JP3543139B2 - Concrete-filled steel tubular column based on steel-framed reinforced concrete basement wall and its construction method - Google Patents

Concrete-filled steel tubular column based on steel-framed reinforced concrete basement wall and its construction method Download PDF

Info

Publication number
JP3543139B2
JP3543139B2 JP20562795A JP20562795A JP3543139B2 JP 3543139 B2 JP3543139 B2 JP 3543139B2 JP 20562795 A JP20562795 A JP 20562795A JP 20562795 A JP20562795 A JP 20562795A JP 3543139 B2 JP3543139 B2 JP 3543139B2
Authority
JP
Japan
Prior art keywords
steel
concrete
tubular
wall
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20562795A
Other languages
Japanese (ja)
Other versions
JPH0953229A (en
Inventor
雅路 青木
正昭 加倉井
知史 新村
崇博 毛井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP20562795A priority Critical patent/JP3543139B2/en
Publication of JPH0953229A publication Critical patent/JPH0953229A/en
Application granted granted Critical
Publication of JP3543139B2 publication Critical patent/JP3543139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鉄骨鉄筋コンクリート造(以下「SRC造」と略して云う。)地下壁(連続地下壁又は地中梁の概念を含む。以下同じ)を基礎として構築される構造物に係り、さらに云えば、特に軌道や道路等をはさんだ配置で地下壁を一方向にしか設置できない場合に、その一方向に構築したSRC造地下壁を基礎とし、当該SRC造地下壁に支持されたコンクリート充填鋼管柱(以下「CFT柱」と略して云う。)を利用して軌道等の上部スペースに構築するステーションビル等の構造物及びその施工方法に関する。
【0002】
【従来の技術】
軌道や道路、河川等を跨ぐような前提条件のため、地下壁(基礎梁)を軌道などと平行な一方向に設置して、軌道等の上部スペースに構造物を構築しようとする場合、その基礎構造としては、例えば図5に示したものが公知である。これは矢印mで示した一方向に設けられた地下鉄aを間にはさむ配置で鉄筋コンクリート造(以下「RC造」と略して云う。)の地下壁b,bを設け、当該RC造地下壁b,bを支持杭と基礎梁に兼用し、その上部にRC造又はSRC造などの柱eで支持された上部構造物cが施工されている。
【0003】
【本発明が解決しようとする課題】
上記図5のRC造地下壁を基礎とする構造物は、上部構造物cの荷重が大きくなると、柱eの軸力や曲げモーメント、水平力を地下壁bへ効果的に伝達することが困難となる。その結果、地下壁bの上部の壁厚が2〜3mと大きくなり、敷地条件によっては実施できない場合がある。この点、SRC造地下壁(例えば、特開平6−193049号公報など参照)は、面外の曲げ耐力、せん断耐力が大きい利点があり、このSRC造地下壁を前記のRC造地下壁に代わる基礎梁として用いることが提案されている。しかし、この場合でも上部構造物の軸力や曲げモーメント、水平力を効果的に伝達させるためには、RC造地下壁と同様に壁厚がかなり大きくなり、やはり条件次第で実施不可能な場合が生ずる。
【0004】
ところで、CFT柱は、じん性が高く高耐力で、有効断面積を相対的に小さくできる等の利点がある。そこで、このCFT柱を上部構造物の支柱とし、上記RC造又はSRC造地下壁を基礎梁(柱脚部)に応用することが考えられる。しかし、RC造又はSRC造地下壁をCFT柱の柱脚部として利用するためには、両者の構造的、力学的一体化をどのようにして達成するかに技術的課題がある。
【0005】
したがって、本発明の目的は、特に基礎梁を一方向にしか設置できない場合に、地上構造のCFT柱が負担する軸力、曲げモーメント、水平力などを効果的に、且つ特別な基礎梁を設けることなくSRC造地下壁へ伝達できる構造を確立して、軌道、河川、道路などの上の空間スペースの有効利用を図れるSRC造地下壁を基礎とするCFT柱応用の構造物と、その構造物の構築に実施される施工方法を提供することにある。
【0006】
【課題を解決するための手段】
上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係るSRC造地下壁を基礎とするCFT柱応用の構造物は、
SRC造地下壁と、前記SRC造地下壁の地表部付近で基部を一体化されて地上に所要の高さをもつ複数のCFT柱とを設け、前記CFT柱の上部間にスーパーフレーム架構を組んで上部構造物を構築すること、
前記SRC造地下壁は、その長手方向に間隔をあけて鉛直に配置された複数の鉄骨部材と、前記鉄骨部材の両外側に長手方向に配置された縦横筋とを設け、前記鉄骨部材及び縦横筋を外巻き可能な大きさであって所要の高さの管状に形成された管状鉄板が地表部付近において前記鉄骨部材及び縦横筋を囲んで設けられ、前記管状鉄板以下の地下壁内に先打ちのコンクリートを打設し、管状鉄板内の前記先打ちコンクリートの天端上に、コンクリート充填鋼管柱がその下端を載置して建て込み、前記管状鉄板の内部に後打ちコンクリートを打設することによりSRC造地下壁とCFT柱とを一体化したことを特徴とする。
【0008】
請求項に記載した発明は、請求項1に記載した発明に係るSRC造地下壁を基礎とするCFT柱応用の構造物において
SRC造地下壁を補強する鉄骨部材の上部と、CFT柱を形成する鋼管の下部の各外面にコンクリートと一体化するスタッドを取り付けたことを特徴とする。
【0009】
請求項に記載した発明に係るSRC造地下壁を基礎とするCFT柱応用の構造物の施工方法は、
イ) 地下壁の長手方向に間隔をあけて配置した鉄骨部材を地下壁内の鉛直方向に複数設け、前記鉄骨部材の両外側に縦横筋を設けると共に、前記縦横筋を外巻き可能な大きさであって所要の高さに形成した管状の管状鉄板を地表部付近の鉄骨部材、縦横筋を囲むように設け、前記管状鉄板以下の地下壁内に先打ちのコンクリートを充填してSRC造地下壁を施工する段階と、
ロ) 前記先打ちコンクリートが硬化した後に、地上に所要の高さをもつ鋼管を管状鉄板内の前記先打ちコンクリートの天端上に下端を載置する形に建て込み、前記鋼管と管状鉄板の各内部にコンクリートを後打ちして地表部付近でSRC造地下壁と一体化されたCFT柱を施工する段階と、
ハ) SRC造地下壁を基礎として建てられた複数本のCFT柱の上部間にスーパーフレーム架構を組んで上部構造物を構築する段階と、より成ることをそれぞれ特徴とする。
【0010】
請求項に記載した発明は、請求項3に記載した発明に係るSRC造地下壁を基礎とするCFT柱応用の構造物の施工方法において
SRC造地下壁を補強する鉄骨部材の上部と、CFT柱をなす鋼管の下部の各外面にコンクリートと一体化するスタッドを予め取り付けておくことを特徴とする。
【0011】
【発明の実施の形態】
本発明のSRC造地下壁を基礎としCFT柱を利用した構造物は、請求項1に記載したように、地中のSRC造地下壁1と、前記SRC造地下壁1と一体化され地上に所要の高さをもつ複数のCFT柱6とが設けられ、前記CFT柱6の上部間に所謂メガトラスと称されるスーパーフレーム架構を組んで上部構造物が構築されている。したがって、上部構造物が重く、CFT柱6に大きな軸力、曲げモーメント、水平力が負荷されても、SRC造地下壁1へ効果的に伝達されて安全に処理される。
【0012】
更に具体的には、SRC造地下壁1は、その長手方向に間隔をあけて配置された複数の垂直な鉄骨部材2…と、前記鉄骨部材2の両外側の長手方向に配置された縦横筋3とが設けられ、前記複数の鉄骨部材2…と縦横筋3を外巻き可能な大きさであって所要の高さに形成された管状の管状鉄板4が地表部付近の鉄骨部材2…と縦横筋3を囲んで設けられ、まず、前記管状鉄板4以下の地下壁9内に先打ちコンクリート10が打設され、管状鉄板4内に前記先打ちコンクリート10の天端上に下端を載置する形でCFT柱6が建て込まれ、当該CFT柱6を囲む管状鉄板4の内部に後打ちコンクリート11、12が打設され、もってSRC造地下壁1とCFT柱6とを構造的に強固に一体化する構成が好適に実施される。したがって、CFT柱6は、SRC造地下壁1を柱脚部とする形で、その上部に管状鉄板4及び当該管状鉄板4内に充填されたコンクリート11を介して一体化されている。この場合、コンクリート11はその外周を管状鉄板4によって強固に拘束され、CFT柱6との密着度が高められている。換言すれば、管状鉄板4を用いた地下壁部分も、概念的にはその内部にコンクリート11が打設された広い意味のCFT柱と捉えることができ、大きな耐力を発揮する。よって、SRC造地下壁1の壁厚をむやみに大きくする必要はなく、敷地条件の制約を受けにくい。なお、上述した縦横筋3を外巻き可能な管状鉄板4の大きさとは、鉄骨部材2の両外側に配置した縦横筋3と地下壁9との間に設けた端部同士を、両端の鉄骨部材2の外側で接合するに必要かつ十分な大きさをいう(図1参照)。
【0013】
本発明は、打設コンクリート11との密着度を可及的に高めるため、請求項のように、前記SRC造地下壁1を補強する鉄骨部材2の上部(管状鉄板4に包囲される部分)と、CFT柱6を形成する鋼管7の下部(同じく管状鉄板4で包囲される部分)の各外面にスタッド5、8を取り付けた態様でも実施される。前述の上部構造物は、請求項に記載した内容で合理的に構築される。
【0014】
まず、地下壁9の長手方向に間隔をあけて配置した鉄骨部材2を地下壁9内の鉛直方向に複数設け、前記鉄骨部材2の両外側の長手方向に縦横筋3を設けると共に、管状鉄板4を地表部付近の前記鉄骨部材2と縦横筋3を囲むように設ける。管状鉄板4は、前記鉄骨部材2と縦横筋3を外巻き可能な大きさであって所要高さ(地下壁とCFT柱との一体化に必要な高さ)に形成されている。そして、前記管状鉄板4以下の地下壁9内に先打ちのコンクリート10を打設してSRC造地下壁1が施工される。
【0015】
前記先打ちコンクリート10が硬化し所定の強度を発現した後に、地上に所要高さをもつCFT柱6又はそれ用の鋼管7を、前記管状鉄板4内の鉄骨部材2…の中間位置に、前記先打ちコンクリート10の天端上に下端を載置する形で建て込む。その後、鋼管7を使用した場合、その内部にコンクリート12を打設すると共に、管状鉄板4の内部に後打ちコンクリート11を打設する。かくして、地表部付近でSRC造地下壁1と強固に一体化されたCFT柱6が施工される。
【0016】
前記のようにしてSRC造地下壁1を基礎梁又は柱脚部として建てられた複数本のCFT柱6…の上部間にスーパーフレーム架構を組んで上部構造物を構築する。本発明は、CFT柱の高耐力を生かしたメガトラス等との組み合せにより、軌道の上部スペースにステーションビルを構築したり、河川の上の橋や道路の上の高架式軌道、立体交差などの構造物の構築に実施可能である。上記したように地下壁を一方向にしか設置した場合でも、SRC造地下壁の壁厚をむやみと大きくすることなく、安全な上部構造物を合理的に構築することができる。
【0017】
【実施例】
次に、図1〜図4に従って、軌道の両側に地下壁(基礎梁)を一方向にしか設置できない場所で構築されるステーションビルに関する実施例を説明する。図1に示したように、ステーションビル(の躯体)16は、複数の軌道13…をはさんで平行に対向する配置で設けられたSRC造地下壁1の地表部付近で、基部を一体化され地上に所要の高さを突き出されたCFT柱6…の上部間にスーパーフレーム架構を組んで構築されている。
【0018】
図2〜図4に示したように、一施工単位のSRC造地下壁1とCFT柱6との関係につき説明すると、地下壁の補強材である鉄骨部材2は、支持層に到達する程の長さを有するH形鋼で構成され、その上端から3〜4m位の範囲(つまり、後記管状鉄板4で囲まれる部分)のウェブの両外面及びフランジの外面に複数個のスタッド5…が規則的配列で取り付けられている。一施工単位には前記H形鋼が4本、各々約1mの間隔をあけて地下壁9内の鉛直方向に深く設けられている。前記H形鋼2の両外側に、やはり支持層に到達する長さの縦横筋3,3を長手方向に設ける。更に、前記二つの縦横筋3、3を外巻き可能な管状鉄板4を、地表部付近(地上から3〜4mの深さ)のH形鋼2と縦横筋3を囲む配置で設ける。管状鉄板4は、厚さが約20mmの鋼板により、奥行き幅が1.4〜1.5m、長さが4〜5m、高さが約3〜4m程に形成されている。次に、前記管状鉄板4の下端部以下の地下壁9内に先打ちのコンクリート10を打設して地中に深いSRC造地下壁1を施工する(図3B参照)。前記先打ちコンクリート10が強度を発現した段階で、管状鉄板4内の前記H形鋼2…の中間位置であって、前記先打ちコンクリート10の天端上にCFT柱用の鋼管7の下端を載置する形で同鋼管の建て込みが行なわれる。鋼管7は、厚さが約20mm、一辺の長さが約800mmの角鋼管であり、高さが約7〜8mに形成されている。この鋼管7の下端から3〜4m上の範囲(つまり、管状鉄板4で囲まれる部分)における外面に複数のスタッド8…が規則的配列で取り付けられている。当該鋼管7と管状鉄板4の各内部に後打ちコンクリート11,12が打設され、同コンクリート11,12が硬化し強度を発現することによってSRC造地下壁1とCFT柱6とが構造的に強固に一体化され、SRC造地下壁1を柱脚部又は基礎梁とするCFT柱6が構築される(図4B)。即ち、CFT柱6は、その下部がSRC地下壁1の上部の管状鉄板4内に打設されたコンクリート11により一体化されている。同コンクリート11は管状鉄板4によって外周を強固に拘束され、CFT柱6との密着度が高められている。したがって、ステーションビル16のように大きな荷重がかかる大型構造物であっても、CFT柱6の軸力や曲げモーメント、水平力はSRC造地下壁1へ効果的に安全に伝達される。
【0019】
【本発明が奏する効果】
本発明に係るSRC造地下壁を基礎とするCFT柱応用の構造物及びその施工方法によれば、地上構造のCFT柱の軸力、曲げモーメント、水平力を、特別な基礎梁を設けることなく、基礎構造のSRC造連続地下壁による基礎へ効率よく伝達する構造が得られる。また、CFT柱の高耐力を生かしてメガトラス等との組合せにより、軌道、河川、道路などの上の空間スペースの有効利用が図られる。
【図面の簡単な説明】
【図1】ステーションビルの構築状況を基礎部分を中心に示した斜視図である。
【図2】A,BはSRC造地下壁の施工状況を示した平面図と断面図である。
【図3】A,BはCFT柱の建て込み状況を示した平面図と断面図である。
【図4】A,Bはコンクリートの打設要領を示した平面図と断面図である。
【図5】従来例を示した全体図である。
【符号の説明】
1 SRC造地下壁
2 鉄骨部材
3 縦横筋
4 管状鉄板
5,8 スタッド
6 CFT柱
7 鋼管
9 地下壁
10 先打ちコンクリート
11,12 後打ちコンクリート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure constructed on the basis of a steel reinforced concrete structure (hereinafter abbreviated as "SRC structure") and an underground wall (including the concept of a continuous underground wall or an underground beam; the same applies hereinafter). For example, when an underground wall can be installed in only one direction in a layout sandwiching a track, a road, and the like, a concrete-filled steel pipe supported on the SRC underground wall based on the SRC underground wall constructed in one direction. The present invention relates to a structure such as a station building constructed in an upper space such as a track using columns (hereinafter abbreviated as “CFT columns”) and a method of constructing the same.
[0002]
[Prior art]
Due to prerequisites such as straddling tracks, roads, rivers, etc., when installing an underground wall (foundation beam) in one direction parallel to the track, etc. As the basic structure, for example, the structure shown in FIG. 5 is known. The underground walls b, b of reinforced concrete construction (hereinafter abbreviated as “RC construction”) are provided in such a manner that a subway a provided in one direction indicated by an arrow m is interposed therebetween. , B are also used as a support pile and a foundation beam, and an upper structure c supported by a column e such as RC or SRC is constructed on the upper part thereof.
[0003]
[Problems to be solved by the present invention]
In the structure based on the RC basement wall in FIG. 5 described above, it is difficult to effectively transmit the axial force, bending moment, and horizontal force of the column e to the basement wall b when the load of the upper structure c increases. It becomes. As a result, the wall thickness of the upper part of the underground wall b becomes as large as 2 to 3 m, and it may not be able to be carried out depending on site conditions. In this regard, the SRC basement wall (see, for example, Japanese Patent Application Laid-Open No. 6-193049) has the advantage that the out-of-plane bending strength and shear strength are large, and the SRC basement wall is replaced with the RC basement wall. It has been proposed to be used as a foundation beam. However, even in this case, in order to effectively transmit the axial force, bending moment, and horizontal force of the upper structure, the wall thickness becomes considerably large similarly to the RC basement wall, and it is impossible to implement it depending on the conditions. Occurs.
[0004]
By the way, CFT columns have advantages such as high toughness, high proof stress, and a relatively small effective area. Therefore, it is conceivable that the CFT column is used as a column of the upper structure, and the RC or SRC underground wall is applied to a foundation beam (column base). However, in order to use an RC or SRC underground wall as a column base of a CFT column, there is a technical problem on how to achieve structural and mechanical integration of the two.
[0005]
Therefore, an object of the present invention is to provide a special foundation beam effectively, especially in a case where the foundation beam can be installed in only one direction, effectively controlling the axial force, bending moment, horizontal force, etc., which the CFT columns of the ground structure bear. A structure that uses CFT columns based on SRC underground walls, and a structure that can establish a structure that can be transmitted to SRC underground walls without using it and can effectively use the space above tracks, rivers, roads, etc. An object of the present invention is to provide a construction method implemented for construction of a building.
[0006]
[Means for Solving the Problems]
As means for solving the above-mentioned problems of the prior art, a structure using a CFT column based on an SRC basement wall according to the invention described in claim 1 is as follows.
An SRC basement wall and a plurality of CFT columns having a required height on the ground by integrating a base portion near the ground surface of the SRC basement wall are provided, and a superframe frame is assembled between the upper portions of the CFT columns. Building the superstructure with
The SRC basement wall is provided with a plurality of steel members vertically arranged at intervals in the longitudinal direction thereof, and longitudinal and transverse streaks arranged longitudinally on both outer sides of the steel members. A tubular iron plate formed in a tubular shape having a size capable of externally winding the streaks and having a required height is provided in the vicinity of the ground surface so as to surround the steel frame member and the vertical and horizontal streaks, and is provided in an underground wall below the tubular iron plate. Pour concrete and cast a concrete-filled steel tubular column with its lower end placed on the top end of the pre-cast concrete in the tubular iron plate, and cast post-cast concrete inside the tubular iron plate Thus, the SRC basement wall and the CFT column are integrated .
[0008]
The invention described in claim 2 is the structure of the CFT Columns applications based upon SRC Concrete basement walls according to the invention described in claim 1,
A stud for integrating with concrete is attached to each outer surface of an upper portion of a steel frame member for reinforcing an SRC basement wall and a lower portion of a steel pipe forming a CFT column.
[0009]
The construction method of a structure applied to a CFT column based on an SRC basement wall according to the invention described in claim 3 ,
B) A plurality of steel members arranged at intervals in the longitudinal direction of the underground wall are provided in the vertical direction in the underground wall, and vertical and horizontal stripes are provided on both outer sides of the steel frame members, and the vertical and horizontal stripes can be wound around the outside. A tubular tubular iron plate formed at a required height is provided so as to surround a steel frame member and vertical and horizontal streaks near the surface of the ground, and an underground wall below the tubular iron plate is filled with pre-cast concrete to fill the SRC basement. Constructing a wall,
B) After the precast concrete has hardened, a steel pipe having a required height is erected on the ground so that the lower end is placed on the top end of the precast concrete in the tubular iron plate, and the steel pipe and the tubular iron plate are mounted. Constructing a CFT column integrated with the SRC underground wall near the surface by post-casting concrete inside each;
C) assembling a superframe structure between the upper portions of a plurality of CFT columns built on the basement of the SRC basement wall to construct an upper structure.
[0010]
The invention described in claim 4 is the method of constructing the structure of CFT Columns applications based upon SRC Concrete basement walls according to the invention described in claim 3,
It is characterized in that studs that are integrated with concrete are previously attached to the outer surfaces of the upper part of the steel frame member that reinforces the SRC basement wall and the lower part of the steel pipe that forms the CFT column.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
As described in claim 1, the structure using the SRC basement wall based on the SRC basement wall of the present invention is an underground SRC basement wall 1 and integrated with the SRC basement wall 1 to be on the ground. A plurality of CFT columns 6 having a required height are provided, and an upper structure is constructed by assembling a superframe frame called a so-called mega truss between upper portions of the CFT columns 6. Therefore, even if the upper structure is heavy and a large axial force, bending moment, or horizontal force is applied to the CFT column 6, it is effectively transmitted to the SRC basement wall 1 and safely processed.
[0012]
More specifically, the SRC basement wall 1 is composed of a plurality of vertical steel members 2... Arranged at intervals in the longitudinal direction thereof, and vertical and horizontal streaks arranged on both outer longitudinal sides of the steel member 2. And a plurality of the steel members 2... And a tubular tubular iron plate 4 having a size capable of externally winding the vertical and horizontal streaks 3 and formed at a required height. First, a precast concrete 10 is poured into an underground wall 9 below the tubular iron plate 4, and the lower end is placed on the top end of the precast concrete 10 in the tubular iron plate 4. CFT columns 6 are erected, and after-cast concretes 11 and 12 are cast inside the tubular iron plate 4 surrounding the CFT columns 6, so that the SRC basement wall 1 and the CFT columns 6 are structurally strong. The structure integrated with the above is suitably implemented. Therefore, the CFT column 6 is formed integrally with the SRC basement wall 1 via the tubular iron plate 4 and the concrete 11 filled in the tubular iron plate 4 on the upper part thereof, using the base plate as the pillar base. In this case, the outer periphery of the concrete 11 is firmly restrained by the tubular iron plate 4, and the degree of adhesion to the CFT columns 6 is increased. In other words, the underground wall portion using the tubular iron plate 4 can be conceptually regarded as a CFT column in a broad sense in which the concrete 11 is laid therein, and exerts a great strength. Therefore, it is not necessary to increase the thickness of the SRC basement wall 1 unnecessarily, and it is hard to be restricted by site conditions. In addition, the size of the tubular iron plate 4 capable of winding the vertical and horizontal streaks 3 around the outside is defined as the ends provided between the vertical and horizontal streaks 3 disposed on both outer sides of the steel frame member 2 and the underground wall 9 and the steel frames at both ends. It means a size necessary and sufficient for bonding outside the member 2 (see FIG. 1).
[0013]
According to the present invention, in order to increase the degree of adhesion to the cast concrete 11 as much as possible, the upper part of the steel member 2 (the part surrounded by the tubular iron plate 4) for reinforcing the SRC basement wall 1 as in claim 2. ), And studs 5 and 8 are attached to each outer surface of the lower part of the steel pipe 7 forming the CFT column 6 (the part also surrounded by the tubular iron plate 4). The above superstructure is reasonably constructed with the contents described in claim 3 .
[0014]
First, a plurality of steel members 2 arranged at intervals in the longitudinal direction of the underground wall 9 are provided in the vertical direction inside the underground wall 9, and the longitudinal and horizontal stripes 3 are provided in the longitudinal direction on both outer sides of the steel member 2, and a tubular iron plate is provided. 4 is provided so as to surround the steel member 2 and the vertical and horizontal stripes 3 near the ground surface. The tubular iron plate 4 has a size that allows the steel member 2 and the vertical and horizontal streaks 3 to be wound around the outside, and is formed at a required height (height required for integrating the underground wall with the CFT columns). Then, the pre-cast concrete 10 is poured into the underground wall 9 below the tubular iron plate 4 and the SRC underground wall 1 is constructed.
[0015]
After the precast concrete 10 has hardened and developed a predetermined strength, the CFT column 6 or the steel pipe 7 for the required height on the ground is placed at an intermediate position between the steel frame members 2. It is built with the lower end placed on the top end of the precast concrete 10. After that, when the steel pipe 7 is used, concrete 12 is cast inside the steel pipe 7 and post-cast concrete 11 is cast inside the tubular iron plate 4. Thus, the CFT columns 6 that are firmly integrated with the SRC basement wall 1 near the ground surface are constructed.
[0016]
An upper structure is constructed by assembling a superframe frame between the upper portions of a plurality of CFT columns 6 built using the SRC basement wall 1 as a foundation beam or a column base as described above. The present invention relates to the construction of a station building in the upper space of a track, an elevated track on a bridge or a road, an elevated track on a road, and a structure such as an overpass by combining with a mega truss or the like utilizing the high strength of CFT columns. It is feasible to construct objects. Even if the underground wall is installed in only one direction as described above, a safe upper structure can be rationally constructed without unnecessarily increasing the wall thickness of the SRC structure underground wall.
[0017]
【Example】
Next, an embodiment relating to a station building constructed in a place where underground walls (foundation beams) can be installed in only one direction on both sides of the track will be described with reference to FIGS. As shown in FIG. 1, the (building body) 16 of the station building is integrated with a base near the surface of the SRC basement wall 1 provided in parallel and opposed to each other across a plurality of tracks 13. It is constructed by assembling a superframe between the upper parts of the CFT columns 6.
[0018]
As shown in FIGS. 2 to 4, the relationship between the SRC basement wall 1 and the CFT column 6 as one construction unit will be described. The steel member 2 which is a reinforcing material for the basement wall is not large enough to reach the support layer. A plurality of studs 5 are formed on both outer surfaces of the web and the outer surface of the flange in the range of about 3 to 4 m from the upper end (that is, the portion surrounded by the tubular iron plate 4) from the upper end thereof. It is attached in a typical arrangement. In one construction unit, the four H-shaped steels are provided deep in the vertical direction in the underground wall 9 at an interval of about 1 m each. On both outer sides of the H-section steel 2, vertical and horizontal streaks 3, 3 having a length reaching the support layer are also provided in the longitudinal direction. Further, a tubular iron plate 4 capable of externally winding the two vertical and horizontal stripes 3 and 3 is provided so as to surround the H-shaped steel 2 and the vertical and horizontal stripes 3 in the vicinity of the ground surface (a depth of 3 to 4 m from the ground). The tubular iron plate 4 is made of a steel plate having a thickness of about 20 mm, and has a depth of about 1.4 to 1.5 m, a length of about 4 to 5 m, and a height of about 3 to 4 m. Next, a pre-cast concrete 10 is poured into an underground wall 9 below the lower end of the tubular iron plate 4 to construct a deep SRC underground wall 1 in the ground (see FIG. 3B). At the stage where the precast concrete 10 has developed strength, the lower end of the steel pipe 7 for CFT columns is placed on the top end of the precast concrete 10 at an intermediate position between the H-shaped steels 2 in the tubular iron plate 4. The steel pipe is erected in a form to be mounted. The steel pipe 7 is a square steel pipe having a thickness of about 20 mm and a length of one side of about 800 mm, and has a height of about 7 to 8 m. A plurality of studs 8 are regularly arranged on the outer surface of the steel pipe 7 in a range of 3 to 4 m above the lower end (that is, a portion surrounded by the tubular iron plate 4). Post-cast concretes 11 and 12 are cast inside each of the steel pipe 7 and the tubular iron plate 4, and the SRC basement wall 1 and the CFT columns 6 are structurally formed by hardening and developing the concretes 11 and 12. A CFT column 6 which is firmly integrated and has the SRC basement wall 1 as a column base or a foundation beam is constructed (FIG. 4B). That is, the lower part of the CFT column 6 is integrated with the concrete 11 cast into the tubular iron plate 4 on the upper part of the SRC basement wall 1. The outer periphery of the concrete 11 is firmly restrained by the tubular iron plate 4, and the degree of adhesion to the CFT columns 6 is increased. Therefore, even in the case of a large structure that receives a large load such as the station building 16, the axial force, bending moment, and horizontal force of the CFT column 6 are effectively and safely transmitted to the SRC basement wall 1.
[0019]
[Effects of the present invention]
ADVANTAGE OF THE INVENTION According to the structure of the CFT column application based on the SRC basement wall which concerns on this invention, and the construction method, the axial force, bending moment, and horizontal force of the CFT column of a ground structure can be provided without providing a special foundation beam. As a result, a structure can be obtained in which the SRC-structured continuous underground wall of the foundation structure efficiently transmits to the foundation. In addition, by utilizing the high strength of the CFT column and combining it with a mega truss, etc., effective use of the space above tracks, rivers, roads, etc. can be achieved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a construction state of a station building with a focus on a basic part.
FIGS. 2A and 2B are a plan view and a cross-sectional view showing a construction state of an SRC basement wall.
FIGS. 3A and 3B are a plan view and a cross-sectional view showing a built-in state of a CFT column.
FIGS. 4A and 4B are a plan view and a cross-sectional view showing a concrete pouring procedure.
FIG. 5 is an overall view showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 SRC basement wall 2 Steel member 3 Vertical and horizontal bars 4 Tubular iron plate 5,8 Stud 6 CFT column 7 Steel pipe 9 Underground wall 10 Precast concrete 11,12 Postcast concrete

Claims (4)

鉄骨鉄筋コンクリート造地下壁と、前記鉄骨鉄筋コンクリート造地下壁の地表部付近で基部を一体化されて地上に所要の高さをもつ複数のコンクリート充填鋼管柱とが設けられ、前記コンクリート充填鋼管柱の上部間にスーパーフレーム架構を組んで上部構造物が構築されていること、
前記鉄骨鉄筋コンクリート造地下壁は、その長手方向に間隔をあけて鉛直に配置された複数の鉄骨部材と、前記鉄骨部材の両外側に長手方向に配置された縦横筋とが設けられ、前記鉄骨部材及び縦横筋を外巻き可能な大きさであって所要の高さの管状に形成された管状鉄板が地表部付近において前記鉄骨部材及び縦横筋を囲んで設けられ、前記管状鉄板以下の地下壁内に先打ちのコンクリートが打設され、管状鉄板内の前記先打ちコンクリートの天端上に、コンクリート充填鋼管柱がその下端を載置して建て込まれ、前記管状鉄板の内部に後打ちコンクリートが打設されることにより鉄骨鉄筋コンクリート造地下壁とコンクリート充填鋼管柱とが一体化されていることを特徴とする、鉄骨鉄筋コンクリート造地下壁を基礎とするコンクリート充填鋼管柱応用の構造物。
A steel-reinforced reinforced concrete basement wall, and a plurality of concrete-filled steel pipe columns having a required height on the ground integrated with a base near the surface of the steel-reinforced concrete basement wall, The superstructure is constructed with a superframe frame between them,
The steel-framed reinforced concrete basement wall is provided with a plurality of steel members vertically arranged at intervals in a longitudinal direction thereof and vertical and horizontal bars arranged longitudinally on both outer sides of the steel members. And a tubular iron plate formed in a tubular shape having a size that allows the vertical and horizontal streaks to be wound outside and having a required height is provided in the vicinity of the ground surface around the steel frame member and the vertical and horizontal streaks, and in an underground wall below the tubular iron plate. Pre-cast concrete is poured in, and a concrete-filled steel tubular column is mounted on the top end of the pre-cast concrete in the tubular iron plate with its lower end placed thereon, and post-cast concrete is placed inside the tubular iron plate. characterized in that the steel reinforced concrete basement walls and concrete filled steel tube column are integrated by being pouring concrete based upon steel frame reinforced concrete basement walls Hama structure of the steel pipe columns applications.
鉄骨鉄筋コンクリート造地下壁を補強する鉄骨部材の上部と、コンクリート充填鋼管柱を形成する鋼管の下部の各外面にコンクリートと一体化するスタッドが取り付けられていることを特徴とする、請求項1に記載した鉄骨鉄筋コンクリート造地下壁を基礎とするコンクリート充填鋼管柱応用の構造物。Wherein the upper of the steel member for reinforcing a steel reinforced concrete basement walls, stud integrated with the concrete to the outer surface of the lower portion of the steel pipe to form a concrete-filled steel tube column attached, according to claim 1 Concrete-filled steel tubular column-based structure based on a damaged steel reinforced concrete basement wall. イ) 地下壁の長手方向に間隔をあけて配置した鉄骨部材を地下壁内の鉛直方向に複数平行に設け、前記鉄骨部材の両外側に縦横筋を設けると共に、前記縦横筋を外巻き可能な大きさであって所要の高さに形成した管状鉄板を地表部付近の鉄骨部材、縦横筋を囲むように設け、前記管状鉄板以下の地下壁内に先打ちのコンクリートを充填して鉄骨鉄筋コンクリート造地下壁を施工する段階と、
ロ) 前記先打ちコンクリートが硬化した後に、地上に所要の高さをもつ鋼管を管状鉄板内の前記先打ちコンクリートの天端上に下端を載置する形に建て込み、前記鋼管と管状鉄板の各内部にコンクリートを後打ちして地表部付近で鉄骨鉄筋コンクリート造地下壁と一体化されたコンクリート充填鋼管柱を施工する段階と、
ハ) 鉄骨鉄筋コンクリート造地下壁を基礎として建てられた複数本のコンクリート充填鋼管柱の上部間にスーパーフレーム架構を組んで上部構造物を構築する段階と、
より成ることをそれぞれ特徴とする、鉄骨鉄筋コンクリート造地下壁を基礎とするコンクリート充填鋼管柱応用の構造物の施工方法。
B) A plurality of steel members arranged at intervals in the longitudinal direction of the underground wall are provided in parallel in the vertical direction in the underground wall, and vertical and horizontal streaks are provided on both outer sides of the steel frame members, and the vertical and horizontal streaks can be wound outside. A tubular steel plate of a size and formed to a required height is provided so as to surround a steel frame member and vertical and horizontal streaks near the surface of the ground, and a pre-cast concrete is filled in an underground wall below the tubular steel plate to form a steel reinforced concrete structure. Constructing an underground wall;
B) After the precast concrete has hardened, a steel pipe having a required height is erected on the ground so that the lower end is placed on the top end of the precast concrete in the tubular iron plate, and the steel pipe and the tubular iron plate are mounted. After-casting concrete inside each and constructing a concrete-filled steel tubular column integrated with a steel-framed reinforced concrete basement wall near the surface,
C) constructing a superframe by constructing a superframe frame between the upper portions of a plurality of concrete-filled steel tubular columns built on the basis of a steel reinforced concrete basement wall;
A method of constructing a concrete-filled steel tubular column-based structure based on a steel-framed reinforced concrete basement wall, characterized by comprising:
鉄骨鉄筋コンクリート造地下壁を補強する鉄骨部材の上部と、コンクリート充填鋼管柱をなす鋼管の下部の各外側面にコンクリートと一体化するスタッドを予め取り付けておくことを特徴とする、請求項に記載した鉄骨鉄筋コンクリート造地下壁を基礎とするコンクリート充填鋼管柱応用の構造物の施工方法。Characterized the top of the steel member for reinforcing a steel reinforced concrete basement walls, that advance mounting studs integral with concrete on each outer surface of the lower portion of the steel tube forming the concrete-filled steel tube column, according to claim 3 Construction method of concrete-filled steel tubular column based on damaged steel reinforced concrete basement wall.
JP20562795A 1995-08-11 1995-08-11 Concrete-filled steel tubular column based on steel-framed reinforced concrete basement wall and its construction method Expired - Fee Related JP3543139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20562795A JP3543139B2 (en) 1995-08-11 1995-08-11 Concrete-filled steel tubular column based on steel-framed reinforced concrete basement wall and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20562795A JP3543139B2 (en) 1995-08-11 1995-08-11 Concrete-filled steel tubular column based on steel-framed reinforced concrete basement wall and its construction method

Publications (2)

Publication Number Publication Date
JPH0953229A JPH0953229A (en) 1997-02-25
JP3543139B2 true JP3543139B2 (en) 2004-07-14

Family

ID=16510029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20562795A Expired - Fee Related JP3543139B2 (en) 1995-08-11 1995-08-11 Concrete-filled steel tubular column based on steel-framed reinforced concrete basement wall and its construction method

Country Status (1)

Country Link
JP (1) JP3543139B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131948A (en) * 1999-11-01 2001-05-15 Ohbayashi Corp Test method of deep layer loading test method, constructing method of underground structure, and underground structure constructed by this constructing method
JP5151078B2 (en) * 2006-06-26 2013-02-27 株式会社大林組 Core material, underground continuous wall, soil cement wall, underground wall pile, soil cement wall pile, cast-in-place concrete pile
JP5215030B2 (en) * 2008-05-08 2013-06-19 大成建設株式会社 Structure
CN103291084B (en) * 2013-06-09 2016-05-25 河北省建筑科学研究院 Building jacking steel reinforced concrete support system construction method
CN109736295B (en) * 2019-01-15 2024-02-27 中铁第四勘察设计院集团有限公司 Vertical supporting system of building structure and construction method thereof
CN116716978B (en) * 2023-06-12 2024-02-20 北京城建设计发展集团股份有限公司 Vehicle section upper cover steel structure supporting framework based on land saving and synergy

Also Published As

Publication number Publication date
JPH0953229A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
JP2000248526A (en) Pier structure and constructing method thereof
KR20020086506A (en) Composite structural framing system
KR101263370B1 (en) Precast end-block with girder connection member and bridge construction method using ths same
KR20190084712A (en) Prefabricated column assembly with foundation reinforcement part
JP2005036468A (en) Bridge construction method
JP3543139B2 (en) Concrete-filled steel tubular column based on steel-framed reinforced concrete basement wall and its construction method
KR100648376B1 (en) Joint of steel concrete column and horizontal member, construction method thereof
JPH03250130A (en) Constructing method using reinforced steel framed reinforced half-precast concrete beam without main reinforcing steel
JP3752999B2 (en) Upper and lower integrated bridge and its construction method
KR101426155B1 (en) The hybrid rahmen structure which can add prestress on steel girder of horizontal member by gap difference of connection face between vertical member and steel girder of horizontal member
JP4649283B2 (en) Columnar structure, pier or foundation pile using shape steel, and manufacturing method thereof
KR102244029B1 (en) Rahmen bridge without abuttment and construction method thereof
JP2860490B2 (en) Building Steel Foundation
JP2004300914A (en) Structure of bridge pier
JPH0480444A (en) Connection unit of reinforced concrete pole and steel framed beam
KR20170139873A (en) Coupling structure of double type for girder and column capable of reducing girder height
JP2536376B2 (en) Foundation structure of shed for road protection
JPH108422A (en) Reinforcement structure of bridge pier
JP2754377B2 (en) Building structure
KR102574831B1 (en) Compoisite phc pile and construction method thereof
JP2000265416A (en) Three-dimensional rigid frame type elevated bridge structure
JPH1150538A (en) Building and method for constructing the same
JPS6033981A (en) Beam constructing method
JP3232359B2 (en) How to build artificial ground
JPH07103583B2 (en) Construction method for large span underground structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees