JP3552565B2 - Manufacturing method of die-cast piston excellent in high temperature fatigue strength - Google Patents

Manufacturing method of die-cast piston excellent in high temperature fatigue strength Download PDF

Info

Publication number
JP3552565B2
JP3552565B2 JP00401899A JP401899A JP3552565B2 JP 3552565 B2 JP3552565 B2 JP 3552565B2 JP 00401899 A JP00401899 A JP 00401899A JP 401899 A JP401899 A JP 401899A JP 3552565 B2 JP3552565 B2 JP 3552565B2
Authority
JP
Japan
Prior art keywords
weight
die
casting
temperature
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00401899A
Other languages
Japanese (ja)
Other versions
JP2000204428A (en
Inventor
宏 堀川
幸雄 倉増
和宏 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP00401899A priority Critical patent/JP3552565B2/en
Publication of JP2000204428A publication Critical patent/JP2000204428A/en
Application granted granted Critical
Publication of JP3552565B2 publication Critical patent/JP3552565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、車輌用等の内燃機関に使用される高温疲労強度に優れたダイカスト製ピストンの製造方法に関する。
【0002】
【従来の技術】
内燃機関に使用されるピストンとして、軽量化を図るためアルミニウム合金AC8A(Si:11.0〜13.0重量%,Cu:0.8〜1.3重量%,Mg:0.7〜1.3重量%,Ni:0.8〜1.5重量%)を重力鋳造法したアルミニウム製ピストンが使用されている。要求特性としても、耐熱性があり、高温疲労強度も250℃における設定値をクリアーすれば十分であった。
しかし、不完全燃焼なく燃費を向上させ、大出力が得られる直噴型エンジンでは、ピストンヘッドに燃料が直接噴射されるため、従来の内燃機関に比較して約100℃程度高い高温雰囲気にピストンが曝される。雰囲気の高温化は、ガソリンを使用したエンジンに止まらず、ジーゼルエンジンでも同様の傾向にある。それに伴って、従来の設定値を350℃でも満足する特性、具体的には350℃における100MPa以上の強度及び60MPa以上の高温疲労強度(×10 サイクル)が要求される。
【0003】
アルミニウム合金製ピストンとして、350℃での高温特性を満足する材料は種々開発されている。たとえば、超急冷凝固したナノクリスタル材料,セラミックファイバ等を複合化したFRM材料等が挙げられるが、何れも製法上から非常に高価な材料となる。そこで、生産性が良く、安価なダイカスト鋳造が望まれている。
しかし、ダイカスト鋳造によるとき、金型キャビティに残留するN ,水蒸気等のガス成分が注入されたアルミニウム合金溶湯に巻き込まれ、ブローホール,ポロシティ等の鋳造欠陥となって製品に移行する。鋳造欠陥は、フクレや高温疲労クラックの起点となり、ピストンの耐久性を低下させる。また、介在物が高温疲労クラックの原因になることもある。
【0004】
ガス成分は、キャビティに残留している空気の外に、金型内面に塗布された離型剤,プランジャに塗布された潤滑剤等に由来する水蒸気等もある。ガス成分は、アルミニウム合金の圧入に先立って金型キャビティを真空引きする真空ダイカスト法である程度除去できるものの、ピストン等の機能材料としてダイカスト製品を使用するには混入ガス由来の鋳造欠陥が依然として含まれている。
真空ダイカスト法の欠点を解消するものとして、酸素ダイカスト法が知られている(特開昭50−21143号公報参照)。酸素ダイカスト法では、キャビティ内のガスを酸素に置換するため、大気圧以上の圧力で酸素をキャビティに充満させている。キャビティに送り込まれた酸素は金型の合せ目や注入口から吹き出すため、金型の合せ目や注入口から外気がキャビティに侵入することが防止される。送り込まれた酸素は、溶湯と反応して微細なAl になって製品内に分散し、ダイカスト製品に悪影響を及ぼすことはない。
【0005】
【発明が解決しようとする課題】
大気圧以上で酸素をキャビティに送り込むことによっても、キャビティからガスを完全に除去することは困難である。ガスの残留は、キャビティが複雑形状をもつ場合に発生しがちである。すなわち、ピストン鋳造用の金型では、複雑形状のキャビティに設計されるため、酸素が供給されない隘路が生じ易い。隘路では空気,水蒸気等のガスが酸素と置換されずに残留し、残留ガスがダイカスト製品に取り込まれ、鋳造欠陥を発生させる原因になる。
また、ダイカスト製品にT5処理,T6処理等の熱処理を施して機械的特性を向上させようとすると、製品内部に取り込まれているガスに起因して熱処理後の製品に膨れが発生してしまう。
【0006】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、アルミニウム合金溶湯の圧入に先立って金型のキャビティをガス成分が完全に除去された雰囲気に調整し、保持処理された所定組成のアルミニウム合金溶湯を圧入することにより、吸蔵ガス量を大幅に低減し、疲労破壊の起点となるガス起因の鋳造欠陥や介在物を抑制し、優れた高温疲労強度をもつダイカスト製ピストンを得ることを目的とする。
【0007】
本発明のダイカスト製ピストンの製造方法は、その目的を達成するため、Si:11〜16重量%,Mg:0.5〜2.0重量%,Cu:3〜7重量%,Ni:3〜7重量%,Fe:0.2〜1.5重量%,Mn:0.2〜1.0重量%,P:0.003〜0.015重量%,Ca:0.002重量%以下を含み、残部が実質的にAlで、他の不純物が合計量0.2重量%以下に規制された組成を有し、脱ガス・脱滓処理を経て740〜780℃で保持処理したアルミニウム合金溶湯を、真空度100ミリバール以下に減圧した後で大気圧以上の圧力で酸素を吹き込むことにより雰囲気調整した金型のキャビティに650〜740℃の鋳造温度で圧入することを特徴とする。
【0008】
使用するアルミニウム合金溶湯は、更にTi:0.01〜0.3重量%,B:0.0001〜0.03重量%,Cr:0.01〜0.3重量%,Zr:0.01〜0.3重量%の少なくとも1種を含むことができる。
鋳造後、170〜230℃に1〜10時間加熱するT5処理又は470〜500℃に1〜10時間加熱する溶体化,水焼入れ,次いで170〜230℃に1〜10時間加熱するT6処理で強度を向上させることもできる。
【0009】
【作用】
金型のキャビティを真空度100ミリバール以下に減圧した後で、大気圧以上の圧力で酸素を吹き込むと、吹き込まれた酸素は、従来の酸素ダイカスト法に比較して格段に速い流速で流動し、複雑形状のキャビティであってもキャビティの隅々まで十分に行きわたる。そのため、金型内面に付着している離型剤や潤滑剤由来の水蒸気等も酸素流によって十分に洗い出される。このように金型内部が清浄化されたキャビティにアルミニウム合金溶湯が圧入されるため、キャビティを充満する合金溶湯に巻き込まれるガスが大幅に少なくなる。
得られたダイカスト製品は、ガス巻込みに起因するブローホール,ポロシティ等の鋳造欠陥がなく、介在物も抑制されているため、優れた高温疲労強度を示す。高温疲労強度は、Al−Ni系やAl−Ni−Cu系の晶出物によって更に改善される。更には、熱処理時に膨れ発生がないため、T6処理でMg Si,CuAl 等を析出させることによって必要強度を付与できる。たとえば、従来の重力鋳造法で金型に注湯して製造されるピストンの吸蔵ガス量が0.2〜1.0cc/100g−Alであるのに対し、普通ダイカスト法で製造した鋳物では吸蔵ガス量が5〜20cc/100g−Alと多く、ピストン用には適さない。これに対し、本発明法で得られるダイカスト製ピストンは、吸蔵ガス量が1.0cc/100g−Al以下と非常に低くなるため、ピストンとして使用可能である。
【0010】
以下、本発明で使用するアルミニウム合金の成分,含有量,製造条件等を説明する。
Si:11〜16重量%
初晶Siとして晶出し、耐熱性及び耐摩耗性を改善する合金成分である。また、共晶Siにより熱膨張率を低下させ、鋳造時の湯流れを向上する上でも有効な成分である。更に、時効処理によってMg Siとして析出し、機械強度を向上させる。このような効果は、11重量%以上のSi含有量で顕著になる。しかし、16重量%を超える過剰量のSiが含まれると、疲労破壊の原因となる粗大な初晶Siが発生しやすくなる。また、鋳造温度を730℃以上の高温にする必要が生じる。
Mg:0.5〜2.0重量%
時効処理でMg Siとして析出し、機械強度を向上させる合金成分であり、0.5重量%以上でMgの添加効果が顕著になる。しかし、Mg含有量が2.0重量%を超えると、鋳造時に粗大なMg Siが晶出し、疲労強度が劣化する。他方、0.5重量%未満のMg含有量では、時効処理によるMg Siの析出量が少なく、強度が不足する。
【0011】
Cu:3〜7重量%
マトリックスに固溶し、またNiと共存するときAl Ni(Cu) 等の微細な高融点晶出物となって、高温強度及び高温疲労強度を改善する合金成分である。また、時効処理でAl Cuとして晶出することにより、材料強度を向上させる作用も呈する。必要な高温強度を確保する上では、3重量%以上のCu含有量が必要である。しかし、同含有量が7重量%を超えると、伸びを低下させる粗大なAl Cuが晶出しやすくなる。
Ni:3〜7重量%
マトリックスに固溶したNiは、高温強度,高温疲労強度及び耐熱性の向上に有効である。固溶しないNi分は、ダイカストで得られる鋳造組織においては初晶Siと同様に、Al Ni,Al Ni ,Al Ni(Cu) 等の金属間化合物として晶出し、塊状の晶出物となる。高温で安定なこれらの金属間化合物によっても高温強度が向上し、耐摩耗性が改善される。必要な高温強度を確保するため、本発明ではNi含有量を3重量%以上に設定した。しかし、Ni含有量が7重量%を超えると、溶湯中に初晶Al Niが晶出しやすくなり、粗大に成長したAl Niによって高温疲労強度が低下する。また、鋳造温度を高温にする必要が生じる。
【0012】
Fe:0.2〜1.5重量%
ダイカスト時に金型への焼付きを防止すると共に、種々の金属間化合物として晶出することにより高温強度を向上させる合金成分であり、0.2重量%以上でFeの添加効果が顕著になる。しかし、1.5重量%を超える過剰量のFeが含まれると、Al−Fe系の粗大針状晶出物が生成し、高温疲労強度を劣化させる。
Mn:0.2〜1.0重量%
Al−Fe−Mn−Si系の金属間化合物として塊状に晶出し、高温強度を向上させる合金成分である。また、Mn添加によってAl−Fe系の粗大針状晶の生成も抑えられる。このような作用は、0.2重量%以上のMn含有量で顕著になる。しかし、Mn含有量が1.0重量%を超えると、Mn系晶出物が粗大になり、却って高温疲労強度を低下させる。
【0013】
P:0.003〜0.015重量%
初晶Siを微細化し、高温疲労強度を低下させる粗大初晶Siの生成を抑制する。また、耐摩耗性に有効な平均長さ2〜5μmに共晶Siのサイズを調整する作用を呈する。初晶Siの微細化作用は、0.003重量%以上のP含有量で顕著になる。しかし、0.015重量%を超える過剰量のPが含まれると、湯流れ性が悪化する。
Ca:0.002重量%以下
湯流れ性を悪化させ、共晶Siを過度に微細化する作用を呈する。本発明においては、共晶Siにも耐摩耗性を負担させていることから、共晶Siが過度に微細化されないように、Ca含有量を可能な限り少なくする。Ca含有量が0.002重量%を超えると、Caで共晶Siの微細化され始め、耐摩耗性が低下する傾向がみられる。
【0014】
Ti:0.01〜0.3重量%,B:0.0001〜0.03重量%,Cr:0.01〜0.3重量%,Zr:0.01〜0.3重量%の少なくとも1種以上
Ti,B,Cr及びZrは、必要に応じて添加される成分であり、何れも耐摩耗性及び高温強度の向上に有効である。
Ti,Bは、α−Al鋳造結晶粒を微細化して高温強度を改善し、0.01重量%以上のTi添加及び0.0001重量%以上のB添加で微細化効果が顕著になる。しかし、0.3重量%を超えるTi添加量や0.03重量%を超えるB添加量では、TiAl ,TiB 等の粗大金属間化合物が晶出し、高温疲労強度を低下させる。Cr:0.01重量%以上で耐摩耗性の向上効果、Zr:0.01重量%以上で鋳造結晶粒の微細化効果が顕著になるが、何れも0.3重量%を超える過剰量では粗大金属間化合物となって高温疲労強度を低下させる。
【0015】
他の不純物:合計量0.2重量%以下
本発明で使用するアルミニウム合金には、スクラップ地金等からNa,Sr,Sb,Zn等の不純物が混入する。高温雰囲気でシリンダと接触して摺動するピストンとして使用されることから、高温疲労強度に有害な粗大な酸化物や金属間化合物が製品中に極力混入しないように管理することが重要である。Znは、鋳造割れの発生原因になることもある。この点、不純物は少ないほど好ましく、本発明ではNa,Sr,Sb,Zn等の不純物を合計量で0.2重量%以下に規制した。
【0016】
溶湯の調製
所定組成に溶製されたアルミニウム合金溶湯を、N ,Arガス等を吹き込んで脱ガス処理し、脱滓フラックスを投入した後、740〜780℃に好ましくは30分以上保持する。保持温度が780を超えるとエネルギ的に不経済になり、逆に740℃に達しない保持温度では酸化物等の介在物の浮上分離が十分でなくなる。保持処理としては、生産性を向上させる上で鋳造炉とは別途の保持炉を使用することが好ましい。保持処理によって、すでに原料地金中に生じている金属間化合物が十分に溶湯に溶し込まれ、疲労クラックの原因が予め除去される。疲労破壊の起点となる炉滓も、保持処理によって溶湯から浮上分離される。
【0017】
保持処理されたアルミニウム合金溶湯は、降温して650〜740℃になったときに鋳造に供される。740℃を超える温度でダイカストすると、金型の寿命が短くなり、金型に対する溶湯の焼付きが生じ易くなる。逆に650℃未満の鋳造温度では、金型に圧入された溶湯の湯流れが悪化し、肉厚不良等の鋳造欠陥が発生しやすくなる。鋳造温度650〜740℃の比較的低温に溶湯を保持する時間は、短いほど好ましい。このときの保持時間が30分を超えると、Al Ni,TiAl ,TiB ,Mg−Sb等の金属間化合物が溶湯中に晶出し始める。金属間化合物が成長し、製品中で粗大金属間化合物となって分散すると、高温疲労破壊の原因となる。
【0018】
金型キャビティの雰囲気調整
保持処理したアルミニウム合金溶湯を金型に圧入するに先立って、キャビティを真空引きし、次いで大気圧以上の圧力で酸素を吹き込む。真空度100ミリバール以下にキャビティを減圧すると、キャビティ内にあるN 等のガス成分が減少する。真空度100ミリバールまで減圧するため、金型の合せ目等をシール材で充填し、外気の侵入を防止することが好ましい。
次いで、大気圧以上の圧力で酸素を吹き込むと、吹き込まれた酸素が高速流となってキャビティの隅々まで行きわたり、金型内面に塗布された離型剤やプランジャに塗布された潤滑剤等に由来する水蒸気が完全に酸素流で洗い出され、複雑形状のキャビティにあっても空気,水蒸気等がない雰囲気となる。このとき、キャビティが大気圧以上の圧力に維持されているため、外気の侵入が抑えられる。雰囲気調整されたキャビティにアルミニウム合金溶湯が圧入されるため、キャビティ内でアルミニウム合金溶湯が冷却凝固する際に空気,水蒸気等の有害ガス成分がアルミニウム合金に巻き込まれることがない。また、キャビティにある酸素は、アルミニウム合金溶湯と反応し、反応生成物Al が微細粒子としてマトリックスに分散するため、得られるダイカスト製品に悪影響を及ぼさない。
【0019】
このような雰囲気調整により、ダイカスト製品に含まれる吸蔵ガス量を1cc/100g−Al以下に下げることが可能になる。
得られたダイカスト製品は、吸蔵ガス量が大幅に低減しているので、従来のダイカスト製品を熱処理したとき製品表面に発生していた膨れが検出されず、T5処理,T6処理等の熱処理で機械的強度を向上させることができる。また、高温雰囲気でピストンとして使用している際にも、吸蔵ガスの膨張がなく、長期間にわたり円滑な運転が可能となる。更に、吸蔵ガス量が極端に少ないことは、高温疲労破壊の起点となるブローホール,ポロシティ等のないことを意味し、この点でも高温強度,高温疲労強度,耐摩耗性が要求されるピストンに適した材料といえる。
【0020】
鋳造組織
雰囲気調整されたキャビティに圧入されたアルミニウム合金は、吸蔵ガス量が極めて少ないダイカスト製ピストンが得られる。しかも、成分調整によって初晶Si,Al−Ni系,Al−Ni−Cu系の初晶晶出物の平均粒径を5〜10μmの範囲にしているので、高温雰囲気でシリンダと接触して運転されるピストンに要求される耐摩耗性及び高温強度が満足される。平均粒径が10μmを超える初晶晶出物は高温疲労破壊の亀裂発生原因となり、平均粒径5μm未満の初晶晶出物では耐摩耗性が不足する。
【0021】
介在物の平均個数:K 10 値で0.01個/cm 以下
ダイカストで得られた鋳造組織には、Al,Na,Ca,Sr,Mg等の酸化物による酸化皮膜,Al−Si−Fe系,Al−Ti系,Ti−B系,Mg−Sb系等の晶出金属間化合物,地金溶解時に溶解しきれない粗大金属間化合物,炉材,工具等から混入する異物等に由来する介在物が肉眼や10倍ルーペ等で観察される。ピストンとして要求される疲労強度をもたせるためには、粗大介在物を観察視野において0.01個/cm 以下に抑えることが重要である。
介在物の平均個数は、鋳造された合金材料の破断面を10倍ルーペで観察し、カウントされた個数を単位面積当りに換算したK10値で表示される。平均個数 の測定に際しては、左右の2破断面を一片とし、5〜6片を1試料として評価される。本発明では、更にその面積25cm で1試料のデータとし、7試料のデータの平均値として介在物の平均個数を算出した。このように求められたK10 値が0.01個/cm 以下であると、優れた伸び特性及び疲労強度が合金材料に付与される。他方、K10値が0.01個/cm を超える場合、必要とする疲労強度が得られない。
【0022】
0.01個/cm 以下のK10値は、次の方法で達成できる。合金配合時に混入してくるNa,Ca,Sr,Sb,Zn,Pb,Sn,Bi等を配合原料の選択によって極力抑えると共に、溶製時の酸化後に溶湯を740〜780℃で好ましくは30分以上高温保持することにより、混入してきたNa,Ca,Sr,Sb,Zn,Pb,Sn,Bi等を炉滓として溶湯から浮上分離する。浮上したスラグを溶湯から除去すると、Na,Ca,Sr,Sb,Zn,Pb,Sn,Bi等の極めて少ないアルミニウム合金溶湯となる。Mg,Al等も酸化皮膜となって溶湯表面に浮遊するが、これら酸化皮膜は、除滓時に溶湯から分離される。更に、鋳造時の低温保持時間を短くすることにより、Fe,Ti,Sb等がFeAl 系,TiAl 系,Mg−Sb系化合物として粗大晶出物に成長することを抑制する。炉材や工具に由来する介在物は、740〜780℃の保持処理で溶湯から分離される。
【0023】
熱処理
ダイカスト製ピストンは、T5処理又はT6処理でMg Si,CuAl 等を析出させることにより、更に強度が向上する。T5処理では、鋳物を170〜230℃に1〜10時間加熱する。T6処理では、470〜500℃×1〜10時間の溶体化処理後に水焼入れし、170〜230℃×1〜10時間で時効処理する。焼入れに際しては、常温〜80℃の水が使用される。この熱処理条件を外れると、十分な処理効果が得られず、或いは熱処理コストが高くなる。T6処理は、溶体化を伴うことから処理コストが高くなるが、より高い機械強度が得られる。
熱処理される鋳物は、金型キャビティの雰囲気調整によって吸蔵ガス量が極めて低く抑えられているため、熱処理時の加熱でガス成分が膨張して膨れを発生させることがない。この点は、従来のダイカスト製品と大きく相違するところである。また、要求される設計値を満足する限り、強度は若干低下するものの、時効処理温度を高くして時効析出による寸法の歪みを抑え、機械加工量も少なくする寸法安定化処理も採用できる。この場合の時効条件は、230〜350℃×1〜5時間に設定される。この時効条件は、本発明ピストンの最高使用温度が350℃であることを考慮すると、T5処理,T6処理の時効条件としても使用可能である。
【0024】
【実施例】
回転ロータからN ガスを30分噴出させ、成分調整したアルミニウム合金溶湯を脱ガス処理した。次いで、脱滓フラックスを用いて脱滓処理し、750℃に45分間保持することにより溶湯から介在物を十分に浮上分離させ、溶湯表面に浮遊している滓を除去した。調製されたアルミニウム合金溶湯は、Si:12.6重量%,Cu:4.2重量%,Mg:1.2重量%,Ni:4.5重量%,Fe:0.51重量%,Mn:0.35重量%,P:0.007重量%,Ca:0.001重量%,Ti:0.02重量%,B:0.0001重量%,Cr:0.08重量%,Zr:0.05重量%,Na<0.001重量%,Sr<0.001重量%,Sb<0.001重量%,Zn:0.03重量%,残部が不純物を除きAlの組成をもっていた。
【0025】
アルミニウム合金溶湯が660℃に降温したとき、ダイカスト金型に鋳込み、図1に示す形状をもち外径84mm,高さ72mmのピストンを製造した。なお、鋳造に先立って200℃に加熱した金型の内面に離型剤を塗布し、キャビティを吸引量700ミリバール/秒で真空引きして真空度75ミリバールに減圧し、次いで1200ミリバールの圧力で酸素を吹き込んでオーバーフローさせることにより雰囲気調整した。また、アルミニウム合金溶湯をキャビティに圧入するプランジャにも潤滑剤を塗布した。
雰囲気調整されたキャビティに鋳込まれたアルミニウム合金が冷却凝固した後、製品であるピストンを金型から鋳物を取り出した。得られた製品から試験片を切り出し、成分分析すると共に、ミクロ組織を観察し、吸蔵ガス量及び介在物の個数を測定した。また、鋳造後の製品に220℃×6時間加熱のT5処理を施した後、機械的性質を調査した。吸蔵ガス量は、ランズレー法で測定した。
【0026】
介在物の個数測定では、鋳造されたピストンから切り出された高さ0.5cm,長さ5cmの長尺厚板にノッチを入れて破断し、肉眼及び10倍ルーペで1試料につき0.5cm×5cmの10破断面(2面)、すなわち合計で25cm の面積を観察して1試料のデータとし、7試料のデータの平均値として介在物の個数をカウントし、カウント数を1cm に換算することによりK10値を算出した。介在物は、大半が酸化物系であり、0.1〜3mm程度の介在物が黒みがかった色調を呈していた。
調査結果を表1に示す。なお、比較のため、重力鋳造法で鋳造する以外は同じ条件下で製造したピストン(比較例1),780℃で溶解したアルミニウム合金溶湯を脱ガス・脱滓処理した後で保持処理することなく、660℃に下がったときキャビティが雰囲気調整された金型に鋳込んで製造したピストン(比較例2)についても同様に調査した。
【0027】
比較例1は、同じ条件下で調製したアルミニウム合金溶湯から作られたものであるため介在物の個数はほぼ同じであったが、冷却速度が遅い重力鋳造法で製造されたことから、初晶Siが平均粒径で16μm,Al−Ni系,Al−Ni−Cu系晶出物が平均粒径で35μmと大きな鋳造組織をもっていた。粗大な晶出物のため、高温の機械的性質が劣っていた。ただし、吸蔵ガス量は、ダイカスト法で製造した本発明例及び比較例2よりも若干少なかった。
比較例2では、介在物の浮上分離させる保持処理を施さなかったため、得られたダイカスト製品に多数の介在物が分散した。また、吸蔵ガス量は低いものの、本発明例との比較で高温の機械的性質が劣っていた。
これに対し、本発明例では、介在物が少なく適正な大きさの晶出物が分散した組織をもっていた。吸蔵ガス量は、ダイカスト法の1種であるにも拘わらず、重力鋳造で製造した比較例1とほぼ同じ低い値を示した。このようなことから、重力鋳造法よりも格段に生産性が高いダイカスト法により、350℃での引張強さが100MPa以上,高温疲労強度(×10 サイクル)が60MPa以上となり、高温雰囲気で稼動する直噴型エンジンのピストンとして十分使用できることが判った。
【0028】

Figure 0003552565
【0029】
【発明の効果】
以上に説明したように、本発明のダイカスト製ピストンは、ダイカスト法で製造されたものであるにも拘わらず、吸蔵ガス量が極めて低く抑えられているため、疲労破壊の起点となるブローホール,ポロシティ等の鋳造欠陥がなく、また膨れの発生なく熱処理で強度を向上させることもできる。このようにして、生産性に優れたダイカスト法で製造できることから、高温雰囲気で稼動される直噴型エンジンを始めとする各種内燃機関に使用され、高温強度,高温疲労強度及び耐摩耗性に優れたダイカスト製ピストンが安価に提供される。
【図面の簡単な説明】
【図1】実施例で製造したピストン[0001]
[Industrial applications]
The present invention relates to a method for producing a die-cast piston having excellent high-temperature fatigue strength used for an internal combustion engine for a vehicle or the like.
[0002]
[Prior art]
As a piston used in an internal combustion engine, aluminum alloy AC8A (Si: 11.0 to 13.0% by weight, Cu: 0.8 to 1.3% by weight, Mg: 0.7 to 1%) is used to reduce the weight. (3% by weight, Ni: 0.8 to 1.5% by weight) is used. The required characteristics were heat resistance, and it was sufficient for the high temperature fatigue strength to clear the set value at 250 ° C.
However, in a direct-injection engine that improves fuel efficiency without incomplete combustion and obtains a large output, fuel is directly injected into the piston head. Is exposed. The high temperature of the atmosphere is not limited to engines using gasoline, and the same tendency is observed in diesel engines. Accordingly, characteristics satisfying the conventional set value even at 350 ° C., specifically, a strength of 100 MPa or more at 350 ° C. and a high temperature fatigue strength of 60 MPa or more (× 10 7 cycles) are required.
[0003]
Various materials satisfying the high temperature characteristics at 350 ° C. have been developed as aluminum alloy pistons. For example, an ultra-rapid solidified nanocrystal material, an FRM material in which a ceramic fiber or the like is compounded, etc., are all very expensive materials in terms of the production method. Therefore, an inexpensive die casting with good productivity is desired.
However, in the case of die casting, gas components such as N 2 and water vapor remaining in the mold cavity are entangled in the injected aluminum alloy molten metal, resulting in casting defects such as blowholes and porosity and transfer to products. Casting defects serve as starting points for blisters and high-temperature fatigue cracks, and reduce the durability of the piston. Also, inclusions may cause high temperature fatigue cracks.
[0004]
The gas component includes, in addition to the air remaining in the cavity, a release agent applied to the inner surface of the mold, water vapor derived from a lubricant applied to the plunger, and the like. Although gas components can be removed to some extent by vacuum die casting, which evacuates the mold cavity prior to press-fitting the aluminum alloy, the use of die cast products as functional materials such as pistons still involves casting defects due to mixed gases. ing.
As a solution to the disadvantages of the vacuum die casting method, an oxygen die casting method is known (see Japanese Patent Application Laid-Open No. 50-21143). In the oxygen die casting method, oxygen is filled in the cavity at a pressure higher than the atmospheric pressure in order to replace the gas in the cavity with oxygen. Since the oxygen fed into the cavity is blown out from the joint or the injection port of the mold, outside air is prevented from entering the cavity from the joint or the injection port of the mold. The fed oxygen reacts with the molten metal to form fine Al 2 O 3 and is dispersed in the product, and does not adversely affect the die cast product.
[0005]
[Problems to be solved by the invention]
It is also difficult to completely remove gas from the cavity by sending oxygen into the cavity at or above atmospheric pressure. Gas residue tends to occur when the cavity has a complicated shape. That is, since the mold for piston casting is designed in a cavity having a complicated shape, a bottleneck in which oxygen is not supplied is likely to occur. In the bottleneck, gases such as air and water vapor remain without being replaced by oxygen, and the residual gas is taken into the die-cast product, causing a casting defect.
Further, if the mechanical properties are improved by performing a heat treatment such as T5 treatment or T6 treatment on the die-cast product, the product after the heat treatment swells due to gas taken into the product.
[0006]
[Means for Solving the Problems]
The present invention has been devised in order to solve such a problem. Prior to press-in of the molten aluminum alloy, the cavity of the mold was adjusted to an atmosphere in which gas components were completely removed, and a holding process was performed. By press-fitting a molten aluminum alloy with a predetermined composition, the amount of occluded gas is greatly reduced, casting defects and inclusions caused by gas, which are the starting points of fatigue fracture, are suppressed, and a die-cast piston with excellent high-temperature fatigue strength is manufactured. The purpose is to get.
[0007]
In order to achieve the object, the method for manufacturing a die-cast piston according to the present invention includes: Si: 11 to 16% by weight, Mg: 0.5 to 2.0% by weight, Cu: 3 to 7% by weight, Ni: 3 to 7% by weight, Fe: 0.2 to 1.5% by weight, Mn: 0.2 to 1.0% by weight, P: 0.003 to 0.015% by weight, Ca: 0.002% by weight or less An aluminum alloy melt having a composition in which the balance is substantially Al and other impurities are controlled to a total amount of 0.2% by weight or less, and which is kept at 740 to 780 ° C. through degassing and deslagging. After the pressure is reduced to a degree of vacuum of 100 mbar or less, oxygen is blown into the cavity of a mold whose atmosphere has been adjusted by blowing oxygen at a pressure higher than the atmospheric pressure at a casting temperature of 650 to 740 ° C.
[0008]
The aluminum alloy melt to be used further contains: 0.01 to 0.3% by weight of Ti, 0.0001 to 0.03% by weight of B, 0.01 to 0.3% by weight of Cr, and 0.01 to 0.3% by weight of Zr. It may contain 0.3% by weight of at least one.
After casting, strength is achieved by T5 treatment of heating to 170-230 ° C for 1-10 hours or solution heat treatment of 470-500 ° C for 1-10 hours, water quenching, and then T6 treatment of heating to 170-230 ° C for 1-10 hours. Can also be improved.
[0009]
[Action]
After depressurizing the cavity of the mold to a degree of vacuum of 100 mbar or less, when oxygen is blown at a pressure higher than the atmospheric pressure, the blown oxygen flows at a much higher flow rate than the conventional oxygen die casting method, Even a cavity with a complicated shape can fully reach every corner of the cavity. Therefore, water vapor and the like derived from the release agent and the lubricant adhered to the inner surface of the mold are sufficiently washed out by the oxygen flow. Since the molten aluminum alloy is press-fitted into the cavity whose inside of the mold has been cleaned in this way, the amount of gas involved in the molten alloy filling the cavity is significantly reduced.
The obtained die-cast product does not have casting defects such as blowholes and porosity caused by gas entrapment, and contains no inclusions, and thus exhibits excellent high-temperature fatigue strength. The high temperature fatigue strength is further improved by Al-Ni-based or Al-Ni-Cu-based crystallization. Furthermore, since no swelling occurs during the heat treatment, the required strength can be imparted by precipitating Mg 2 Si, CuAl 2 or the like by T6 treatment. For example, the amount of occluded gas of a piston manufactured by pouring into a mold by a conventional gravity casting method is 0.2 to 1.0 cc / 100 g-Al, whereas the amount of occluded gas in a casting manufactured by a normal die casting method. The gas amount is as large as 5 to 20 cc / 100 g-Al, which is not suitable for pistons. On the other hand, the die-cast piston obtained by the method of the present invention can be used as a piston because the amount of occluded gas is extremely low at 1.0 cc / 100 g-Al or less.
[0010]
Hereinafter, the components, contents, production conditions, and the like of the aluminum alloy used in the present invention will be described.
Si: 11 to 16% by weight
It is an alloy component that is crystallized as primary crystal Si and improves heat resistance and wear resistance. It is also an effective component for reducing the coefficient of thermal expansion by eutectic Si and improving the flow of molten metal during casting. Further, it precipitates as Mg 2 Si by aging treatment, and improves mechanical strength. Such effects become remarkable when the Si content is 11% by weight or more. However, when an excessive amount of Si exceeding 16% by weight is contained, coarse primary crystal Si which causes fatigue fracture is likely to be generated. Further, it is necessary to set the casting temperature to a high temperature of 730 ° C. or higher.
Mg: 0.5 to 2.0% by weight
It is an alloy component that precipitates as Mg 2 Si by aging treatment and improves mechanical strength. At 0.5% by weight or more, the effect of adding Mg becomes remarkable. However, when the Mg content exceeds 2.0% by weight, coarse Mg 2 Si is crystallized during casting, and the fatigue strength is deteriorated. On the other hand, when the Mg content is less than 0.5% by weight, the amount of Mg 2 Si precipitated by the aging treatment is small, and the strength is insufficient.
[0011]
Cu: 3 to 7% by weight
It is an alloy component that forms a high-melting point crystal, such as Al 3 Ni (Cu) 2, when it forms a solid solution with the matrix and coexists with Ni to improve high-temperature strength and high-temperature fatigue strength. Further, by crystallization as Al 2 Cu by the aging treatment, an effect of improving the material strength is also exhibited. In order to secure the required high-temperature strength, a Cu content of 3% by weight or more is required. However, when the content exceeds 7% by weight, coarse Al 2 Cu that reduces elongation tends to crystallize.
Ni: 3 to 7% by weight
Ni dissolved in the matrix is effective for improving high-temperature strength, high-temperature fatigue strength and heat resistance. Ni, which does not form a solid solution, is crystallized as an intermetallic compound such as Al 3 Ni, Al 3 Ni 2 , Al 3 Ni (Cu) 2 in the cast structure obtained by die casting, similarly to the primary crystal Si. Be a gift. These intermetallic compounds that are stable at high temperatures also improve high temperature strength and improve wear resistance. In the present invention, the Ni content is set to 3% by weight or more in order to secure necessary high-temperature strength. However, when the Ni content exceeds 7% by weight, primary Al 3 Ni is easily crystallized in the molten metal, and the high-temperature fatigue strength is reduced by Al 3 Ni grown coarsely. Further, it is necessary to increase the casting temperature.
[0012]
Fe: 0.2 to 1.5% by weight
An alloy component that prevents seizure on a metal mold during die casting and improves high-temperature strength by crystallizing as various intermetallic compounds. The effect of adding Fe becomes remarkable at 0.2% by weight or more. However, when an excessive amount of Fe exceeding 1.5% by weight is contained, coarse needle-like crystals of an Al—Fe system are generated, and the high-temperature fatigue strength is deteriorated.
Mn: 0.2-1.0% by weight
Al-Fe-Mn-Si is an alloy component that is crystallized in bulk as an intermetallic compound and improves high-temperature strength. The addition of Mn also suppresses the formation of Al-Fe-based coarse acicular crystals. Such an effect becomes remarkable at a Mn content of 0.2% by weight or more. However, when the Mn content exceeds 1.0% by weight, the Mn-based crystallization becomes coarse, and on the contrary, the high-temperature fatigue strength is reduced.
[0013]
P: 0.003 to 0.015% by weight
It suppresses generation of coarse primary crystal Si which makes primary crystal Si finer and lowers high temperature fatigue strength. Further, it has an effect of adjusting the size of eutectic Si to an average length of 2 to 5 μm effective for abrasion resistance. The refining effect of primary crystal Si becomes remarkable at a P content of 0.003% by weight or more. However, when an excessive amount of P exceeding 0.015% by weight is contained, the flowability of the molten metal deteriorates.
Ca: 0.002% by weight or less It has the effect of deteriorating the flow of hot water and excessively miniaturizing eutectic Si. In the present invention, since the eutectic Si also bears the wear resistance, the Ca content is reduced as much as possible so that the eutectic Si is not excessively miniaturized. When the Ca content exceeds 0.002% by weight, the eutectic Si starts to be refined by Ca, and the abrasion resistance tends to decrease.
[0014]
Ti: 0.01 to 0.3% by weight, B: 0.0001 to 0.03% by weight, Cr: 0.01 to 0.3% by weight, Zr: 0.01 to 0.3% by weight. At least one of Ti, B, Cr and Zr is a component added as necessary, and all of them are effective in improving wear resistance and high-temperature strength.
Ti and B improve the high-temperature strength by refining the α-Al cast crystal grains, and the refining effect becomes remarkable when 0.01% by weight or more of Ti and 0.0001% by weight or more of B are added. However, if the added amount of Ti exceeds 0.3% by weight or the added amount of B exceeds 0.03% by weight, coarse intermetallic compounds such as TiAl 3 and TiB 2 are crystallized, and the high-temperature fatigue strength is reduced. When Cr: 0.01% by weight or more, the effect of improving wear resistance becomes significant, and when Zr: 0.01% by weight or more, the effect of refining cast crystal grains becomes remarkable. It becomes a coarse intermetallic compound and reduces high temperature fatigue strength.
[0015]
Other impurities: a total amount of 0.2% by weight or less The aluminum alloy used in the present invention contains impurities such as Na, Sr, Sb, and Zn from scrap metal. Since it is used as a piston that slides in contact with a cylinder in a high-temperature atmosphere, it is important to manage so that coarse oxides and intermetallic compounds harmful to high-temperature fatigue strength are not mixed into products as much as possible. Zn may cause casting cracks. In this regard, the impurity is preferably as small as possible. In the present invention, the total amount of impurities such as Na, Sr, Sb, and Zn is regulated to 0.2% by weight or less.
[0016]
Preparation of molten metal A molten aluminum alloy melted to a predetermined composition is degassed by blowing N 2 , Ar gas or the like, and after introducing a desalting flux, preferably at 740 to 780 ° C., preferably for 30 minutes. Hold above. If the holding temperature exceeds 780, energy becomes uneconomical. Conversely, if the holding temperature does not reach 740 ° C., floating separation of inclusions such as oxides becomes insufficient. As the holding treatment, it is preferable to use a holding furnace separate from the casting furnace in order to improve productivity. By the holding process, the intermetallic compound already generated in the raw metal is sufficiently dissolved in the molten metal, and the cause of the fatigue crack is removed in advance. Furnace slag, which is the starting point of fatigue fracture, is also floated and separated from the molten metal by the holding process.
[0017]
The retained aluminum alloy melt is subjected to casting when the temperature is lowered to 650 to 740 ° C. Die-casting at a temperature exceeding 740 ° C. shortens the life of the mold and tends to cause seizure of the molten metal on the mold. Conversely, at a casting temperature of less than 650 ° C., the flow of the molten metal pressed into the mold is deteriorated, and casting defects such as poor wall thickness are likely to occur. The shorter the time for holding the molten metal at a relatively low casting temperature of 650 to 740 ° C., the better. The holding time at this time is more than 30 minutes, Al 3 Ni, TiAl 3, TiB 2, intermetallic compounds such as Mg-Sb starts to crystallize the molten metal. When the intermetallic compound grows and becomes a coarse intermetallic compound in the product and is dispersed, it causes high temperature fatigue failure.
[0018]
Atmosphere adjustment of mold cavity Prior to press-fitting the retained aluminum alloy melt into the mold, the cavity is evacuated and then oxygen is blown at a pressure equal to or higher than the atmospheric pressure. When the pressure in the cavity is reduced to a degree of vacuum of 100 mbar or less, gas components such as N 2 in the cavity are reduced. In order to reduce the pressure to a degree of vacuum of 100 mbar, it is preferable to fill the joints of the mold with a sealing material to prevent intrusion of outside air.
Next, when oxygen is blown in at a pressure higher than the atmospheric pressure, the blown oxygen flows at high speed to reach every corner of the cavity, a release agent applied to the inner surface of the mold, a lubricant applied to the plunger, and the like. The water vapor derived from the water is completely washed out by the oxygen flow, and an atmosphere without air, water vapor, etc. is obtained even in a cavity having a complicated shape. At this time, since the cavity is maintained at a pressure higher than the atmospheric pressure, intrusion of outside air is suppressed. Since the molten aluminum alloy is press-fitted into the cavity whose atmosphere has been adjusted, no harmful gas components such as air and water vapor are trapped in the aluminum alloy when the molten aluminum alloy cools and solidifies in the cavity. Further, oxygen in the cavity reacts with the molten aluminum alloy, and the reaction product Al 2 O 3 is dispersed as fine particles in the matrix, so that the resulting die-cast product does not have an adverse effect.
[0019]
Such atmosphere adjustment makes it possible to reduce the amount of occluded gas contained in the die-cast product to 1 cc / 100 g-Al or less.
Since the amount of occluded gas in the obtained die-cast product has been greatly reduced, no blistering that has occurred on the product surface when the conventional die-cast product is heat-treated is detected. Target strength can be improved. Further, even when the piston is used as a piston in a high-temperature atmosphere, the stored gas does not expand and smooth operation can be performed for a long period of time. Further, an extremely small amount of occluded gas means that there is no blowhole, porosity, etc., which is a starting point of high-temperature fatigue fracture. In this respect, pistons that require high-temperature strength, high-temperature fatigue strength and wear resistance are also required. It is a suitable material.
[0020]
Casting structure A die-cast piston having an extremely small occluded gas amount can be obtained from the aluminum alloy press-fitted into the cavity whose atmosphere has been adjusted. In addition, since the average grain size of the primary crystals of primary crystal Si, Al—Ni, and Al—Ni—Cu system is adjusted to 5 to 10 μm by adjusting the components, it is operated in contact with the cylinder in a high temperature atmosphere. The wear resistance and high-temperature strength required for the piston to be used are satisfied. A primary crystal having an average particle size of more than 10 μm causes cracking due to high temperature fatigue fracture, and a primary crystal having an average particle size of less than 5 μm has insufficient wear resistance.
[0021]
The average number of inclusions: 0.01 or at K 10 value / cm 2 Hereinafter, the cast structure obtained by die-casting includes oxide films of oxides such as Al, Na, Ca, Sr, and Mg, Al-Si-Fe-based, Al-Ti-based, Ti-B-based, and Mg-based. -Crystallized intermetallic compounds such as Sb-based compounds, coarse intermetallic compounds that cannot be completely dissolved when the metal is melted, and inclusions derived from foreign materials mixed in from furnace materials, tools, etc. are observed with the naked eye or a 10-fold loupe. . In order to provide the fatigue strength required for a piston, it is important to suppress coarse inclusions to 0.01 / cm 2 or less in an observation visual field.
The average number of inclusions, the fracture surfaces of the cast alloy material was observed with a 10-fold loupe, it displayed the counted number in the K 10 value in terms of per unit area. In measuring the average number, the two fractured surfaces on the left and right are regarded as one piece, and 5 to 6 pieces are evaluated as one sample. In the present invention, the average number of inclusions was calculated as the average value of the data of one sample with the area of 25 cm 2 as the data of one sample. With such the K 10 value obtained is 0.01 pieces / cm 2 or less, excellent elongation characteristics and fatigue strength are imparted to the alloy material. On the other hand, if the K 10 value of more than 0.01 pieces / cm 2, not obtained fatigue strength in need.
[0022]
0.01 pieces / cm 2 or less of K 10 value can be achieved in the following manner. Na, Ca, Sr, Sb, Zn, Pb, Sn, Bi, etc. mixed during alloy compounding are suppressed as much as possible by selecting the compounding raw materials, and the molten metal is heated at 740 to 780 ° C. for preferably 30 minutes after oxidation during melting. By holding at a high temperature as described above, the mixed Na, Ca, Sr, Sb, Zn, Pb, Sn, Bi, etc. are floated and separated from the molten metal as furnace slag. When the floating slag is removed from the molten metal, it becomes an aluminum alloy molten metal having a very small amount of Na, Ca, Sr, Sb, Zn, Pb, Sn, Bi and the like. Mg, Al and the like also float as oxide films on the surface of the molten metal, but these oxide films are separated from the molten metal at the time of removing the slag. Further, by shortening the low-temperature holding time during casting, the growth of Fe, Ti, Sb, and the like as coarse compounds in the form of FeAl 3 , TiAl 3 , and Mg—Sb compounds is suppressed. Inclusions derived from furnace materials and tools are separated from the molten metal by a holding process at 740 to 780 ° C.
[0023]
Heat treatment The strength of the die-cast piston is further improved by precipitating Mg 2 Si, CuAl 2 or the like by T5 treatment or T6 treatment. In the T5 treatment, the casting is heated to 170 to 230C for 1 to 10 hours. In the T6 treatment, water quenching is performed after a solution treatment at 470 to 500 ° C for 1 to 10 hours, and an aging treatment is performed at 170 to 230 ° C for 1 to 10 hours. At the time of quenching, water at normal temperature to 80 ° C is used. If the heat treatment conditions are not satisfied, a sufficient treatment effect cannot be obtained or the heat treatment cost increases. The T6 treatment involves a solution treatment, which increases the processing cost, but provides higher mechanical strength.
Since the amount of occluded gas in the casting to be heat-treated is kept very low by adjusting the atmosphere of the mold cavity, the gas component does not expand due to the heating during the heat treatment and does not cause swelling. This is a point that is significantly different from conventional die-cast products. As long as the required design value is satisfied, a dimensional stabilization process that raises the aging temperature, suppresses dimensional distortion due to aging precipitation, and reduces the amount of machining, although the strength is slightly reduced, can be adopted. The aging condition in this case is set to 230 to 350 ° C. × 1 to 5 hours. Considering that the maximum working temperature of the piston of the present invention is 350 ° C., this aging condition can be used as the aging condition for the T5 treatment and the T6 treatment.
[0024]
【Example】
The N 2 gas from the rotating rotor is ejected 30 minutes, and degassing the molten aluminum alloy was component adjustment. Next, the material was subjected to deslagging treatment using a desalting flux, and held at 750 ° C. for 45 minutes to sufficiently float and separate inclusions from the molten metal, thereby removing the slag floating on the surface of the molten metal. The prepared aluminum alloy melt was composed of 12.6% by weight of Si, 4.2% by weight of Cu, 1.2% by weight of Mg, 4.5% by weight of Ni, 0.51% by weight of Fe, and Mn: 0.35% by weight, P: 0.007% by weight, Ca: 0.001% by weight, Ti: 0.02% by weight, B: 0.0001% by weight, Cr: 0.08% by weight, Zr: 0. 05% by weight, Na <0.001% by weight, Sr <0.001% by weight, Sb <0.001% by weight, Zn: 0.03% by weight, and the balance was Al except for impurities.
[0025]
When the temperature of the aluminum alloy melt dropped to 660 ° C., it was cast into a die casting mold to produce a piston having the shape shown in FIG. 1 and having an outer diameter of 84 mm and a height of 72 mm. Prior to casting, a mold release agent was applied to the inner surface of the mold heated to 200 ° C., and the cavity was evacuated at a suction rate of 700 mbar / sec to reduce the degree of vacuum to 75 mbar, and then at a pressure of 1200 mbar. The atmosphere was adjusted by blowing oxygen to overflow. Also, a lubricant was applied to a plunger for pressing the molten aluminum alloy into the cavity.
After cooling and solidification of the aluminum alloy cast in the cavity with the adjusted atmosphere, the product piston was removed from the mold by casting. A test piece was cut out from the obtained product, the components were analyzed, the microstructure was observed, and the amount of occluded gas and the number of inclusions were measured. Further, after the cast product was subjected to a T5 treatment of heating at 220 ° C. for 6 hours, mechanical properties were investigated. The amount of occluded gas was measured by the Lansley method.
[0026]
In the measurement of the number of inclusions, a notch was cut into a long thick plate cut from a cast piston at a height of 0.5 cm and a length of 5 cm, and the plate was broken with the naked eye and a 10-fold loupe. Observing 10 fracture surfaces (2 surfaces) of 5 cm, that is, an area of 25 cm 2 in total, as data of one sample, counting the number of inclusions as an average value of data of 7 samples, and converting the count number to 1 cm 2 It was calculated K 10 value by. Most of the inclusions were oxide-based, and the inclusions of about 0.1 to 3 mm had a blackish color tone.
Table 1 shows the survey results. For comparison, a piston manufactured under the same conditions except for casting by gravity casting (Comparative Example 1), without degassing / deslagging a molten aluminum alloy melted at 780 ° C. without holding treatment Similarly, a piston (Comparative Example 2) manufactured by casting a mold having a cavity whose atmosphere was adjusted when the temperature was lowered to 660 ° C. was also examined.
[0027]
Comparative Example 1 was made from an aluminum alloy melt prepared under the same conditions, and thus the number of inclusions was almost the same. However, since the cooling rate was slow, the primary crystal was produced. Si had an average grain size of 16 μm, and the Al-Ni-based and Al-Ni-Cu-based crystallization had a large cast structure with an average grain size of 35 μm. The mechanical properties at high temperature were inferior due to coarse crystals. However, the amount of occluded gas was slightly smaller than that of the inventive example and the comparative example 2 manufactured by the die casting method.
In Comparative Example 2, a large number of inclusions were dispersed in the obtained die-cast product because the holding treatment for floating and separating the inclusions was not performed. Although the amount of occluded gas was low, the mechanical properties at high temperatures were inferior to those of the examples of the present invention.
In contrast, the examples of the present invention had a structure in which the inclusions were small and crystallized substances of an appropriate size were dispersed. The amount of occluded gas showed almost the same low value as Comparative Example 1 manufactured by gravity casting, despite being one type of die casting method. Therefore, the tensile strength at 350 ° C. becomes 100 MPa or more and the high temperature fatigue strength (× 10 7 cycles) becomes 60 MPa or more by the die casting method, which is much more productive than the gravity casting method, and it is operated in a high temperature atmosphere. It can be used as a piston for a direct injection type engine.
[0028]
Figure 0003552565
[0029]
【The invention's effect】
As described above, the die-casting piston of the present invention has a very low occluded gas amount despite being manufactured by the die-casting method. There is no casting defect such as porosity, and the strength can be improved by heat treatment without swelling. In this way, because it can be manufactured by the die-casting method with excellent productivity, it is used for various internal combustion engines such as a direct injection type engine operated in a high-temperature atmosphere, and has excellent high-temperature strength, high-temperature fatigue strength, and wear resistance. Die cast pistons are provided at low cost.
[Brief description of the drawings]
FIG. 1 shows a piston manufactured in Example.

Claims (4)

Si:11〜16重量%,Mg:0.5〜2.0重量%,Cu:3〜7重量%,Ni:3〜7重量%,Fe:0.2〜1.5重量%,Mn:0.2〜1.0重量%,P:0.003〜0.015重量%,Ca:0.002重量%以下を含み、残部が実質的にAlで、他の不純物が合計量0.2重量%以下に規制された組成を有し、脱ガス・脱滓処理を経て740〜780℃で保持処理したアルミニウム合金溶湯を、真空度100ミリバール以下に減圧した後で大気圧以上の圧力で酸素を吹き込むことにより雰囲気調整した金型のキャビティに650〜740℃の鋳造温度で圧入することを特徴とする高温疲労強度に優れたダイカスト製ピストンの製造方法。 Si: 11 to 16% by weight, Mg: 0.5 to 2.0% by weight, Cu: 3 to 7% by weight, Ni: 3 to 7% by weight, Fe: 0.2 to 1.5% by weight, Mn: 0.2 to 1.0% by weight, P: 0.003 to 0.015% by weight, Ca: 0.002% by weight or less, the balance is substantially Al, and the total amount of other impurities is 0.2%. % Of the molten aluminum alloy having a composition regulated to not more than 10% by weight and subjected to degassing / deslagging treatment and held at 740 to 780 ° C. A method for producing a die-cast piston excellent in high-temperature fatigue strength, wherein the die is press-fitted at a casting temperature of 650 to 740 ° C. into a mold cavity whose atmosphere has been adjusted by blowing air. アルミニウム合金溶湯が、更にTi:0.01〜0.3重量%,B:0.0001〜0.03重量%,Cr:0.01〜0.3重量%,Zr:0.01〜0.3重量%の少なくとも1種を含むものである請求項1記載の高温疲労強度に優れたダイカスト製ピストンの製造方法。The molten aluminum alloy further contains Ti: 0.01 to 0.3% by weight, B: 0.0001 to 0.03% by weight, Cr: 0.01 to 0.3% by weight, Zr: 0.01 to 0. The method for producing a die-cast piston excellent in high-temperature fatigue strength according to claim 1, which contains at least one of 3% by weight. 鋳造後、170〜230℃に1〜10時間加熱する時効処理を施す請求項1又は2記載の高温疲労強度に優れたダイカスト製ピストンの製造方法。 The method for producing a die-cast piston excellent in high-temperature fatigue strength according to claim 1 or 2, wherein after casting, aging treatment is performed at 170 to 230 ° C for 1 to 10 hours . 鋳造後、470〜500℃に1〜10時間加熱する溶体化処理,水焼入れ,次いで170〜230℃に1〜10時間加熱する時効処理を施す請求項1又は2記載の高温疲労強度に優れたダイカスト製ピストンの製造方法。 3. An excellent high-temperature fatigue strength according to claim 1 or 2, wherein after casting, a solution heat treatment at 470 to 500 ° C for 1 to 10 hours, a water quenching, and an aging treatment at 170 to 230 ° C for 1 to 10 hours are applied . A method for manufacturing a die-cast piston.
JP00401899A 1999-01-11 1999-01-11 Manufacturing method of die-cast piston excellent in high temperature fatigue strength Expired - Fee Related JP3552565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00401899A JP3552565B2 (en) 1999-01-11 1999-01-11 Manufacturing method of die-cast piston excellent in high temperature fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00401899A JP3552565B2 (en) 1999-01-11 1999-01-11 Manufacturing method of die-cast piston excellent in high temperature fatigue strength

Publications (2)

Publication Number Publication Date
JP2000204428A JP2000204428A (en) 2000-07-25
JP3552565B2 true JP3552565B2 (en) 2004-08-11

Family

ID=11573245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00401899A Expired - Fee Related JP3552565B2 (en) 1999-01-11 1999-01-11 Manufacturing method of die-cast piston excellent in high temperature fatigue strength

Country Status (1)

Country Link
JP (1) JP3552565B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341438B2 (en) 2004-03-23 2009-10-07 日本軽金属株式会社 Aluminum alloy excellent in wear resistance and sliding member using the same alloy
JP4665413B2 (en) * 2004-03-23 2011-04-06 日本軽金属株式会社 Cast aluminum alloy with high rigidity and low coefficient of linear expansion
JP5344527B2 (en) * 2007-03-30 2013-11-20 株式会社豊田中央研究所 Aluminum alloy for casting, aluminum alloy casting and method for producing the same
US20120100385A1 (en) * 2009-07-03 2012-04-26 Showa Denko K.K. Process for production of roughly shaped material for engine piston
JP5271215B2 (en) * 2009-09-15 2013-08-21 株式会社日立製作所 Method for reforming aluminum die-cast products
DE102011083972A1 (en) * 2011-10-04 2013-04-04 Federal-Mogul Nürnberg GmbH Method for producing an engine component and engine component
DE102012220765A1 (en) * 2012-11-14 2014-05-15 Federal-Mogul Nürnberg GmbH Method for producing an engine component, engine component and use of an aluminum alloy
KR101565025B1 (en) 2013-11-27 2015-11-02 현대자동차주식회사 Aluminum alloy for low density, high heat resistance
KR101646326B1 (en) 2014-04-15 2016-08-08 현대자동차주식회사 High elasticity hyper eutectic aluminum alloy and method for producing the same
CN104674081B (en) * 2015-03-09 2017-03-15 江苏晨日环保科技有限公司 Aluminum alloy for engine blocks material and preparation method thereof
US10920301B2 (en) * 2015-04-15 2021-02-16 Nippon Light Metal Company, Ltd. Aluminum alloy casting having superior high-temperature strength and thermal conductivity, method for manufacturing same, and aluminum alloy casting piston for internal combustion engine
US11421304B2 (en) 2017-10-26 2022-08-23 Tesla, Inc. Casting aluminum alloys for high-performance applications
KR20210038624A (en) * 2018-08-02 2021-04-07 테슬라, 인크. Aluminum alloy for die casting
KR102092734B1 (en) * 2018-10-26 2020-03-24 임예찬 Aluminium Piston and its manufacturing method
DE102020205193A1 (en) 2019-05-16 2020-11-19 Mahle International Gmbh Process for producing an engine component, engine component and the use of an aluminum alloy

Also Published As

Publication number Publication date
JP2000204428A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JP3552565B2 (en) Manufacturing method of die-cast piston excellent in high temperature fatigue strength
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
JP5146767B2 (en) Magnesium alloy for casting and method for producing magnesium alloy casting
CN111349821A (en) Low-silicon low-iron high-fluidity high-thermal-conductivity die-casting aluminum alloy and preparation method thereof
JPS6210237A (en) Aluminum alloy for hot forging
JP3737440B2 (en) Heat-resistant magnesium alloy casting and manufacturing method thereof
CN108165839A (en) A kind of preparation method of automobile engine aluminum alloy die casting
JP3552577B2 (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same
CN110438358B (en) Composite modifier for hypereutectic aluminum-silicon-copper alloy and preparation method thereof
JP4145242B2 (en) Aluminum alloy for casting, casting made of aluminum alloy and method for producing casting made of aluminum alloy
JP2000192180A (en) Scroll made of die casting excellent in fatigue strength and its production
JP4390762B2 (en) Differential gear case and manufacturing method thereof
JP3845035B2 (en) Method for manufacturing piston for internal combustion engine and piston for internal combustion engine
JPH08134578A (en) Aluminum alloy for die casting, excellent in high temperature strength and toughness, and its production
FR2808536A1 (en) Production of a semi-molten billet of aluminum alloy for use as a transport unit by introducing a work distortion by cold forging
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2004256873A (en) Aluminum alloy for casting having excellent high temperature strength
JP2005240129A (en) Heat resistant magnesium alloy casting
JP2000355722A (en) Al-Si DIECAST PRODUCT EXCELLENT IN AIRTIGHTNESS AND WEAR RESISTANCE, AND ITS MANUFACTURE
JP2001316752A (en) Magnesium alloy for diecasting
FR2850672A1 (en) HEAT RESISTANT MOLDING MAGNESIUM ALLOY AND HEAT RESISTANT MAGNESIUM ALLOY MOLDED MOLD
JP2005187895A (en) Heat resistant magnesium alloy casting
JPH08260090A (en) Mg-si-ca hyper-eutectic alloy excellent in die castability
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JP7147647B2 (en) Aluminum alloy and aluminum alloy die-cast material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees