地導体面に平行する面方向に積層して構成したものである。
また、354はマイクロストリップハイブリッドカプラ、355は常誘電体基材、356は強磁性体層、357は強誘電体基材、360は共有接地導体層、361はマイクロストリップスタブ、362はビアホールである。
【0080】
また、図5(d)において、358は直流制御電圧および高周波電力などの制御電圧が作るバイアス電界、359は高周波電力が作る磁界である。
さらにここで、強誘電体基材357と強磁性体層356の配置構造としては、図5(a)、(b)、(c)等の構造とすることが可能である。
図5(a)は簡単は構造であることから製造方法も簡単であるという特徴を有し、図5(b)は移相器の厚みを薄くすることが可能であるという特徴を有し、さらに図5(c)は移相器の厚みを薄くしながら内挿ビアホールが不要であるという特徴を有する。
【0081】
ここで図5に示している強磁性体層356は、強誘電体基材357により低下したマイクロストリップスタブ361の線路インピーダンスを高くする効果を有し、それによりマイクロストリップハイブリッドカプラ354とマイクロストリップスタブ361の接続部での電力反射は少なく、高周波電力のほとんどがマイクロストリップスタブ361に入るので、有効な移相量を得ることが可能となる。そして有効な移相量が得られるということで、上述のような移相器を用いたアクティブフェイズドアレイアンテナとすると、広い指向特性変化が可能なアクティブフェイズドアレイアンテナが実現可能となる。
以上のように、本実施の形態に係る発明のアクティブフェイズドアレイアンテナでは、広い指向特性変化が可能なアクティブフェイズドアレイアンテナが実現可能となる。
【0082】
(実施の形態3)
一般にマイクロ波・ミリ波領域で利用可能なアクティブフェイズドアレイアンテナを実現しようとする場合、アクティブフェイズドアレイアンテナを構成する各機能における要素の性能のみならず、各構成要素を組み合わせてアンテナを組み立てる時の組み立てに関する精度が、アクティブフェイズドアレイアンテナの扱う波長に対して重要となる。即ち、各構成要素を用いてアクティブフェイズドアンテナを組み立てる時、組み立てる構成要素の数が多くなればなるほど不良率が著しく悪化する可能性があるというものである。
そこで、アクティブフェイズドアレイアンテナを構成する各機能要素を有するアンテナ制御装置を、セラミックを使用した一体成形技術により構成することで、不良率悪化を防止することが考えられる。
【0083】
即ち、上述のように一体成形したアンテナ制御装置をアクティブフェイズドアレイアンテナに用いることで、組み立てる構成要素の数を減らすことが可能となり、ひいては不良率の低下を実現することが可能となる。
そして一体成形したアンテナ制御装置の中に全ての機能要素を入れることで、アクティブフェイズドアレイアンテナの性能低下と不良率を軽減することが可能であることは言うまでもないが、1種類のアンテナ制御装置から多種類のアクティブフェイズドアレイアンテナを作ろうとする場合には、アンテナ制御装置の備える機能要素の種類は多いほど好ましい。
例えば一つ、若しくは複数の移相器機能を一体成形すること、さらに移相器と直流阻止素子機能を一体成形することや、移相器と直流阻止素子と高周波阻止素子機能を一体成形することで、より機能要素の組み合わせ種類を多くすることが考えられる。
【0084】
そこで、本発明に係る上述したアンテナ制御装置を第3の実施の形態として、図面を参照しつつ説明する。
本実施の形態に係るアンテナ制御装置は、強誘電体と、強磁性体と、常誘電体と、電極材と、を用いて、セラミックを使用した一体成形技術により成形したものである。
このアンテナ制御装置400の構成について、図6に示した、本実施の形態に係る一体成形したアンテナ制御装置の一例に関する斜視図を参照しつつ説明する。
【0085】
図6において、401は常誘電体基材、402は移相器、403は強誘電体基材、404は強磁性体層、405はキャパシタ用誘電体、406は共有接地導体層、407はマイクロストリップハイブリッドカプラ、408は開放端スタブ、409は直流阻止素子、410は高周波阻止素子、411はビアホール、412はアンテナパッチ、413は給電線路、414は直流制御電圧端子である。
【0086】
この図示したアンテナ制御装置40では、移相器・直流阻止素子・高周波阻止素子・アンテナパッチの機能を一体成形したが、用いるアクティブフェイズドアレイアンテナの性質や性能に応じて、例えば直流阻止素子と、高周波阻止素子と、アンテナパッチと、3つの部材を省略して、移相器の機能だけを成形することも考えられる。これ以外の組み合わせとして、移相器と直流阻止素子の機能を一体成形することや、移相器・直流阻止素子・高周波阻止素子の機能を一体成形することも考えられる。
【0087】
例えば、図1に示したアクティブフェイズドアレイアンテナにおいて、移相器107、直流阻止素子110、高周波阻止素子109、アンテナパッチ106を、セラミックを用いた一体成形技術により一体成形し、これをアンテナ制御装置として用いることで、アクティブフェイズドアレイアンテナに用いる機能要素の数が減り、ひいては性能に関するバラツキを低下させることができる。
【0088】
このように、色々な機能をセラミックを使用した一体成形技術により一体成形してアンテナ制御装置とすることで、かかるアンテナ制御装置をアクティブフェイズドアレイアンテナに用いると、各機能要素を別々に製造し、それらを組み立てる時に生じるアクティブフェイズドアレイアンテナの性能に関するバラツキを低下させることが可能となる。
【0089】
よって、本実施の形態に係るアンテナ制御装置を用いれば、組み立て時の精度バラツキによる性能低下が少ないアクティブフェイズドアレイアンテナを実現し、また、1種類のアンテナ制御装置で、多種類のアクティブフェイズドアレイアンテナを製造することが可能となる。
【0098】
(実施の形態
次に、絞り加工した接地導体を用いたアクティブフェイズドアレイアンテナについて、第の実施の形態として、図面を参照しつつ説明する。
通常、アクティブフェイズドアレイアンテナに用いられる給電線は、各部分によって求められる線路インピーダンスが異なるので、給電線毎に異なった断面形状を有する線状導体をストリップ導体として用いることで、ストリップ導体と接地導体の間の距離を変化させている。即ち、ストリップ導体と接地導体の間の距離が異なると線路インピーダンスが異なることを利用しているのである。
【0099】
しかしこの手法であれば、複数種類のストリップ導体を用いる必要が生じ、そのためにアクティブフェイズドアレイアンテナの製造工程が複雑なものとなってしまい、ひいてはその性能のバラツキが生じてしまう、という問題があった。
そこで、本実施の形態では、接地導体を絞り加工することで上記の問題を解消しているのである。
【0100】
は、本実施の形態に係る、接地導体を絞り加工したアクティブフェイズドアレイアンテナの一部分901を拡大した斜視図である。
中、902はストリップ導体、903は接地導体、904は凸絞り加工部分、905は凹絞り加工部分である。
即ち、図に示すように、本発明のアクティブフェイズドアレイアンテナは、凸絞り904と凹絞り905を設けた接地導体903と、給電線路としてのストリップ導体902と、を有する。
【0101】
ここで、ストリップ導体902を、全て同一の断面形状を有する線状導体により構成することは好ましい形態である。
即ち、ストリップ導体902を全て同一の断面形状を有する線状導体としても、給電線路の各部において接地導体903に設けた凸絞り加工部904と凹絞り加工部905により、ストリップ導体と接地導体間の距離が異なるので、わざわざ線路毎に異なる断面形状を有する線状導体を用いずとも、図示例にあるように、線路毎に異なる線路インピーダンスZ1、Z2、Z3を得ることが出来る。
よって本発明の給電線路によれば、全て同一の断面形状を有する線状導体を使用できるので、低コストなアクティブフェイズドアレイアンテナが実現できる。
【0102】
さらに給電線路は、ストリップ導体902は全て同一の断面形状を有する線状導体を使用していることから、例えば給電線路の各直線部分ごとに異なる長さの直線状導体を用意しておき、それらを指定の位置に固定したあと、給電線路の屈曲部に当る直線状導体の接触部を半田付け等により接続することで全給電線路を実現することも可能である。
【0103】
こうすることにより、複雑な形状の給電線路用の導体材料を使用する必要がなくなるので、製造部門において給電用導体材料の運搬や取り扱い時の材料の歪み不良を避けることが可能となり、さらに低コストなアクティブフェイズドアレイアンテナが実現できる。
【0104】
(実施の形態
次に、支持誘電体と、接地導体と、給電用ストリップ導体と、を積層して作成した積層物と、第3の実施の形態で説明したアンテナ制御装置と、を、セラミックを使用した一体成形技術により成形したアクティブフェイズドアレイアンテナ906について、第の実施の形態として、図面を参照しつつ説明する。
は第の実施の形態に係るアクティブフェイズドアレイアンテナ906を説明する分解斜視図であるが、図中、907はアンテナ制御装置、908は支持誘電体、909は接地導体、910は給電用ストリップ導体、911はアンテナパッチ、912はアンテナ結合穴である。
【0105】
そして本実施の形態においては、まず、支持誘電体908と接地導体909と給電用ストリップ導体910を積層して積層物を作成する。ついで、この積層物とアンテナ制御装置907、アンテナパッチ911とを、セラミックを用いた一体成形技術により一体成形した構成を採用している。
尚、ここではアンテナ制御装置907については第3の実施の形態にて説明したものを利用している。
【0106】
以上のような構成とすることにより、アクティブフェイズドアレイアンテナ製作の全ての工程をセラミック多層基板の製造プロセスにより行うことが可能となる。
つまりアクティブフェイズドアレイアンテナに必要な各機能要素の製作精度およびアンテナ組み立て精度全てが、現在ミリ波帯のアンテナ製作における数10ミクロン単位で求められる作業精度に応えることが可能となり、ミリ波領域で用いられる高性能なアクティブフェイズドアレイアンテナの製作を実現することが可能となる。
【0107】
尚、以上の形態の説明において、ハイブリッドカプラとしてブランチライン型を示したが、他に1/4波長分布結合型、ラットレース型、位相反転ハイブリッドリング型や、さらにマイクロストリップで構成したハイブリッドコイル等でも実現可能あることは言うまでもない。
【0109】
【発明の効果】
本発明の請求項1に係るアクティブフェイズドアレイアンテナは、誘電体基板上に、複数のアンテナパッチと、前記誘電体基板に高周波電力を印加する給電端子と、を備え、前記各アンテナパッチと前記給電端子とを、前記給電端子から分岐した給電線路で接続し、前記各給電線路上を通過する高周波信号の位相を電気的に変化させる移相器を、前記給電線路の一部を構成するように配置した構造を有し、前記移相器が、常誘電体を基材とするマイクロストリップハイブリッドカプラと、強誘電体を基材とし、かつ前記マイクロストリップハイブリッドカプラと電気的に接続されるマイクロストリップスタブとを組み合わされてなり、前記マイクロストリップスタブに直流の制御電圧を加えて通過移相量を変化させるように構成したフェイズドアレイアンテナにおいて、複数のアンテナパッチを、行方向及び列方向に等間隔になるようにマトリクス状に配置し、前記給電線路は、行方向及び列方向において、全て2分岐で構成するとともに、入力端子から全ての分岐端までの分岐数が同じであり、各行の各アンテナパッチから給電端子までの間に入る移相器の数が、隣接する行の各アンテナパッチから給電端子までの間に入る移相器の数より、順次1つだけ多くなるように、かつ、各列の各アンテナパッチから給電端子までの間に入る移相器の数が、隣接する列の各アンテナパッチから給電端子までの間に入る移相器の数より、順次1つだけ多くなるように、移相器を配置してなり、なおかつ、移相器が全て同一特性のものであるようにしたので、複数の移相器を接続させた制御線の両端側から印加する制御電圧を変化させるだけで、アンテナパッチの数に関係なく、アンテナの指向特性を連続的に制御することができるという効果を有する。

【0111】
請求項に係るアクティブフェイズドアレイアンテナは、請求項1に記載のフェイズドアレイアンテナにおいて、少なくとも、強誘電体及び強磁性体を基材とする開放端スタブと、常誘電体を基材とするマイクロストリップハイブリッドカプラと、を有する移相器を備えた構成を用いており、請求項に係るアクティブフェイズドアレイアンテナは、請求項に記載のアクティブフェイズドアレイアンテナにおいて、開放端スタブを、接地導体、強誘電体、ストリップ導体、強磁性体の順に積層して構成し、また、請求項に係るアクティブフェイズドアレイアンテナは、請求項記載のアクティブフェイズドアレイアンテナにおいて、開放端スタブを、接地導体、強誘電体、強磁性体、ストリップ導体を積層して構成し、接地導体とストリップ導体の間に、強誘電体と強磁性体を、接地導体面に平行する面方向に積層して構成している。
【0112】
これら本発明の請求項からに記載されたアクティブフェイズドアレイアンテナは、簡単な構造で連続的に、そして広い指向特性変化が可能なアクティブフェイズドアレイアンテナを実現しうるものである。
【0117】
請求項に係るアクティブフェイズドアレイアンテナは、請求項1ないし請求項4に記載のアクティブフェイズドアレイアンテナにおいて、接地導体を絞り加工して接地導体とストリップ導体間の距離を変化させることより構成した、異なる線路インピーダンスの給電線路を備えたものであり、また、請求項に係るアクティブフェイズドアレイアンテナは、請求項記載のアクティブフェイズドアレイアンテナにおいて、給電線路として全て同一の断面形状を有する線状導体により構成したストリップ導体を備えたものである。
【0118】
これら請求項又は請求項に記載されたアクティブフェイズドアレイアンテナは、高価な低損失誘電体を使用しないで高利得化が可能なアクティブフェイズドアレイアンテナを実現しうるものである。
【図面の簡単な説明】
【図1】(a)第1の実施の形態に係るアクティブフェイズドアレイアンテナの構造を示すブロック図である。(b)第1の実施の形態に係るアクティブフェイズドアレイアンテナのアンテナパッチによる受信電波の最大感度方向を説明する図である。
【図2】(a)第1の実施の形態に係るアクティブフェイズドアレイアンテナの移相器の構成を示す図である。(b)制御電圧が作るバイアス電界に対するマイクロストリップスタブの実効誘電率の変化を示すグラフである。
【図3】第1の実施の形態に係るアクティブフェイズドアレイアンテナの構造を説明する分解斜視図である。
【図4】第1の実施の形態に係るアクティブフェイズドアレイアンテナの断面構造(一部)を示す図である。
【図5】(a)(b)(c)第2の実施に係るアクティブフェイズドアレイアンテナに用いる移相器の構成を示す図である。(d)開放端スタブにおける制御電圧が作るバイアス電界と高周波電力が作る磁界を示す図である。
【図6】第3の実施の形態に係るアンテナ制御装置を示す斜視図である。
【図7】第の実施の形態に係るアクティブフェイズドアレイアンテナにおける接地導体とストリップ導体との関係を説明する斜視図である。
【図8】第の実施の形態に係るアクティブフェイズドアレイアンテナの斜視図である。
【図9】(a)従来のアクティブフェイズドアレイアンテナの構造を示すブロック図である。(b)従来のアクティブフェイズドアレイアンテナに用いられる移相器の構造を示すブロック図である。
【符号の説明】
200 アクティブフェイズドアレイアンテナ
106 アンテナパッチ
107 移相器
108 給電端子
109 高周波阻止素子
110 直流阻止素子
111 第1制御電圧発生手段
112 第2制御電圧発生手段
101 常誘電体基材
102 強誘電体基材
103 マイクロストリップハイブリッドカプラ
104 マイクロストリップスタブ
105 バイアス電界
115 入力線路
120 出力線路
121 給電線
201 板状誘電体部材
201a 指示部材
202 アンテナパッチ
203 共有接地導体層
203a 部品貫通口
204 移相器
205 誘電体基材
205a 周壁
206 強誘電体部材
207 結合窓
208 X方向指向性制御用移相器
209 Y方向指向性制御用移相器
210 高周波阻止スタブ
211 直流阻止容量用導体片
212 アンテナパッチ支持溝
213 給電線支持溝
214 給電端子
215 制御端子
216 制御端子
217 給電端子取り出し用開口
218 制御端子取り出し用開口
219 絶縁フィルム
126 第1マイクロストリップ構造
127 第2マイクロストリップ構造
351 移相器
352 開放端スタブ
353 開放端スタブ
354 マイクロストリップハイブリッドカプラ
355 常誘電体基材
356 強磁性体層
357 強誘電体基材
358 バイアス電界
359 磁界
360 共有接地導体層
361 マイクロストリップスタブ
362 ビアホール
400 アンテナ制御装置
401 常誘電体基材
402 移相器
403 強誘電体基材
404 強磁性体層
405 キャパシタ用誘電体
406 共有接地導体層
407 マイクロストリップハイブリッドカプラ
408 開放端スタブ
409 直流阻止素子
410 高周波阻止素子
411 ビアホール
412 アンテナパッチ
413 給電線路
414 直流制御電圧端子
901 アクティブフェイズドアレイアンテナの一部(拡大)
902 ストリップ導体
903 接地導体
904 凸絞り加工部分
905 凹絞り加工部分
906 アクティブフェイズドアレイアンテナ
907 アンテナ制御装置
908 支持誘電体
909 接地導体
910 給電用ストリップ導体
911 アンテナパッチ
912 アンテナ結合穴
100 アクティブフェイズドアレイアンテナ
706 アンテナパッチ
707 移相器
708 制御回路
710 給電線
711 給電端子
12 直流阻止素子
13 第1の伝送路
14 第2の伝送路
15 第1の切替用伝送路
16 第2の切替用伝送路
17 中間の伝送路
18 第3の切替用伝送路
19 第4の切替用伝送路
20 第2伝送路
21 高周波阻止素子
22 高周波阻止素子
23 高周波阻止素子
24 高周波阻止素子
25 高周波阻止素子
26 高周波阻止素子
27 高周波阻止素子
31 PINダイオード
32 PINダイオード
33 PINダイオード
34 PINダイオード

Claims (6)

  1. 誘電体基板上に、
    複数のアンテナパッチと、前記誘電体基板に高周波電力を印加する給電端子と、を備え、
    前記各アンテナパッチと前記給電端子とを、前記給電端子から分岐した給電線路で接続し、
    前記各給電線路上を通過する高周波信号の位相を電気的に変化させる移相器を、前記給電線路の一部を構成するように配置した構造を有し、
    前記移相器が、
    常誘電体を基材とするマイクロストリップハイブリッドカプラと、
    強誘電体を基材とし、かつ前記マイクロストリップハイブリッドカプラと電気的に接続されるマイクロストリップスタブとを組み合わされてなり、
    前記マイクロストリップスタブに直流の制御電圧を加えて通過移相量を変化させるように構成したアクティブフェイズドアレイアンテナにおいて、
    前記複数のアンテナパッチは、行方向及び列方向に等間隔になるようにマトリクス状に配置し、
    前記給電線路は、行方向及び列方向において、全て2分岐で構成するとともに、入力端子から全ての分岐端までの分岐数が同じであり
    行の各アンテナパッチから給電端子までの間に入る前記移相器の数が、隣接する行の各アンテナパッチから給電端子までの間に入る前記移相器の数より、順次1つだけ多くなるように、
    かつ、各列の各アンテナパッチから給電端子までの間に入る前記移相器の数が、隣接する列の各アンテナパッチから給電端子までの間に入る前記移相器の数より、順次1つだけ多くなるように、前記移相器を配置してなり、
    なおかつ、前記移相器が全て同一特性のものである、
    ことを特徴とするアクティブフェイズドアレイアンテナ。
  2. 請求項1記載のアクティブフェイズドアレイアンテナにおいて、
    少なくとも、強誘電体及び強磁性体を基材とする開放端スタブと、
    常誘電体を基材とするマイクロストリップハイブリッドカプラと、を有する移相器を備えた、
    ことを特徴とするアクティブフェイズドアレイアンテナ。
  3. 請求項2に記載のアクティブフェイズドアレイアンテナにおいて、
    前記開放端スタブを、
    接地導体、強誘電体、ストリップ導体、強磁性体の順に積層して構成した、
    ことを特徴とするアクティブフェイズドアレイアンテナ。
  4. 請求項2に記載のアクティブフェイズドアレイアンテナにおいて、
    前記開放端スタブを、接地導体、強誘電体、強磁性体、ストリップ導体を積層して構成し、
    前記接地導体と前記ストリップ導体の間に、前記強誘電体と前記強磁性体を、前記接地導体面に平行する面方向に積層して構成してなる、
    ことを特徴とするアクティブフェイズドアレイアンテナ。
  5. 請求項1ないし請求項4に記載のアクティブフェイズドアレイアンテナにおいて、
    前記接地導体を絞り加工した、
    ことを特徴とするアクティブフェイズドアレイアンテナ。
  6. 請求項5記載のアクティブフェイズドアレイアンテナにおいて、
    全ての前記給電線路が同一の断面形状を有する線状導体により構成したストリップ導体を備えた、
    ことを特徴とするアクティブフェイズドアレイアンテナ。
JP35337899A 1998-12-14 1999-12-13 アクティブフェイズドアレイアンテナ Expired - Fee Related JP3552971B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35337899A JP3552971B2 (ja) 1998-12-14 1999-12-13 アクティブフェイズドアレイアンテナ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-355121 1998-12-14
JP35512198 1998-12-14
JP35337899A JP3552971B2 (ja) 1998-12-14 1999-12-13 アクティブフェイズドアレイアンテナ

Publications (2)

Publication Number Publication Date
JP2000236207A JP2000236207A (ja) 2000-08-29
JP3552971B2 true JP3552971B2 (ja) 2004-08-11

Family

ID=26579831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35337899A Expired - Fee Related JP3552971B2 (ja) 1998-12-14 1999-12-13 アクティブフェイズドアレイアンテナ

Country Status (1)

Country Link
JP (1) JP3552971B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786960B1 (ko) 2016-08-17 2017-10-25 주식회사 에이티앤에스 페이즈 쉬프터

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084781A1 (en) * 2001-04-11 2002-10-24 Kyocera Wireless Corporation Tunable multiplexer
JP2004023228A (ja) 2002-06-13 2004-01-22 Matsushita Electric Ind Co Ltd アンテナ制御装置、及びフェイズドアレイアンテナ
EP1790996A1 (en) * 2004-09-15 2007-05-30 Matsushita Electric Industrial Co., Ltd. Monitor
JP3944606B2 (ja) * 2005-01-31 2007-07-11 オプテックス株式会社 フェーズドアレーアンテナ装置
US20090278744A1 (en) * 2005-10-11 2009-11-12 Panasonic Corporation Phased array antenna
JP2007295044A (ja) * 2006-04-20 2007-11-08 Matsushita Electric Ind Co Ltd フェーズドアレイアンテナ
JP4632999B2 (ja) * 2006-04-28 2011-02-16 パナソニック株式会社 フェーズドアレイアンテナ
US10326205B2 (en) 2016-09-01 2019-06-18 Wafer Llc Multi-layered software defined antenna and method of manufacture
US10320070B2 (en) 2016-09-01 2019-06-11 Wafer Llc Variable dielectric constant antenna having split ground electrode
US10686257B2 (en) 2016-09-01 2020-06-16 Wafer Llc Method of manufacturing software controlled antenna
US10705391B2 (en) 2017-08-30 2020-07-07 Wafer Llc Multi-state control of liquid crystals
WO2019079774A1 (en) 2017-10-19 2019-04-25 Wafer, Llc DISPERSED STATE ALIGNMENT PHASE MODULATOR DEVICE / POLYMER SHEAR
JP7038436B2 (ja) 2017-10-30 2022-03-18 ウェハー エルエルシー 多層液晶位相変調器
US10511096B2 (en) 2018-05-01 2019-12-17 Wafer Llc Low cost dielectric for electrical transmission and antenna using same
CN112333915B (zh) * 2020-11-20 2024-07-02 成都天锐星通科技有限公司 一种供电一致的pcb板、芯片系统及相控阵天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786960B1 (ko) 2016-08-17 2017-10-25 주식회사 에이티앤에스 페이즈 쉬프터

Also Published As

Publication number Publication date
JP2000236207A (ja) 2000-08-29

Similar Documents

Publication Publication Date Title
KR100463763B1 (ko) 액티브 페이즈드 어레이 안테나 및 안테나 제어 장치
JP3552971B2 (ja) アクティブフェイズドアレイアンテナ
US5940030A (en) Steerable phased-array antenna having series feed network
US5617103A (en) Ferroelectric phase shifting antenna array
US6091373A (en) Feed device for a radiating element operating in dual polarization
US8063832B1 (en) Dual-feed series microstrip patch array
US6081235A (en) High resolution scanning reflectarray antenna
US6538603B1 (en) Phased array antennas incorporating voltage-tunable phase shifters
US7046198B2 (en) Antenna and apparatus provided with the antenna
US4054874A (en) Microstrip-dipole antenna elements and arrays thereof
US6686885B1 (en) Phased array antenna for space based radar
US7259642B2 (en) Antenna control unit and phased-array antenna
KR20000022918A (ko) 반사 모드 위상 시프터
JPH0711022U (ja) 平坦で薄いサーキュラー・アレイ・アンテナ
EP1738432A2 (en) Multi-beam antenna
US6091366A (en) Microstrip type antenna device
CN109742538B (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
US12062864B2 (en) High gain and fan beam antenna structures
US11196166B2 (en) Antenna device
KR102290591B1 (ko) 밀리미터파 대역 무선 통신을 위한 스위치 빔포밍 안테나 장치
JP3002252B2 (ja) 平面アンテナ
EP1417733B1 (en) Phased array antennas incorporating voltage-tunable phase shifters
US7224239B2 (en) Structural element having a coplanar line
CN113826282B (zh) 利用位移串联供电的双极化天线
JP2007533281A (ja) マイクロストリップ・アレイ・アンテナ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees