JP3549814B2 - 通信システムにおける受信方法及び受信機 - Google Patents

通信システムにおける受信方法及び受信機 Download PDF

Info

Publication number
JP3549814B2
JP3549814B2 JP2000219880A JP2000219880A JP3549814B2 JP 3549814 B2 JP3549814 B2 JP 3549814B2 JP 2000219880 A JP2000219880 A JP 2000219880A JP 2000219880 A JP2000219880 A JP 2000219880A JP 3549814 B2 JP3549814 B2 JP 3549814B2
Authority
JP
Japan
Prior art keywords
signal
frequency
converted
interference
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000219880A
Other languages
English (en)
Other versions
JP2002043962A (ja
Inventor
哲 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2000219880A priority Critical patent/JP3549814B2/ja
Priority to US09/886,255 priority patent/US6987815B2/en
Priority to EP01305434A priority patent/EP1168597A1/en
Publication of JP2002043962A publication Critical patent/JP2002043962A/ja
Application granted granted Critical
Publication of JP3549814B2 publication Critical patent/JP3549814B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、通信システムにおける受信方法及び受信機に係り、特に、搬送波帯に信号を変換して伝送を行う通信システムにおいて、所望信号の成分の抽出をベースバンド帯で行う、通信システムにおける受信方法及び受信機に関する。
【0002】
【従来の技術】
多様なシステム、多様な周波数の信号を単一の受信機を用いて実現できれば、単一の端末でより多様な情報を得ることが可能になる。ところが、無線通信システムの場合、数百MHzから数GHzまでの周波数を持つ搬送波に情報信号を変換して通信を行う。これは、無線が単一の自由空間という媒体を用いて通信を行うため、各システムがオーバーラップしないよう、各システム毎に異なった周波数が割り当てられ、割り当てられた周波数の搬送波に情報を乗せて通信を行うからである。従って、多くのシステムが混在する無線周波数では、周波数軸上でかなり周密にシステムが配置されている。そこで、所望の周波数の信号を取り出すには、受信機にチャネルの帯域に適合した選択性の高いフィルタが必要になる。
図19は、従来の無線通信システムにおける受信機構成を示す。NTT方式のアナログ自動車電話方式で用いられているダブルスーパヘテロダイン構成の受信機の抜粋を示す。同図に示す構成は、アンテナ1、初段の搬送波周波数帯であるRF(Radio Frequency )帯の帯域通過フィルタ2、第1のIF(IntermediateFrequency)へ変換するための局部発振器3及び乗算器4、乗算器4の出力に含まれる高調波波成分除去のための帯域通過フィルタ5、第2のIF(Intermediate Frequency) へ変換するための局部発振器6及び乗算器7、乗算器6の出力に含まれる高調波波成分除去及び自チャンネル選択用の峡帯域な帯域通過フィルタ8、端末の移動に伴う受信電力変動を吸収する増幅器9、制御信号として送られるディジタル信号と音声信号を分離するための帯域通過フィルタ10、復調器11、及び出力端子12から構成される。
【0003】
同図に示す構成では、フィルタ8が高い選択性を有し、自チャネルの信号のみを抽出する役割を果している。ところが、同図の構成において多システムの信号を復調するには、システムに応じてフィルタ2、5、特に、帯域通過フィルタ8の帯域等を変更する必要がある。しかし、一般に、RF・IF帯のアナログフィルタの周波数特性を変換させることは困難である。多様な周波数帯域を有するシステムに対応するには、RF帯あるいは、IF帯のバンドパスフィルタによって所望信号帯域信号の選択を行うことはできない。
【0004】
一般に、システム毎に異なる信号帯域は異なる。従って、多様なシステムの信号を受信するには、想定する通信システムにおいて最大の信号帯域を持つRF・IFフィルタを備える必要がある。この場合には、所望信号選択は、周波数特性の可変や高い選択性の実現が容易なベースバンドフィルタ、実現性を考慮するとディジタル信号処理により実現されたフィルタで行うことで、多様なシステムの信号受信を可能とする。
【0005】
ところが、実際に周波数変換を行うには、周波数シンセサイザが必要となるが、非常に狭帯域のシステムまで想定する場合には、広い周波数範囲に渡って高精度かつ高安定な周波数シンセサイザが必要になる。また、周波数シンセサイザでは自由に周波数を選択するには、回路構成が複雑になり、移動通信のようにデバイスに低消費電力化が要求されるシステムには適用が困難になるという問題も発生する。従って、適当なIF周波数帯にまで変換し、一旦アナログ・ディジタル変換器により、ディジタル信号に変換する。その後、高機能なディジタル信号処理技術によって正確な搬送波周波数の推定、及び、復調操作を行うことで通信できるシステムの領域を拡大できる。加えて、この構成であれば、IF周波数でA/D変換し、高精度なディジタル信号処理によりベースバンドに変換するため、ベースバンドまでアナログ信号処理で周波数変換した場合に発生する受信機のDC(Direct Current)成分による特性劣化を回避できるという利点もある。
【0006】
ところが、
(α)アナログ広帯域な待機通過フィルタとディジタル信号処理によるチャネルフィルタ;
(β)IF周波数帯におけるアナログ・ディジタル変換;
という構成の場合には、IF周波数とアナログ帯域通過フィルタの周波数帯域の関係でイメージ成分が信号成分に混入し、信号のSNR(Signal to Noise Ratio )を劣化させるという問題がある。
【0007】
図20は、イメージ成分と帯域通過フィルタの周波数帯域の関係を示す。原理的にディジタル無線通信システムでは、実周波数成分だけ搬送波帯f+Δfへ変換して通信を行う。このとき、受信機において、この信号を局部発振周波数fで周波数変換を行い、IF周波数Δfの信号を生成する場合には、原理的に搬送波周波数帯f−Δfの信号も同時にΔfのIF周波数へ干渉波となって落ちてきて、信号のSNRを劣化させる原因になる。例えば、所望信号帯域及び干渉信号共に、位相変調を用いている場合には、以下のように干渉信号がIF周波数帯に現れる。但し、ωは、各周波数であり、ω=2πfの関係がある。
【0008】
【数1】
Figure 0003549814
ここで、tは時間変数、LPF1 は、高周波成分を除去する関数、ak とbk は所望信号と干渉信号の情報成分、AとBは、所望信号と干渉信号のレベルを表している。従来は、この問題を回避するために、図20(a)のように、搬送波帯f−Δfの信号を十分抑圧するための帯域通過フィルタを周波数変換器の前に配置している。ところが、多様な周波数帯のシステムを受信するため、帯域通過フィルタを広帯域にした場合には、図20(b)のように搬送波帯f−Δfの信号がIF周波数帯に変換されてしまう。
【0009】
これを克服するため、RF帯の信号を一旦、直交準同期検波した後、イメージ成分を除去する方法が提案されている。その構成を図21に示す。同図に示す構成は、アンテナ13、初段の帯域通過フィルタ14、分岐回路15、19、乗算器16、17、π/2移相器18、低域通過フィルタ21、22、27、28、アナログ・ディジタル変換器23、24、IF周波数の解析的正弦波exp(−j2 πΔωkT) を乗算する複素周波数変換器25、出力端子29、30から構成される。但し、Tは、サンプル周期を示している。同図では、搬送波周波数帯の実周波数信号を直交準同期検波する。即ち、式(1)に加えて、以下に示すような直交成分を生成する。
【0010】
【数2】
Figure 0003549814
式(1)と(2)の信号に対して、上記の複素乗算を施し、±2Δωに現れる高周波成分を除去すると、以下に示すように所望信号だけを得ることができる。
【0011】
【数3】
Figure 0003549814
LPF2は、±2Δωに現れる高周波成分を除去する関数、式(3.1) と(3.2) が完全な形で実現できれば、理論的にはイメージ成分をキャンセルできる。ところが、実際にはアナログ準同期検波器の直交性誤差・ゲインアンバランスが存在し、その影響で式(3.1) と(3.2) に搬送波帯f−Δfの信号が混入し、SNRを劣化させる。現状のアナログ技術では、式(1)と式(2)のアナログ直交準同期検波器の直交性やゲインバランスを高精度で実現することは極めて困難である。実際、これを高精度に行うためには、従来は、人手により調整を行っているが、調整では、精々20〜30dBが限界で、通常の無線通信システムの要求条件に(例えば、PDCシステムでは、80〜90dB)には遠く及ばない。また、多様なシステムの信号を受信するには、多様な周波数帯の信号に対して直交性を保つ必要があるが、アナログπ/2移相器の特性を広帯域に渡って維持することは、原理的に不可能である。従って、図21の構成では、アナログ準同期検波器の直交性誤差やゲインアンバランスより十分なイメージ除去性能が得られないという問題がある。
【0012】
別の手法として、Δωを帯域通過フィルタの帯域より遙かに大きくとることで、このイメージ成分の混入を防ぐ方法がある。この場合、この高いIF信号を直接アナログ・ディジタル変換器に入力してディジタル信号に変換しなければならない。この場合、バンドパスサンプリングの技術を用いることでアナログ・ディジタル変換器の動作速度と、IF周波数とは無関係に低く設定できる。少なくともナイキストレートの4倍以上あれば理論的には、信号の復調が可能になる。
【0013】
従って、このバンドパスフィルタリングと呼ばれる技術を利用することによって、イメージ周波数からの干渉を受けずに、前述の(α)と(β)の条件を満足できる。但し、この場合、アナログ・ディジタル変換器のサンプリングクロックのジッダによって著しく特性が劣化し、その劣化量は、IF周波数に比例するため、高いIF周波数のシステムには適用が困難になり、結局適用範囲が殆どなく実用に耐えない。
【0014】
従って、同時にいくつかの信号、あるいは、幾つかのシステムの信号を受信しようとして、搬送波周波数帯のBPFの帯域を広げた場合、上記の準同期検波器の直交性の乱れに起因する干渉が非常に深刻な問題となる。従って、幾つかのシステムを受信する際には、各システムを受信可能なRF・IF回路を用意しておき、これを適宜切り替えることで実現する方法が採られている。しかし、この構成では、RF・IFデバイスの数が増大し、回路規模が大きくなり、結果的に装置規模が増大し、相コストを増大させる。システムの低コスト化に加えて装置の小型化が要求される移動通信システムでは、装置規模の増大や装置コストの上昇は大きな問題となる。加えて、ハードウェアを構成してしまうと、新しいシステムへの対応や、不要なシステムの排除等の処理が不可能になる。従って、新しいシステムを導入するには、また新規で開発を開始する必要があり、システム開発コストを著しく増加させるという問題がある。
【0015】
【発明が解決しようとする課題】
上記のように、従来は、多様なシステムの信号を受信するため、搬送波周波数帯に広帯域な帯域通過フィルタを備え、その後にアナログ直交準同期検波を用いて周波数変換し、ディジタル複素周波数変換とフィルタリングによりイメージ成分を除去する構成において、アナログ直交準同期検波器の不完全性によりイメージ成分が十分抑圧できないという問題がある。例え、多少のSNRを劣化を容認して、ある周波数において人が調整を行ったとしても、周波数が変わった場合には、調整し直す必要があり、ダイナミックな受信システムの変更が不可能であるという問題がある。
【0016】
さらに、同時に多くのシステムの信号を受信する際には、そのための受信機をシステム毎に備えなければならず、ハードウェア規模が増大するという問題がある。
【0017】
本発明は、上記の点に鑑みなされたもので、通信システムの受信機における復調時に発生する干渉信号成分を除去することが可能な通信システムにおける受信方法及び受信機を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明(請求項1)は、搬送波周波数帯に変換された信号を受信し、受信された受信信号をアナログ準同期検波し、該アナログ準同期検波の出力である同相及び直交信号をA/D変換し、該A/D変換された同相及び直交信号を第1の解析的信号により、複素ベースバンド信号に変換し、該第1の解析的信号により複素ベースバンド信号に変換された同相及び直交信号を第1の低域通過フィルタに入力するとにより所望信号を得る通信システムにおける受信方法において、
A/D変換された同相及び直交信号を分岐し、第2の解析的信号により複素ベースバンド信号に変換し、
第2の解析的信号により複素ベースバンド信号に変換された同相及び直交信号をそれぞれ第2の低域通過フィルタに入力し、
第1の低域通過フィルタ及び第2の低域通過フィルタを通過した同相及び直交信号を適応干渉キャンセラに入力し、
各々の信号に混入した干渉成分を除去する。
【0019】
本発明(請求項2)は、適応干渉キャンセラにおいて、所望周波数成分と干渉信号成分が混在した入力信号から、直交化係数を用いて該所望周波数成分と該干渉信号成分とを分離する。
【0020】
本発明(請求項3)は、適応干渉キャンセラにおいて、アナログ準同期検波の直交性の変化に応じて直交化係数を推定する。
【0021】
図1は、本発明の原理構成図である。
【0022】
本発明(請求項4)は、搬送波周波数帯に変換された信号を受信する受信手段401と、該受信手段401により受信された受信信号から直交信号を生成するアナログ準同期検波手段402と、該アナログ準同期検波手段402の出力である同相及び直交信号をA/D変換するA/D変換するA/D変換手段403と、該A/D変換手段402によりA/D変換された同相及び直交信号を第1の解析的信号により複素ベースバンド信号に変換する第1の複素周波数変換手段404と、該第1の複素周波数変換手段404により複素ベースバンド信号に変換された同相及び直交信号の高周波成分を除去する第1の低域通過フィルタ406とを具備する通信システムにおける受信機であって、
A/D変換手段403によりA/D変換された同相及び直交信号を第2の解析的信号により複素ベースバンド信号に変換する第2の複素周波数変換手段405と、
第2の複素周波数変換手段405により複素ベースバンド信号に変換された同相及び直交信号の高周波成分を除去する第2の低域通過フィルタ407と、
第1の低域通過フィルタ406及び第2の低域通過フィルタ407を通過した同相及び直交信号を入力として各々の信号に混入した干渉成分を除去する適応干渉キャンセラ408とを備える。
【0023】
本発明(請求項5)は、適応干渉キャンセラ408において、所望周波数成分と干渉信号成分とが混在した入力信号から、直交化係数を用いて該所望周波数成分と該干渉信号成分とを分離する干渉キャンセル手段を有する。
【0024】
本発明(請求項6)は、適応干渉キャンセラ408において、アナログ準同期検波の直交性の変化に応じて直交化係数を推定する適応制御手段を有する。
【0025】
本発明は、所望周波数成分と干渉信号成分が混在した入力信号から、適応干渉キャンセラで推定される推定係数を用いて、所望周波数成分と干渉信号成分に分離することにより、各々の信号に混入した干渉成分を除去し、高品質な信号を得ることが可能となる。
【0026】
【発明の実施の形態】
図2は、本発明の受信機の概略構成図である。同図に示す受信機は、受信部401、アナログ準同期検波器402、アナログ・ディジタル変換器403、ディジタル複素周波数変換器A404、B405、低域通過フィルタA406,B407、適応干渉キャンセラ408から構成される。
【0027】
搬送波周波数帯の無線信号を一旦、搬送波周波数帯のアナログ準同期検波器402によって、アナログ・ディジタル変換可能なIF帯域Δfに周波数変換する。この準同期検波出力の直交・同相信号をアナログ・ディジタル変換器403によりディジタル信号に変換し、この出力信号を分岐して、片方をディジタル複素周波数変換器A404で−Δfの周波数を持つ解析的正弦波を掛け合わせ、低域通過フィルタA406を通過させ、もう片方は、ディジタル複素周波数変換器B405でΔfの周波数を持つ解析的正弦波を掛け合わせ、低域通過フィルタB407を通過させ、この低域通過フィルタA,Bの出力を適応干渉キャンセラ408に入力し、各々の信号に混入した干渉成分を除去し、高品質な信号を得る。
【0028】
この適応干渉キャンセラ408は、干渉キャンセル部409と、干渉キャンセル部409で用いる係数の適応制御部410より構成される。低域通過フィルタA406,B407の出力信号を入力とする干渉キャンセル部409では、所望周波数成分と干渉信号成分が混在していた入力信号から両信号成分を分離し、これから必要となる信号を出力する。即ち、干渉キャンセル部409では、分離された所望信号出力信号と干渉波信号を直交化させることで、各々を分離する。この直交化によって分離された信号セットを干渉の影響のない信号として出力する。
【0029】
適応制御部410では、搬送波周波数の変化と共に変化する直交性の乱れに応じて、上記の干渉キャンセルにおける直交化を実現するための係数を推定する。この制御アルゴリズムは、適応等化器や、アダプティブアレーに適用できるアルゴリズムならどのようなものも適用可能である。例えば、比較的演算量の少ないLMS(Least Mean Square)アルゴリズムや、RLS(Recursive Least Squares) アルゴリズム、あるいは、ブラインドアルゴリズムであるCMA(Constant Modulus Algorithm)等があげられる。
【0030】
搬送波周波数帯の帯域通過フィルタの帯域を広げた場合には、前述の式(1)に示したように、f+Δf帯の信号を受信するため、発振周波数fの局部発振器で周波数変換した場合、周波数f−Δf帯の信号が信号帯域に折り重なる。この影響を避けるため搬送波周波数帯の信号を直交準同期検波し、IF周波数帯に変換する。直交準同期検波により、解析的な形に変換された信号は原理的に負の周波数成分と正の周波数成分を区別することができる。即ち、f−Δf帯の周波数成分とf+Δf帯の周波数成分を区別できる。従って、−Δfの周波数を持つ解析的正弦波を直交準同期検波出力に複素乗算することにより、f+Δf帯の信号成分だけがベースバンドに変換されるため、低域通過フィルタAを介して出力することで、f+Δf帯の信号だけが得られる。
【0031】
一方、−Δfの周波数を持つ解析的正弦波を直交準同期検波出力に複素乗算することにより、f−Δf帯の信号成分だけがベースバンドに変換され、低域通過フィルタBを介して出力することで、f−Δf帯の信号だけ出力できる。実際には、アナログ準同期検波器の不完全性により、低域通過フィルタAからは所望周波数成分に加えて、イメージ周波数成分が出力される。同様に低域通過フィルタB407からはイメージ周波数成分に加えて、所望周波数成分が出力される。それを、低域通過フィルタA406と低域通過フィルタB407の後段に備えられた適応干渉キャンセラ408によって所望信号と干渉波信号の分離を行い、f+Δf帯とf−Δf帯の信号が得られる。
【0032】
上記の、低域通過フィルタA406の出力信号と低域通過フィルタB407の出力信号を入力とする適応干渉キャンセラ408では、所望信号成分と干渉成分が直交化されるよう処理を行うことで、相互に干渉を起こさない干渉波信号と所望信号を得る。あるいは、入力信号に含まれる2つの周波数帯域の成分を推定して、分離することで干渉波信号と所望信号を得る。この推定を適用制御部410で行う。
【0033】
具体的には、適応等化器やアダプティブアルゴリズムに適用される適応アルゴリズム(S.Haykin:”Adaptive filter Theory, 3 rded.,”,Prentice−Hall International Edition, 1996)。
【0034】
【実施例】
[第1の実施例]
図3は、本発明の第1の実施例の受信機の構成を示す。
【0035】
同図に示す受信機は、アンテナ31、アナログ乗算器33、34、分岐回路32、36、π/2移相器35、発振器37、低域通過フィルタ38、39、44〜47、アナログ・ディジタル変換器40、41、複素周波数変換器42、43、適応干渉キャンセラ48、出力端子49−1,49−2,50−1,50−2から構成される。
【0036】
次に上記の構成における動作を説明する。
【0037】
アンテナ31で受信された信号は、アナログ乗算器33、34、分岐回路32、36、π/2移相器35、発振器37で構成されるアナログ直交準同期検波器を経た後、低域通過フィルタ38、39により、高調波成分を除去された後に、アナログ・ディジタル変換器40、41によりディジタル信号に変換される。アナログ・ディジタル変換器出力は、複素周波数変換器42、43に入力される。
複素周波数変換器42では、負のIF周波数を持つ解析的正弦波を入力信号に対して施す。その出力は、低域通過フィルタ44、45を介して、適用キャンセラ48に入力される。
【0038】
一方、複素周波数変換器43において、正のIF周波数の解析的正弦波を乗積された信号も低域通過フィルタ46、47を介して適応干渉キャンセラ48に入力される。適応干渉キャンセラ48では、正の搬送波周波数成分と負の搬送波周波数成分の直交化を行い、お互いを分離する。そして、出力端子49−1,49−2から正の搬送波周波数成分を出力する。一方、必要に応じて負の搬送波周波数成分を出力端子50−1、50−22から出力する。
【0039】
図4は、本発明の第1の実施例の適応干渉キャンセラの第1の構成を示す。同図に示す適応干渉キャンセラは、f+Δf帯の信号とf−Δf帯の信号から所望信号だけを抽出する回路構成を示している。同図の信号入力端子51〜54は、図3における低域通過フィルタ44〜47からの出力が入力される。信号入力端子53はI−チャネル用であり、信号入力端子54は、Q−チャネル用である。また、キャンセラの係数を制御する適用制御器58、出力端子59、60を有する。
【0040】
この構成において、入力端子51〜54の入力信号を分岐して、各々I−チャネル用の干渉キャンセラ56とQ−チャネル用の干渉キャンセラ55に入力し、干渉成分を除去した後に出力端子59、60に各々出力される。
【0041】
適応制御部58では、LMSアルゴリズムやRLSアルゴリズム、ブラインド型のアルゴリズムであるCMA等を利用して、干渉キャンセラで必要となる係数を適用的に推定する。この推定係数を用いて干渉成分をキャンセルすることで、搬送波周波数帯が変化しても常に高い干渉補償を実現する。
【0042】
図4で適用したI−チャネルとQ−チャネルの干渉キャンセラの構成を図5に示す。
【0043】
同図に示す干渉キャンセラは、入力端子329〜332、適応制御部58で推定した係数を入力する端子333〜336、乗算器337〜340、加算器341、出力端子342を有する。
【0044】
干渉キャンセラが図5の構成をとる場合には、その処理は、以下のように数式表現できる。
【0045】
低域通過フィルタ44の出力をxk,i (+) 、低域通過フィルタ45の出力をxk,q (+) とし、低域通過フィルタ46の出力をxk,i (−) 、低域通過フィルタ47の出力をxk,q (−) とすると、図5の干渉キャンセラの出力信号
Yk =[yk,i ,yk,q ]
は、以下のように表せる。但し、添字kは時刻、添字Tはベクトルの転置を表している。
【0046】
【数4】
Figure 0003549814
式(4)においては、
Xk =[xk,i (+) ,xk,q (+) ,xk,i (−) ,xk,q (−)
は入力信号ベクトルであり、Wk は以下に示す係数行列を示している。
【0047】
【数5】
Figure 0003549814
式(5)において、wk,i,q (−) は、Q−チャネル信号を出力する干渉キャンセラにおいて、f−Δf帯の周波数成分を出力するLPFのI−チャネル側の信号に対する重み付け係数を示している。このとき、適応制御部58には、適応等化器やアダブティブアレーに適用できるさまざまなアルゴリズムが適用できる。例えば、LMSアルゴリズムを使った場合には、適応制御部58では、以下の処理を行う。但し、所望帯域の送信信号をDk =[dk,i ,dk,q ]とする。
【0048】
【数6】
Figure 0003549814
上記の式において、μは、ステップサイズパラメータと呼ばれる0以上1以下の適当な係数である。高速収束が可能なRLSアルゴリズムを適用した場合には、以下のようになる。
【0049】
【数7】
Figure 0003549814
上記の式(7.2)、(7.4)のλは、忘却係数と呼ばれる0以上1以下の適当な係数である。一方、ブラインド型のアルゴリズムであるCMAを適用した場合には、
【0050】
【数8】
Figure 0003549814
である。上記の式(8.1)のσは、所望信号振幅を示しており、|・|はベクトルのノルムを表している。
【0051】
また、pとqはCMAで用いられる乗数であり、通常は自然数を用いる。式(6.1)〜(6.2)のLMSアルゴリズムや式(7.1)〜(7.4)のRLSアルゴリズムでは所望信号ベクトルが必要になるため、トレーニング系列を利用するか、あるいは、以下に示すように出力信号ベクトルYk を判別して得る必要がある。例えば、QPSK変調の場合には、
【0052】
【数9】
Figure 0003549814
として求める。CMAのようなブラインドアルゴリズムの場合には、式(10)のような処理は不要である。
【0053】
図6は、本発明の第1の実施例の複素周波数変換器の構成を示す。同図に示す複素周波数変換器43は、ディジタル複素乗算器に加えて、NCO(Numerically Controlled Oscillator)とディジタルπ/2移相器によって構成されている。同図(a)は、負のIF周波数を持つ解析的搬送波を掛け合わせる複素周波数変化器の構成を示し、同図(b)は、正のIF周波数を持つ解析的搬送波を掛け合わせる複素周波数変化器の構成を示している。同図に示す複素周波数変換器は、入力端子64、65、76、77、乗算器66〜69、78〜81、加算器71、81、減算器70、82、ディジタルπ/2移相器72、83、NCO73,84,出力端子74、75、85、86から構成される。
【0054】
図7は、本発明の第1の実施例の適応干渉キャンセラの第2の構成を示す。同図に示す適応干渉キャンセラは、判別器316、317、323、326、減算器318、319、313、326、適応制御部320、出力端子324−1、324−2、327−1、327−2から構成される。
【0055】
同図に示す適応干渉キャンセラは、f+Δf帯の信号とf−Δf帯の信号の両方を出力する構成を示している。この分離をより確実に行うため、式(10)で定義される判別器を備えている。基本的には、図5に示した干渉キャンセラを4系統備え、入力信号を分岐して各々の干渉キャンセラに入力し、その出力を判別器316、317、323、326を介して出力する構成である。そこで、各判別器316、317、323、326の入出力の差を減算器318、319、313、326により求め、その出力信号と干渉キャンセラの入力信号から適応制御部320で、各干渉キャンセラで必要となる係数を推定する。
【0056】
図7の構成において、各干渉キャンセラ314、315、321、322に接続された判別器316、317、325、328の出力ベクトルを、
Dk =[dk,i (+) ,dk,q (+) ,dk,i (−) ,dk,q (−)
とし、各干渉キャンセラ出力信号
Yk =[yk,i (+) ,yk,q (+) ,yk,i (−) ,yi,q (−)
とすると、以下に示す各干渉キャンセラの制御係数は、上記の式(6.1)〜(7.4)のアルゴリズムを適用して得ることができる。
【0057】
【数10】
Figure 0003549814
上記の式(11)において、w(−) k,i,q(+)は、f+Δf帯の周波数成分におけるQ−チャネル信号を出力する干渉キャンセラにおいて、周波数f−Δf帯の信号におけるI−チャネル側信号を出力するLPFに対する重み付け係数を示している。従って、適応制御部320では、上述のように入力と出力ベクトルの次元を4とし、係数行列を4×4に拡張して、式(6.1)〜(8.2)等のアルゴリズムにより各干渉キャンセラ314、315、321、322の係数を演算する。
【0058】
図8は、本発明の第1の実施例の適応干渉キャンセラの第3の構成を示す。同図に示す適応干渉キャンセラは、入力端子122〜125、入力信号を一旦記憶しておくバッファメモリ345〜348、減算器126〜129、図5に示した干渉キャンセラ130〜132、134、二乗回路135〜138、f+Δfの搬送波周波数とf−Δfの搬送波周波数で送信された可能性のある仮判定値を全て出力し、仮判定値の中で最も尤度の高い仮判定値をもう一つの出力とする最尤信号推定器139、干渉キャンセラの係数を推定する適用制御部140、最も高い判定値を出力する端子141、142、133−1、133−2から構成される。
【0059】
上記の構成は、搬送波周波数f+Δfと搬送波周波数f−Δfのシステムにおいて、送信された可能性のあるすべての信号を発生させ、伝送路と受信機の特性を掛け合わせることで、入力信号のレプリカを生成する。生成したレプリカと受信信号との誤差電力を二乗回路135〜138で演算し、この誤差を最小とする判定値を最も尤度の高い信号として出力する。
【0060】
図9は、本発明の第1の実施例のMLE回路の構成を示し、図8の適応干渉キャンセラにおける最尤信号推定器の構成例を示している。図9に示すMLE回路は、搬送波周波数f+Δfと搬送波周波数f−Δfに同一伝送速度のチャネルが配置されており、同じQPSK変調が適用されている場合の例である。
【0061】
図9に示すMLE回路は、入力端子143〜146、4入力加算器147、スイッチ148、156−1、156−2、157−1、157−2、遅延素子149、減算器150、判別器151、リセット信号入力端子57、各々のシンボルレートの4倍と16倍のクロックを入力する端子152、153、バイナリカウンタ154、155、最も尤度の高い信号セットを出力する端子158−1、158−2、159−1、159−2、仮の判定値を出力する端子160〜163から構成される。
【0062】
図9に示すMLE回路では、適応干渉キャンセラに信号が入力されると、次の信号が入力されるまでに、搬送波周波数f+Δfと搬送波周波数f−Δfのチャネルで送信されうる全ての信号パターンをバイナリカウンタ154と155で発生させ、仮判定値として端子160〜163から出力する。
【0063】
図8の干渉キャンセラでは、各仮判定値に対応したレプリカを生成し、受信信号との誤差電力を検出する。この誤差電力が端子143〜146から入力される。スイッチ148、遅延素子149、減算器150、判別器151では、入力された電力が以前に入力された誤差電力と比較して、もしも小さければその値を保持しておく。但し、その値は信号が適応干渉キャンセラに入力される毎にリセットされ、最大値にセットされる。記憶している値より小さい値が入力される度に、その時出力している仮判定値をスイッチ148で選択し、記憶しておく。すべての仮判定値が出力された後には、結果的に最も小さい誤差電力を出力していた仮判定値がスイッチの出力に保持され、これを最も尤度の高い信号として出力する。
【0064】
図8に示した構成の適応干渉キャンセラにおいては、各干渉キャンセラからは以下の出力ベクトル
【0065】
【数11】
Figure 0003549814
が得られる。
【0066】
【数12】
Figure 0003549814
但し、
【0067】
【数13】
Figure 0003549814
は、最尤信号推定器139の仮判定値出力であり、係数Wk は、上記の式(11)と同様に以下のように定義される。
【0068】
【数14】
Figure 0003549814
(I) k,i,q(+)は、搬送波周波数f+Δfの信号におけるQ−チャネル信号の推定値を出力する干渉キャンセラにおいて、搬送波周波数f−Δfの送信信号におけるI−チャネルの仮判定値に対する重み付け係数を示している。適応制御部320では、式(12)の出力信号に対して、以下の誤差ベクトルΔk を求める演算を行う。
【0069】
【数15】
Figure 0003549814
このとき、式(14)の誤差ベクトルのノルムを最小化するよう適応制御部320で演算を行う。この適応制御アルゴリズムも適応等化器やアダプティブアレーで利用できるアルゴリズムであれば殆ど利用できる。そこで、LMSアルゴリズムを適用した場合には、式(14)に加えて以下の係数更新式を適応制御部320で演算することになる。
【0070】
【数16】
Figure 0003549814
また、LMSとともに有名なアルゴリズムであるRLSアルゴリズムを適用した場合には、式(14)に加えて、以下の更新式により適応制御部320は構成される。
【0071】
【数17】
Figure 0003549814
図10は、本発明の第1の実施例の適応干渉キャンセラの第4の構成を示す。同図の適応干渉キャンセラは、図8の場合と異なり、搬送波周波数f+Δfの信号速度が、搬送波周波数f−Δfの信号速度と異なる場合の構成を示している。
同図に示す適応干渉キャンセラは、入力端子164〜166、入力信号を一旦記憶しておくバッファメモリ349〜352、減算器167〜170、図5に示した干渉キャンセラ171〜174、二乗回路175〜178、f+Δfの搬送波周波数とf−Δfの搬送波周波数のチャネルで送信され得る全ての仮判定値系列を出力し、最も尤度の高い仮判定値系列をもう一つの出力とする最尤系列推定器179、干渉キャンセラの係数を推定する適応制御部180、最も高い判定値系列を出力する出力端子181−1、181−2、182−1、182−2から構成される。
【0072】
同図に示す適応干渉キャンセラは、ある周期間に送信されうる可能性のあるf+Δf帯とf−Δf帯の信号系列を全て発生させ、その中で最も送信された尤度の高い信号系列を出力端子181−1、181−2、182−1、182−2から出力する。
【0073】
図11は、本発明の第1の実施例のMLSE回路の構成(その1)を示す。同図は、図10に示した最尤系列推定回路の構成例であり、f+Δfとf−Δfの搬送波帯の信号が同じQPSK変調方式を利用し、f+Δf帯の信号伝送速度がf−Δfの信号伝送速度の2倍あるときの構成例を示す。
【0074】
図11に示すMLSE回路は、入力端子183〜186、4入力加算器191、積分器218、減算器187、スイッチ189、遅延素子190、判別器188、f−Δf帯信号のシンボル速度fc (I) の4倍のクロック入力端子194、f−Δf帯信号のシンボル速度fc (I) の128倍のクロック入力端子193、バイナリカウンタ195、196、セレクタ217、Dタイプフィリップフロップ192、197〜201、仮判定値出力端子202、203、206、207、最も尤度の高い系列を出力する出力端子204−1、204−2、205−1、205−2、f−Δf帯の信号のシンボルクロックに同期する遅延素子190、2分1分周器371、遅延素子190をリセットする信号入力端子61から構成される。
【0075】
同図の構成では、ナリナリカウンタ196、195で各々f+Δf帯信号とf−Δf帯信号の仮判定値を生成する。但し、バイナリカウンタ195は、2ビット出力なのに対して、バイナリカウンタ196は、4ビット出力し、セレクタ217により、上位2ビットと下位2ビットを時間多重して、各々端子206、207、202、203から出力される。
【0076】
図8と同様に、誤差電力を発生させ、その電力が入力端子183〜186から入力される。入力された誤差電力は積分器218で、64/fc (I) の間積分され、減算器187、判別器188、スイッチ189、遅延素子190から構成される最小値選択回路に入力され、最小値に相当する仮判定値をDタイプフィリップフロップにより保持し、端子204−1、204−2、205−1、205−2から出力する。
【0077】
図10の構成における適応制御部180は、最尤系列推定器から出力された信号セットを利用して、前述の式(12)〜(16.3)に示された係数更新式に従って行う。但し、f+Δf帯信号から出力されるシンボルレートは、f−Δf帯信号の2倍である。そこで、よりf−Δf帯信号のサンプリングタイミングに近い方のf+Δf帯信号のシンボルを選択して、係数の制御を行う。
【0078】
図12は、本発明の第1の実施例のMLSE回路の構成(その2)を示す。
【0079】
同図の構成は、前述の図11の構成と同様に、f+Δfとf−Δfの搬送波帯の信号が同じQPSK変調方式を利用し、f+Δf帯の信号伝送速度がf−Δfの信号伝送速度の2倍あるときの構成を示している。
【0080】
図12のMLSE回路は、入力端子208〜211、4入力加算器216、積分器223、減算器212、スイッチ214、遅延素子215、判別器213、f−Δf帯信号のシンボル速度fc (I) の4倍のクロック入力端子220、f−Δf帯信号のシンボル速度fc (I) の128倍のクロック入力端子219、バイナリカウンタ221、222、セレクタ224、Dタイプフィリップフロップ225、226、343、2分の1分周器372、仮判定値出力端子229、230、233、234、最も尤度の高い系列を出力する端子227、228、362、363、f−Δf帯の信号のシンボルクロックfc (I) に同期して遅延素子215をリセットする信号の入力端子62、低域通過フィルタ231、232から構成される。
【0081】
同図に示すMLSE回路は、図11の構造に加えて、f−Δf帯信号を出力バイナリカウンタの出力を、セレクタ224の出力速度でサンプリングして低域通過フィルタを介して端子233、234から出力している。この構成では、送受信の帯域制限フィルタを利用してレプリカを生成するため、より高精度な推定が可能になる。
【0082】
図12のMLSE回路を利用した場合にも前述の適応制御部の構成が利用できる。
【0083】
図13は、本発明の第1の実施例の適応干渉キャンセラの第5の構成を示す。同図に示す適応干渉キャンセラは、f+Δf1 帯と、f−Δf2 帯の信号が局部発振周波数fに対して対象でない場合の構成を示している。
【0084】
同図に示す適応干渉キャンセラは、入力端子235〜238、入力信号を一旦記憶しておくバッファメモリ353〜356、減算器239〜242、図5に示した干渉キャンセラ243〜246、二乗回路373、247〜249、f+Δf1 の搬送波周波数とf−Δf2 の搬送波周波数で送信されら仮判定値系列を出力し、最も尤度の高い仮判定値系列をもう一つの出力とする最尤系列推定器250、図6に示した複素周波数変換器251、361、帯域通過フィルタ357〜360、干渉キャンセラの係数を推定する適応制御部253、最も高い信号セットを出力する端子254、255から構成される。
【0085】
この構成では、図3における複素周波数変換器の発振周波数を各々−Δf1 と+Δf2 とする。このとき、低域通過フィルタ357〜360は、図3における低域通過フィルタと同様のものである。また、複素周波数変換器251は、入力信号にΔf2 −Δf1 の周波数変換を施し、複素周波数変換器361は、入力信号にΔf1 −Δf2 の周波数変換を施すものである。
【0086】
図13の構成は、図10の構成と同様に適応制御及び最尤系列推定を行う。但し、f+Δf1 帯の信号とf−Δf2 の信号がアナログ準同期検波器でIF周波数に変換されたとき、異なったIF周波数に変換される。従って、複素周波数変換器251、361でIF周波数誤差分のキャリアを生成し、そのオーバーラップに該当する部分だけを低域通過フィルタ357〜360で抽出する。この抽出した信号を干渉成分としてキャンセラに入力する。干渉キャンセラでは、オーバーラップした干渉成分と主信号の推定値を元に入力信号を推定する。
【0087】
適応制御部では、オーバラップした干渉成分と主信号成分を用いて式(14)〜(16.3)で記述されるLMSやRLSアルゴリズムが適用できる。また、図13では両帯域の信号の伝送速度が等しいので、図9の最尤信号推定回路が適用できる。無論、等しくない場合には、図11や図12の最尤系列推定回路が適用できる。
【0088】
図14は、本発明の第1の実施例の適応干渉キャンセラの第6の構成を示す。同図に示す適応干渉キャンセラは、入力端子256〜259、減算器260〜263、判別器266、267、行列乗算器264、268、適用制御部265、269、信号出力端子270、271、304、305から構成される。
【0089】
この構成では、f+Δf帯を所望信号とする端子からの信号に含まれる干渉成分が減算器260、261において除去され、f+Δf帯の信号成分だけが、判別器266、267に入力される。そして、判別器266、267で判定結果をf+Δf帯の信号として出力する。f−Δf帯を所望信号とする端子からの信号に含まれるf+Δf帯信号の成分を適用制御部269で推定し、減算器262、263で除去し、干渉成分を含まないf−Δf帯信号を得る。f+Δf帯を所望信号とする端子からの信号に含まれる、f−Δf帯の信号成分を適応制御部26で推定し、行列乗算器264でこれを生成し、減算器260、261に出力する。また、干渉成分を含まないf−Δf帯の信号は、出力端子304、305から出力する。
【0090】
即ち、上記の減算器260、261の出力を
yk (+) =[yk,i (+) ,y k,q(+)
とベクトル表現すると、以下のように書き換えられる。
【0091】
yk =xk (+) − εk (+) (17)
ここで、εk (+) =[εk,i (+) ,ε k,q(+) は行列乗算器264の出力でxk (+) に含まれるf−Δf帯の信号成分を表している。yk を判別器266、267に入力したとき、その出力は、
【0092】
【数18】
Figure 0003549814
と表されるなら、減算器262、263の出力
yk (+) =[yk,i (+) ,y k,q(+)
は以下のように書き表せる。
【0093】
【数19】
Figure 0003549814
ここで、Wk (1) ={wk,i,j (+) ;i,j=1,2}で表される行列であり、適応制御部264で推定される。同様の行列演算処理により、前述のεk (+) は以下のように表される。
【0094】
【数20】
Figure 0003549814
Wk (1) ={wk,i,j (1) ;i,j=1,2}で表される行列であり、適応制御部264で推定される。
【0095】
適応制御部269において係数Wk (1) は、(α)相関演算、(β)最小二乗演算の方法により求めることが可能である。(α)の場合は係数は以下のようになる。
【0096】
【数21】
Figure 0003549814
一方、(β)の場合には、以下のように求めることができる。
【0097】
【数22】
Figure 0003549814
また、適応制御部264でも同様に上記(α)と(β)の手法が適用できる。即ち、(α)の手法なら
【0098】
【数23】
Figure 0003549814
と演算する。一方、(β)の手法なら、
【0099】
【数24】
Figure 0003549814
あるいは、
【0100】
【数25】
Figure 0003549814
という更新式で推定することができる。さらに、2つの係数の増加を許せば、以下の演算を繰り返すことにより、高精度な推定が可能になる。
【0101】
【数26】
Figure 0003549814
【0102】
【数27】
Figure 0003549814
図15は、本発明の第1の実施例の行列乗算器の構成を示す。
【0103】
同図に示す行列乗算器は、入力端子292、293、乗算器294、295、加算器299、減算器298、係数入力端子300、303、出力端子304、305から構成される。
【0104】
図16は、本発明の第1の実施例の適応干渉キャンセラの第7の構成を示す。同図に示す適応干渉キャンセラは、入力端子272、275、減算器276〜279、判別器280、281、行列乗算器286、282、適応制御部287、283、低域通過フィルタ284、285、306、307、f+Δf帯の信号出力端子288、f−Δf帯の信号出力端子289を示している。
【0105】
この構成は、f+Δfとf−Δf帯の信号帯域が異なる場合で図3の低域通過フィルタ44〜47の帯域が各チャネルの帯域に適合している場合の構成である。f+Δf帯の信号のみを所望信号として出力することを目的として、図3の低域通過フィルタ44〜47の帯域がf+Δf帯と同じだとすると、低域通過フィルタ306、307は不要になる。この場合の適応制御部は、図14の説明で用いた更新式が適用される。
【0106】
[第2の実施例]
本実施例では、基本構成に加えて、適用キャンセラの後段に検波器を備える構成である。
【0107】
図17は、本発明の第2の実施例の受信機の構成を示す。
【0108】
同図に示す受信機は、アンテナ87、アナログ乗算器89、90、106、107、分岐回路88、92、105、109、π/2移相器35、108、発振器37、110、低域通過フィルタ38、39、44〜47、111、112、アナログ・ディジタル変換器40、41、複素周波数変換器42、43、適応イメージキャンセラ48、出力端子113、114から構成される。
【0109】
同図の構成では、ΔfのIF段の下にΔflow の周波数の第2IFを設け、ここから所望波のみを出力し、その後Δflow の局部発振器37で準同期検波し、所望信号を得る。
【0110】
図18は、本発明の第2の実施例の適応干渉キャンセラの構成を示す。同図に示す適応干渉キャンセラは、図17における適応干渉キャンセラ48は、入力端子115〜118、干渉キャンセラ119、適応制御部120、出力端子121から構成される。干渉キャンセラ119には、図4に示した回路が応用できる。
また、図18には、図14あるいは、図16に示した適応干渉キャンセラを適用することも可能である。図14の場合には、出力端子304、305のいずれか、図16の場合には、出力端子290、291のいずれかを用いる。
【0111】
なお、本発明は、上記の実施例に限定されることなく、特許請求の範囲内において、種々変更・応用が可能である。
【0112】
【発明の効果】
上述のように、本発明によれば、アナログ準同期検波器の不完全性に起因したチャネル間干渉を、ディジタル信号処理による複素周波数変換御の低域通過フィルタの後段に設置した適応干渉キャンセラで補償することにより、広い周波数帯域に渡る多様なシステムの信号を高品質に受信できる。
【0113】
加えて、必要に応じて、複数のチャネルの信号を一つの無線機で受信できる。
さらに、高速収束が可能なアルゴリズムを適用できるため、パケットのような信号に間歇的に送信される信号を高品質に復調できるという利点がある。これにより、多様なシステムの信号を1台の受信機で同時に、かつ高品質に実現できるため、端末や基地局の大幅な高機能化が可能になる。従って、多様なサービスを1種類の端末、1種類の基地局で行うという、製品開発コストの低減や、端末に大幅な付加価値の付与など、計り知れない効果がある。
【図面の簡単な説明】
【図1】本発明の原理構成図である。
【図2】本発明の受信機の概略構成図である。
【図3】本発明の第1の実施例の受信機の構成図である。
【図4】本発明の第1の実施例の適応干渉キャンセラの第1の構成図である。
【図5】本発明の第1の実施例の干渉キャンセラの構成図である。
【図6】本発明の第1の実施例の複素周波数変換器の構成図である。
【図7】本発明の第1の実施例の適応干渉キャンセラの第2の構成図である。
【図8】本発明の第1の実施例の適応干渉キャンセラの第3の構成図である。
【図9】本発明の第1の実施例のMLE回路の構成図である。
【図10】本発明の第1の実施例の適応干渉キャンセラの第4の構成図である。
【図11】本発明の第1の実施例のMLSE回路の構成図(その1)である。
【図12】本発明の第1の実施例のMLSE回路の構成図(その2)である。
【図13】本発明の第1の実施例の適応干渉キャンセラの第5の構成図である。
【図14】本発明の第1の実施例の適応干渉キャンセラの第6の構成図である。
【図15】本発明の第1の実施例の行列乗算器の構成図である。
【図16】本発明の第1の実施例の適応干渉キャンセラの第7の構成図である。
【図17】本発明の第2の実施例の受信機の構成図である。
【図18】本発明の第2の実施例の適応干渉キャンセラの構成図である。
【図19】従来の無線機における受信機の構成図である。
【図20】イメージ成分とIF周波数の関係を示す図である。
【図21】従来のイメージキャンセラの構成図である。
【符号の説明】
31 アンテナ
33、34 アナログ乗算器
32、36 分岐回路
35,108 π/2移相器
37、110 発振器
38,39,44〜47,111、112 低域通過フィルタ
40、41 アナログ・ディジタル変換器
42、43 複素周波数変換器
46、47 低域通過フィルタ
48 適応干渉キャンセラ
49−1、49−2、50−1、50−2 出力端子
51〜54 入力端子
55 Qチャネル用干渉キャンセラ
56 Iチャネル用干渉キャンセラ
57 リセット信号入力端子
58 適応制御器
59、60 出力端子
61 遅延素子
62 リセット信号入力端子
64、65、76、77 入力端子
66〜69、78〜81 乗算器
71、81 加算器
70、82 減算器
72、83 ディジタルπ/2移相器
73、84 NCO
74,75,85,86 出力端子
87 アンテナ
89、90 106、 107 アナログ乗算器
88、92、105、109 分岐回路
113、114 出力端子
119 干渉キャンセラ
122〜125 入力端子
126〜129 減算器
135〜138 二乗回路
139 佐井風信号推定器
140 適応制御部
141、142、133−1、133−2 出力端子
143〜146 入力端子
147 4入力加算器
148 スイッチ、156−1、156−2、157−1、157−2 スイッチ
149 遅延素子
150 減算器
151 判別器
152、153 クロック入力端子
154、155 バイナリカウンタ
158−1、158−2、159−1、159−2 出力端子
160〜163 判定値出力端子
164〜166 入力端子
167〜170 減算器
171〜174 干渉キャンセラ
175〜178 二乗回路
179 最尤系列推定器
180 適応制御部
181−1、181−2、182−1、182−2 判定値出力端子
183〜186 入力端子
187 減算器
188 判別器
189 スイッチ
190 遅延素子
191 4入力加算器
193 クロック入力端子
194 クロック入力端子
195、196 バイナリカウンタ
197〜201 Dタイプフィリップフロップ
202,203,206,207 仮判定値出力端子
204−1、204−2、205−1、205−2 出力端子
208〜211 入力端子
212 減算器
213 判別器
214 スイッチ
215 遅延素子
216 4入力加算器
217 セレクタ
218 積分器
219 クロック入力端子
220 クロック入力端子
221、222 バイナリカウンタ
223 積分器
224 セレクタ
225、226、343 Dタイプフィリップフロップ
229、230、233、234 仮判定値出力端子
227、228、362、363 最尤度系列出力端子
231、232 低域通過フィルタ
233 234 出力端子
235〜238 入力端子
239〜242 減算器
243〜246 干渉キャンセラ
373、247〜249 二乗回路
250 最尤系列推定器
251、361 複素周波数変換器
253 適応制御部
254,255 出力端子
260〜263 減算器
265、269 適応制御部
266、267 判別器
264、268 行列乗算器
270、271、304、305 信号出力端子
272、275 入力端子
276〜279 減算器
280、281 判別器
286、282 行列乗算器
287、283 適応制御部
284、285、306、307 低域通過フィルタ
288 信号出力端子
289 信号出力端子
292、293 入力端子
294、295 乗算器
298 減算器
299 加算器
300、303 係数入力端子
304、305 出力端子
314、315、321、322 干渉キャンセラ
318,319,313,326 減算器
316、317、323、328 判別器
329〜332 入力端子
345〜348 バッファメモリ
349〜352 バッファメモリ
353〜356 バッファメモリ
357〜360 帯域通過フィルタ
371,372 2分の1分周器
373 二乗回路
401 受信部
402 アナログ準同期検波機
403 アナログ・ディジタル変換器
404 ディジタル複素周波数変換器A
405 ディジタル複素周波数変換器B
406 低域通過フィルタA
407 低域通過フィルタB
408 適応干渉キャンセラ
409 干渉キャンセル部
410 適応制御部

Claims (6)

  1. 搬送波周波数帯に変換された信号を受信し、受信された受信信号をアナログ準同期検波し、該アナログ準同期検波の出力である同相及び直交信号をA/D変換し、該A/D変換された同相及び直交信号を第1の解析的信号により、複素ベースバンド信号に変換し、該第1の解析的信号により複素ベースバンド信号に変換された同相及び直交信号を第1の低域通過フィルタに入力するとにより所望信号を得る通信システムにおける受信方法において、
    前記A/D変換された同相及び直交信号を分岐し、第2の解析的信号により複素ベースバンド信号に変換し、
    前記第2の解析的信号により複素ベースバンド信号に変換された同相及び直交信号をそれぞれ第2の低域通過フィルタに入力し、
    前記第1の低域通過フィルタ及び前記第2の低域通過フィルタを通過した同相及び直交信号を適応干渉キャンセラに入力し、
    各々の信号に混入した干渉成分を除去することを特徴とする通信システムにおける受信方法。
  2. 前記適応干渉キャンセラにおいて、
    所望周波数成分と干渉信号成分が混在した入力信号から、直交化係数を用いて該所望周波数成分と該干渉信号成分とを分離する請求項1記載の通信システムにおける受信方法。
  3. 前記適応干渉キャンセラにおいて、
    前記アナログ準同期検波の直交性の変化に応じて前記直交化係数を推定する請求項2記載の通信システムにおける受信方法。
  4. 搬送波周波数帯に変換された信号を受信する受信手段と、該受信手段により受信された受信信号から直交信号を生成するアナログ準同期検波手段と、該アナログ準同期検波手段の出力である同相及び直交信号をA/D変換するA/D変換するA/D変換手段と、該A/D変換によりA/D変換された同相及び直交信号を第1の解析的信号により複素ベースバンド信号に変換する第1の複素周波数変換手段と、該第1の複素周波数変換手段により複素ベースバンド信号に変換された同相及び直交信号の高周波成分を除去する第1の低域通過フィルタとを具備する通信システムにおける受信機であって、
    前記A/D変換手段によりA/D変換された前記同相及び直交信号を第2の解析的信号により複素ベースバンド信号に変換する第2の複素周波数変換手段と、
    前記第2の複素周波数変換手段により複素ベースバンド信号に変換された同相及び直交信号の高周波成分を除去する第2の低域通過フィルタと、
    前記第1の低域通過フィルタ及び前記第2の低域通過フィルタを通過した同相及び直交信号を入力として各々の信号に混入した干渉成分を除去する適応干渉キャンセラと、を備えることを特徴とする通信システムにおける受信機。
  5. 前記適応干渉キャンセラは、
    所望周波数成分と干渉信号成分とが混在した入力信号から、直交化係数を用いて該所望周波数成分と該干渉信号成分とを分離する干渉キャンセル手段を有する請求項4記載の通信システムにおける受信機。
  6. 前記適応干渉キャンセラは、
    前記アナログ準同期検波の直交性の変化に応じて前記直交化係数を推定する適応制御手段を有する請求項5記載の通信システムにおける受信機。
JP2000219880A 2000-06-23 2000-07-19 通信システムにおける受信方法及び受信機 Expired - Fee Related JP3549814B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000219880A JP3549814B2 (ja) 2000-07-19 2000-07-19 通信システムにおける受信方法及び受信機
US09/886,255 US6987815B2 (en) 2000-06-23 2001-06-22 Receive method and receiver in communication system
EP01305434A EP1168597A1 (en) 2000-06-23 2001-06-22 Quadrature Receiver with Orthogonality Correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219880A JP3549814B2 (ja) 2000-07-19 2000-07-19 通信システムにおける受信方法及び受信機

Publications (2)

Publication Number Publication Date
JP2002043962A JP2002043962A (ja) 2002-02-08
JP3549814B2 true JP3549814B2 (ja) 2004-08-04

Family

ID=18714580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219880A Expired - Fee Related JP3549814B2 (ja) 2000-06-23 2000-07-19 通信システムにおける受信方法及び受信機

Country Status (1)

Country Link
JP (1) JP3549814B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534738A (ja) * 2010-05-03 2013-09-05 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Iq不均衡を軽減するためのキャリア間帯域幅制御

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902498B2 (ja) 2002-04-04 2007-04-04 三星電子株式会社 イメージ信号抑圧装置
JP3967226B2 (ja) 2002-08-07 2007-08-29 三星電子株式会社 無線機
US7209716B2 (en) * 2003-02-27 2007-04-24 Ntt Docomo, Inc. Radio communication system, radio station, and radio communication method
JP5354750B2 (ja) * 2010-07-21 2013-11-27 Kddi株式会社 イメージ信号を除去するアンダーサンプリングを用いた受信機、プログラム及び方法
JP2012244421A (ja) * 2011-05-19 2012-12-10 Nippon Telegr & Teleph Corp <Ntt> 受信装置、通信システム、及び通信方法
JP2013009023A (ja) * 2011-06-22 2013-01-10 Nippon Telegr & Teleph Corp <Ntt> 受信装置、通信システム、受信方法及び通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534738A (ja) * 2010-05-03 2013-09-05 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Iq不均衡を軽減するためのキャリア間帯域幅制御

Also Published As

Publication number Publication date
JP2002043962A (ja) 2002-02-08

Similar Documents

Publication Publication Date Title
US6987815B2 (en) Receive method and receiver in communication system
AU698865B2 (en) Digitally compensated direct conversion receiver
JP4391024B2 (ja) レーキ受信機用の自動周波数制御ループ多経路コンバイナ
JP3640395B2 (ja) マルチフェーズ成分のダウンコンバージョンのための方法および装置
CA2103299C (en) Frequency offset estimation using the phase rotation of channel estimates
US7903772B2 (en) Digital demodulator with improved hardware and power efficiency
KR101050667B1 (ko) 무선 통신 시스템 및 그 시스템에서의 사용을 위한 무선디지털 수신기
WO2003012979A1 (en) Quadrature transceiver substantially free of adverse circuitry mismatch effects
JP2002505827A (ja) 符号クロス積自動周波数制御ループ
JP2010233091A (ja) 中継装置、中継方法、受信装置および受信方法
JP3549814B2 (ja) 通信システムにおける受信方法及び受信機
JP5873100B2 (ja) プログラム可能なデジタルダウンコンバージョンのための方法及びシステム
EP1435687B1 (en) Direct conversion receiver
JP3698996B2 (ja) 通信システムにおける受信機
JP6367160B2 (ja) 送受信機
US20080181284A1 (en) Hybrid Zero-IF Receiver
KR100959229B1 (ko) 데이터 수신 장치
JP3643109B2 (ja) データ受信装置
KR20040036492A (ko) 무선 통신시스템의 송수신기 성능을 개선하기 위한 방법
JP3819469B2 (ja) 周波数補償機能を備えた無線通信装置
JP4511536B2 (ja) 適応的直交性訂正のための装置及び方法
JP3957110B2 (ja) 周波数誤差推定回路
JPH09233044A (ja) 無線通信機器
JPH047942A (ja) 自動周波数制御方式
ANAS Adjacent channel interference mitigation schemes for software defined radio receiver

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees