JP3541433B2 - Helical pinion gear and method and apparatus for manufacturing the same - Google Patents

Helical pinion gear and method and apparatus for manufacturing the same Download PDF

Info

Publication number
JP3541433B2
JP3541433B2 JP12953994A JP12953994A JP3541433B2 JP 3541433 B2 JP3541433 B2 JP 3541433B2 JP 12953994 A JP12953994 A JP 12953994A JP 12953994 A JP12953994 A JP 12953994A JP 3541433 B2 JP3541433 B2 JP 3541433B2
Authority
JP
Japan
Prior art keywords
tooth
gear
forming
diameter
pinion gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12953994A
Other languages
Japanese (ja)
Other versions
JPH07310807A (en
Inventor
孝夫 小島
周二 中須加
克浩 伊藤
Original Assignee
ユニシア ジェーケーシー ステアリングシステム株式会社
アイコクアルファ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニシア ジェーケーシー ステアリングシステム株式会社, アイコクアルファ株式会社 filed Critical ユニシア ジェーケーシー ステアリングシステム株式会社
Priority to JP12953994A priority Critical patent/JP3541433B2/en
Publication of JPH07310807A publication Critical patent/JPH07310807A/en
Application granted granted Critical
Publication of JP3541433B2 publication Critical patent/JP3541433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Forging (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ヘリカルピニオンギアとこのヘリカルピニオンギアの製造方法および製造装置に関するものである。
【0002】
【従来の技術】
ヘリカルピニオンギアは、歯車軸に対して斜めにねじれた複数本の歯を有しており、このようなヘリカルピニオンギアを製造する方法として、従来、機械加工が一般的に行なわれていた。例えば、ステアリング用として使用されるヘリカルピニオンギアは、操向車輪に連動するラックに噛合うピニオンギア部と、舵取ハンドルの操作によって回転される入力軸に連結されるスプライン等の連結部が形成された円柱状の部分とを有しており、その製造工程としては、先ず、円柱状の歯車素材を必要な長さに切断し、この歯車素材のギアが成形される部分の外径を、製造されるピニオンギア部の外径に合せて予め旋削し、さらに、上記スプラインを形成するための内径加工を行なった後、ホブ加工あるいはシェーパー加工等により切削してピニオンギア部の歯切りを行ない、続いて、スプラインの歯切りを行ない、しかる後にバリ取り等の仕上加工を行なっている。
【0003】
このような機械加工では、加工工程数が多いため加工に時間がかかり、また、歯切り盤等の高価な専用の機械を必要とするためコスト高であった。しかも、製造されるヘリカルピニオンギアが、上述のように、ピニオンギア部と、このギア部よりも大径の円柱部とを有する形状の場合には、ギア部と円柱部との接続部に形成される歯形の不完全部の長さが、ホブ等の工具による制約によって長くなってしまうという問題があった。
【0004】
上記のように、機械加工によるヘリカルピニオンギアの製造には種々の問題があるため、近年では、塑性加工としての転造によりピニオンギアを製造する方法が提案されている。この転造加工による方法は、図7に示すように、加工用の歯形が形成されている1対の歯車工具101,102を対向させて配置し、これら両歯車工具101,102間に歯車素材103を回転自在に支持させ、両歯車工具101,102を回転させつつ、油圧機構またはカム等によって歯車素材103に押付けることにより、この歯車素材103の表面に歯形を加圧成形するようにしている。
【0005】
【発明が解決しようとする課題】
ヘリカルピニオンギアを転造加工により製造する場合には、両歯車工具101,102と歯車素材103とを加圧回転させることにより、素材103の外周面に塑性変形を起こさせ、工具101,102の成形用歯形を歯車素材103の表面に食い込ませて歯形を盛り上がらせるもので、製造されるピニオンギアが少数歯で、しかも、奇数歯の場合には、歯車素材に対する両歯車工具の押込み力が周期的に変動するため、加工精度が悪いという問題があった。また、歯車素材103に歯形を形成していく過程で、歯面が歯先方向へ向けて金属流動をするので、歯先の先端部上に捲れ上った部分が形成されてしまうという問題があった。そのため上記転造加工の後に、仕上加工をしなければならなかった。さらに、上記のようなステアリング装置用のヘリカルピニオンギアの場合には、ピニオンギア部に続いて、このギアの歯先径よりも大径の円柱状の部分を有しているため、転造用の歯車工具がこの大径の円柱部に干渉しないように、円柱部とギアが形成される部分との間に予め環状の逃げ溝を形成するようにしていた。そのため、強度上の問題が生ずるおそれがあった。
【0006】
さらに、ヘリカルピニオンギアを押出し加工による鍛造で製造する方法も考えられている。この方法では、下型内に、歯形成形部を有するダイスを配置し、円柱状の歯車素材をパンチによってダイス内に押込むことにより、円柱状歯車素材の外周面に複数本の歯を同時に成形する。このような押出し加工によりヘリカルピニオンギアを製造する場合に使用されるダイスには、その軸線に対して斜めにねじれた複数本の歯形成形部が設けられている。図6は、このダイス122の内面形状を展開して示す図であり、この図によって、ヘリカルピニオンギアを押出し加工で製造する過程について説明する。
【0007】
図6はダイス122の内面を水平方向に見た形状を展開して示す図であり、複数本の歯形成形部136が等間隔で斜めに傾斜した状態で設けられている。各歯形成形部136の上方側端面136eは、円周方向(図6の左右方向)に同一の高さにあり、従って、この端面136eと、歯形成形部136の両側の歯面136c,136dとのなす角度が異なっている。すなわち、図6のように、歯形成形部136が左上から右下へと傾斜している場合には、上記歯形成形部136の上方側端面136eと一方の歯面(図の右側歯面)136cとのなす角度は鈍角であり、その端面136eと他方の歯面(図の左側歯面)136dとのなす角度は鋭角になっている。このような形状の歯形成形部136を備えたダイス122に対して、円柱状の歯車素材をパンチによって矢印P方向から押込んで押出し加工を行なうと、この素材は、上記上方側端面136eと鈍角をなす側の歯面136cに向かってはスムーズに流れ込んで精度の良い歯面が形成されるが、端面136eと鋭角をなす側の歯面136dに向かっては素材の金属が流動しにくいため高精度を得ることができない。従って、製造されたヘリカルピニオンギアの各歯の一方の歯面は高精度に加工されるが、他方の歯面は精度が悪くなってしまうため、押出し加工により精度の良いヘリカルピニオンギアを製造することは不可能であった。
【0008】
本発明は上記欠点を除くためになされたもので、鍛造加工により製造することができ、しかも、高精度でコンパクトなヘリカルピニオンギアを提供することを目的とするものである。
【0009】
また、本発明は、上記ヘリカルピニオンギアを製造する方法および製造する装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明に係るヘリカルピニオンギアは、円柱部と、周方向に複数のはす歯を有するギア部と、前記円柱部とギア部との間に設けられ、ギア部側から円柱部側に向かって拡径するように形成された切上り部とを備えたヘリカルピニオンギアにおいて、前記はす歯は、前記ギア部をダイス内で押出し加工することにより形成される歯先部と、前記円柱部側端部において円柱部に対向する第1の歯面と、該第1の歯面の反対側に形成された第2の歯面と、前記第1の歯面側の前記円柱部側端部において前記歯先部の周方向幅が円柱部側に向かって拡大する肉盛り部とを有し、前記肉盛り部は、前記ダイスの前記第1の歯面を形成する第1歯面形成部の前記円柱部側端面に形成された切下げ部によって形成されるようにしたものである。
【0011】
また、第2の発明は、斜めにねじれた複数の歯形成形部が内周面に形成されるとともに、この歯形成形部の上側に歯形成形部より大径の大径部を有し、その中間には歯形成形部と大径部とを接続するテーパ面を設けたダイス内に、円柱状の歯車素材を押込んで押出し加工をすることにより、軸線に対して斜めにねじれた歯を有するギア部を備えたヘリカルピニオンギアを製造する方法において、上記各歯形成形部の上端面に、下方を向いた歯面側の一部をほぼ三角形状に切り欠いた切下げ部を形成することにより、上記各歯形成形部の上端面から両歯面側へ上記素材の金属を流動させてギア部の各歯を成形する際に、各歯形成形部の上端面から両歯面側へほぼ均等に流動させるようにしたものである。
【0012】
さらに、第3の発明は、斜めにねじれた複数本の歯形成形部が内周面に設けられるとともに、この歯形成形部の上側に歯形成形部より大径の大径部を有し、その中間にはこれら歯形成形部と大径部とを接続するテーパ面を設けたダイスと、上下動して、円柱状の歯車素材を上記ダイス内に押込むパンチとを備えたヘリカルピニオンギアの製造装置において、上記各歯形成形部の上端面に、下方を向いた歯面側の一部をほぼ三角形状に切り欠いた切下げ部を形成したものである。
【0013】
【作用】
上記第1の発明では、円柱部と、周方向に複数のはす歯を有するギア部と、前記円柱部とギア部との間に設けられ、ギア部側から円柱部側に向かって拡径するように形成された切上り部とを備えたヘリカルピニオンギアにおいて、前記はす歯は、前記ギア部をダイス内で押出し加工することにより形成される歯先部と、前記円柱部側端部において円柱部に対向する第1の歯面と、該第1の歯面の反対側に形成された第2の歯面と、前記第1の歯面側の前記円柱部側端部において前記歯先部の周方向幅が円柱部側に向かって拡大する肉盛り部とを有し、前記肉盛り部は、前記ダイスの前記第1の歯面を形成する第1歯面形成部の前記円柱部側端面に形成された切下げ部によって形成されるようにしたことにより、鍛造加工によりヘリカルピニオンギアを製造することが可能になり、低コストで高精度の製品を量産することができる。
【0014】
また、第2の発明では、上記各歯形成形部の上端面に、下方を向いた歯面側の一部をほぼ三角形状に切り欠いた切下げ部を形成することにより、歯形成形部の上端面から両歯面側へ上記素材の金属を流動させてギア部の各歯を成形する際に、上端面から両歯面側へほぼ均等に流動させるようにしたので、各歯の両側の歯面とも高精度に加工することができる。
【0015】
さらに、第3の発明では、ダイスの各歯形成形部の上端面に、下方を向いた歯面側の一部をほぼ三角形状に切り欠いた切下げ部を形成したことにより、機械加工による製造装置よりも安価で、しかも高精度なヘリカルピニオンギアを量産することが可能な鍛造加工による製造装置を得ることができる。
【0016】
【実施例】
以下、図面に示す実施例により本発明を説明する。図1は本発明の一実施例に係るヘリカルピニオンギア(全体として符号1で示す)を示す正面図、図2はその縦断面図である。この実施例のヘリカルピニオンギア1は、ラックピニオン式ステアリング装置に適用されるもので、ステアリング装置のラックに噛合うピニオンギア部2と、このギア部2の歯先円径よりも大径の円柱状の部分6とを備えており、この円柱状の部分6の端部内周面にはスプライン4が形成されて、舵取ハンドルの操作によって回転される入力軸と連結されるようになっている。これらギア部2と大径の円柱部6とはほぼ45度程度の傾斜を有する切上り部8によって接続されている。
【0017】
ギア部2には、このヘリカルピニオンギア1の軸線A に対して斜めにねじれた歯10が等間隔で複数本形成されている。これら各歯10の歯先10aの幅は、通常のギアと同様に、歯すじの全長に渡って同一であるが、円柱部6寄りの端部(すなわち、ギア部2と円柱部6とを接続する切上り部8上に位置する端部)の歯先に、ほぼ三角形状の肉盛り部12が形成されている。このヘリカルピニオンギア1の各歯10は、図1の右上から左下に向けて傾いており、肉盛り部12は、各歯10の左側の歯面10d(すなわち、円柱部6側を向いている歯面)側に設けられている。この肉盛り部12の上面(外周側の面)は、その歯すじの他の部分の歯先10aの上面と同一の平面上にある。
【0018】
スプライン4は、その詳細は図示しないが、大径の円柱部6の内周面に円周方向等間隔で凹部と凸部が交互に形成されており、入力軸の先端部の外周面に同様に交互に形成された凹凸部が、互いに間隙を隔てた状態で嵌合するようになっており、このヘリカルピニオンギア1と入力軸とは、上記凹凸間の間隙分だけ相対的に回転可能であり、それ以上の回転をしようとすると、両者の凹凸が互いに係合して一体的に回転するようになっている。なお、ヘリカルピニオンギア1の入力軸との連結部は、このようなスプライン4に限らず、例えば、入力軸の先端にほぼ菱形の係合部を設け、ヘリカルピニオンギアの端部の内面には、この菱形係合部が嵌合し、所定角度の相対回転が可能であるとともに、所定角度以上回転したときには、菱形係合部が係合して直接回転を伝達させるようなほぼ長方形の凹部を形成するようにしても良い。
【0019】
図3は上記形状のヘリカルピニオンギア1を押出し加工による鍛造によって製造するための製造装置を簡略化して示す縦断面図であり、下型14は、大径の外側リング16と、この外側リング16の内面に配置された内側リング20と、内側リング20の内面に配置されたダイス22と、これら外側リング16、内側リング20およびダイス22の上面に載置されたワークガイド24とを備えている。ワークガイド24内には、円柱状の歯車素材の外径とほぼ等しい内径のガイド穴24aが形成され、ダイス22には、後に説明する押出し加工用の加工穴26が形成され、これら各穴24a,26の軸芯が一致するようにして上下に重ね合せて固定されている。
【0020】
一方、上記各部材16,20,22,24から構成されている下型14の上方には、上型28が昇降可能に配置されている。この上型28は、下型14のワークガイド24のガイド穴24a内に挿入された円柱状の歯車素材を、上記ダイス22の加工穴26内に押込むガイドパンチ30と、このガイドパンチ30の下端に形成された小径部30aの外周に嵌着されて一体的に昇降するスプライン成形用パンチ32とを備えている。従って、本実施例では、上型28の一動作によって、ギア部2の前方押出し加工とスプライン4の後方押出し加工とが同時に行なわれる。この押出し加工を行なう際に、上型28と上記ワークガイド24との間で位置決めを行なうことにより、ギア部2とスプライン4との位相を一致させるようになっている。なお、この実施例では、上記上型28の一動作によって、円柱状の歯車素材の下部に、前方押出しによってギア部2を成形し、同時に上部に、後方押出しによってスプライン4を成形するようになっているため、ガイドパンチ30の下端に設けられた小径部30aの外周にスプライン成形用パンチ32を固定しているが、一度の加工工程でギア部2だけを成形し、スプライン4は別の加工により成形する場合には、このスプライン成形用パンチ32を省略しても良い。また、下型14の下方には、ノックアウト34が配置されており、成形後のヘリカルピニオンギア1を押し上げて下型14から取出すようになっている。
【0021】
上記ダイス22の押出し加工用の加工穴26は、上方から順に、上記ワークガイド24のガイド穴24aとほぼ同径の大径部26a、下方へ向けて次第に小径となるテーパ部26bおよびギア部2の歯先径とほぼ等しい径の小径部26cとを有している。この小径部26cの内周面には、図1に示したヘリカルピニオンギア1のギア部2の歯形を成形する歯形成形部36が設けられている。本実施例装置では、このダイス22の内面に設けられた歯形成形部36の形状に特徴があり、その形状を図4により説明する。図4は、ダイス22の上記小径部26cの内面を水平方向から見た形状を展開して示す図であり、複数本の斜めに傾いた歯形成形部36が等間隔で設けられている。この図に示す歯形成形部36の上部に、上述したヘリカルピニオンギア1の切上り部8の傾斜とほぼ等しい傾斜のテーパ部26bおよび、円柱部6の外径とほぼ等しい内径を有する大径部26aが設けられている。
【0022】
各歯形成形部36は、このダイス22の軸線A に対して斜めにねじれた形状をしており、これら各歯形成形部36の歯先36aが、上記ヘリカルピニオンギア1の各歯10間の歯底10bを形成し、各歯形成形部36間の歯底36bが、ヘリカルピニオンギア1の歯先10aを形成し、2本の隣接する歯形成形部36の向かい合っている1組の歯面36c,36dが、ヘリカルピニオンギア1の1本の歯10の両側の歯面10c,10dを形成する。そして、各歯形成形部36の大径部26a側端面(図4の上方側端面)は、その一部がほぼ三角形状に切欠かれている。
【0023】
本実施例に係るダイス22の歯形成形部36の形状と、図6に示した従来のダイスの歯形成形部136の形状との相違について、これら両者を重ね合せて示す図5によって説明する。歯形成形部36,136は、図の左上から右下へ向けて傾いており、従来の形状では、各歯形成形部136の上端面136eが全体に同一の平面である。従って、この上端面136eと図の右側の歯面136cとのなす角は鈍角であり、上端面136eと左側の歯面136dとのなす角は鋭角になっている。これに対し、本実施例に係るダイス22では、各歯形成形部36の上方側端面に、図の左側半分がほぼ三角形状に切欠かれた切下げ部36fが設けられている。そのため、歯形成形部36の上端面の切り欠かれていない部分(図の右側の部分)36eと右側の歯面36cとは、従来の構成と同様に鈍角をなしており、一方、切り欠かれている左側の切下げ部36fと左側の歯面36dとは、上記従来の形状と比較して大きい角度をなしている。この角度は適宜選択することができるが、特に、右側と同程度の鈍角とすることが好ましい。
【0024】
以上の構成に係るヘリカルピニオンギア1の製造装置を用いた製造工程について説明する。先ず、円柱状の長尺の材料を所定の長さに切断し、焼鈍、ボンデ処理等の前工程を行なった後、この円柱状の歯車素材を、上記下型14のワークガイド24のガイド穴24a内に挿入配置する。次に、上型28を下降させて円柱状歯車素材をダイス22の加工穴26の内部に押込む。すると、円柱状歯車素材の下端面の外周寄りの部分が、ダイス22の内周面に設けられている歯形成形部36の平坦な上端面36eおよび切下げ部36fに押し付けられて塑性変形され、この上端面36eおよび切下げ部36fの両側に流動して歯形成形部36の両歯面36c,36d間の溝内に流入し上記歯形10(図1参照)が形成される。このように塑性変形する際に、歯形成形部36の上端面の切り欠かれていない平坦な部分36eとこの平坦な部分36eに接続された右側の歯面36cとは鈍角になっているので、歯車素材の金属がスムーズに流入する。また、上記上端面の図の左側の部分も切下げ部36fになっているので、この切下げ部36f側に連続する歯面36d側にも従来装置のダイスと比較して金属素材が流動しやすくなっており、歯形成形部の左側の歯面36d側にも金属がスムーズに流入することにより、従来の製造装置を用いた製造方法よりも高精度の歯面10c,10dおよび歯先10aが形成される。
【0025】
上記のように上型28によって歯車素材を加圧して下型14のダイス22内に押込んでギア部2を成形している間に、この歯車素材の上端面には、上型28のガイドパンチ30の先端に形成された小径部30aおよびその外周に固定されているスプライン成形用のパンチ32が押込まれ、後方押出し加工によって、スプライン4が同時に成形される。
【0026】
上型28を下型14に対して所定量だけ下降させて上記円柱状の歯車素材の下部にギア部2を形成し、上端部の内周面にスプライン4を形成して、上型28の下降を停止させる。その結果、ギア部2の上方には、約45度のテーパ面からなる切上げ部8が連続して形成され、さらにその切上げ部8の上方は、外周面が加工されていない大径の円柱部6のまま残されて、図1に示すようなヘリカルピニオンギア1が成形される。
【0027】
本実施例では、ヘリカルピニオンギア1を図1に示すような構成にしたので、押出し加工による鍛造でヘリカルピニオンギア1を製造することが可能になり、量産が容易であり、また、低コストである。しかも、切削加工により製造したヘリカルピニオンギアよりも歯面の面粗さが優れており、また、切上り部分8の長さを短かくしてコンパクトにすることができる。さらに、転造により製造したヘリカルピニオンギアよりも歯すじ精度が優れており、しかも、ギア部2と大径部の部分との間に逃げ溝を形成する必要がなく強度も向上する、等種々の優れた効果を達成することができる。なお、上記実施例装置では、歯数が少なく、しかも奇数歯の場合に特に従来よりも高精度のギア部を形成することができるが、このようなヘリカルピニオンギアに限定されるものではなく、歯数の多い場合あるいは偶数歯の場合であっても従来の製造方法よりも高精度な歯形を有するヘリカルピニオンギアを製造することができる。また、切上り部8の角度をほぼ45度にしたが、この角度に限定されるものではないことは勿論である。
【0028】
【発明の効果】
以上述べたように本発明によれば、円柱部と、周方向に複数のはす歯を有するギア部と、前記円柱部とギア部との間に設けられ、ギア部側から円柱部側に向かって拡径するように形成された切上り部とを備えたヘリカルピニオンギアであって、前記はす歯は、前記ギア部をダイス内で押出し加工することにより形成される歯先部と、前記円柱部側端部において円柱部に対向する第1の歯面と、該第1の歯面の反対側に形成された第2の歯面と、前記第1の歯面側の前記円柱部側端部において前記歯先部の周方向幅が円柱部側に向かって拡大する肉盛り部とを有し、前記肉盛り部は、前記ダイスの前記第1の歯面を形成する第1歯面形成部の前記円柱部側端面に形成された切下げ部によって形成されるようにしたことにより、押出し加工による鍛造によって製造することが可能になり、高精度なヘリカルピニオンギアを低コストで製造することができる。また、ヘリカルピニオンギアの製造装置を構成するダイスの内面に斜めにねじれた複数本の歯形成形部と歯形成形部の上側に歯形成形部より大径の大径部を有し、その中間にはこれら歯形成形部と大径部とを接続するテーパ面を設け、さらに、これらの歯形成形部の上端面に、下方側を向いている歯面側の一部をほぼ三角形状に切り欠いた切下げ面を形成したことにより、歯車素材をパンチによってダイス内に押込む押出し加工を行なう際に、歯形成形部の上端面から両歯面側へほぼ均等に流動させることができるので、精度の良い歯形を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係るヘリカルピニオンギアの正面図である。
【図2】上記ヘリカルピニオンギアの縦断面図である。
【図3】本発明の一実施例に係るヘリカルピニオンギアの製造装置の縦断面図である。
【図4】上記ヘリカルピニオンギアの製造装置を構成するダイスの内周面を展開して示す説明図である。
【図5】図4に示すダイスの展開図と図6に示す従来のダイスの展開図とを重ね合せて示す説明図である。
【図6】従来のヘリカルピニオンギアの製造装置を構成するダイスの内周面を展開して示す説明図である。
【図7】ヘリカルピニオンギアを製造する従来装置の一例として示す転造加工法の概念図である。
【符号の説明】
ヘリカルピニオンギアの軸線
1 ヘリカルピニオンギア
2 ギア部
6 大径の円柱部
8 切り上がり部
10 歯
10d 円柱部方向を向いた歯面
12 肉盛り部
22 ダイス
36 歯形成形部
36e 歯形成形部の上端面
36f 歯形成形部の切下げ面
[0001]
[Industrial applications]
The present invention relates to a helical pinion gear and a method and an apparatus for manufacturing the helical pinion gear.
[0002]
[Prior art]
The helical pinion gear has a plurality of teeth that are obliquely twisted with respect to the gear shaft. As a method of manufacturing such a helical pinion gear, conventionally, machining has been generally performed. For example, a helical pinion gear used for steering has a pinion gear portion that meshes with a rack linked to a steered wheel, and a connection portion such as a spline that is connected to an input shaft that is rotated by operating a steering wheel. The manufacturing process includes, first, cutting a columnar gear material to a required length, and setting the outer diameter of a portion of the gear material where the gear is formed, After turning in advance according to the outer diameter of the pinion gear to be manufactured, and further performing inner diameter processing for forming the above-mentioned spline, cutting is performed by hobbing or shaper processing to cut the pinion gear. Subsequently, the spline is cut into teeth, and after that, finish processing such as deburring is performed.
[0003]
In such machining, the number of machining steps is large, so that machining takes a long time, and an expensive dedicated machine such as a gear cutting machine is required, so that the cost is high. Moreover, when the helical pinion gear to be manufactured has a shape having a pinion gear portion and a cylindrical portion having a diameter larger than that of the gear portion as described above, the helical pinion gear is formed at a connection portion between the gear portion and the cylindrical portion. There is a problem that the length of the incomplete portion of the tooth profile to be formed becomes longer due to the restriction by a tool such as a hob.
[0004]
As described above, there are various problems in manufacturing a helical pinion gear by machining, and in recent years, a method of manufacturing a pinion gear by rolling as plastic working has been proposed. As shown in FIG. 7, a method of this rolling process is to dispose a pair of gear tools 101 and 102 each having a working tooth profile facing each other, and a gear material between the two gear tools 101 and 102. 103 is rotatably supported, and while rotating both gear tools 101 and 102, the gear is pressed against the gear material 103 by a hydraulic mechanism or a cam or the like, so that a tooth profile is pressure-formed on the surface of the gear material 103. I have.
[0005]
[Problems to be solved by the invention]
When the helical pinion gear is manufactured by rolling, the outer peripheral surface of the material 103 is plastically deformed by rotating the two gear tools 101 and 102 and the gear material 103 under pressure. The molding tooth is cut into the surface of the gear material 103 to raise the tooth profile. When the pinion gear to be manufactured has a small number of teeth and has an odd number of teeth, the pushing force of both gear tools on the gear material is periodic. In this case, there is a problem that the machining accuracy is poor. In addition, in the process of forming the tooth profile on the gear blank 103, the metal surface flows toward the tooth tip, so that a turned-up portion is formed on the tip of the tooth tip. there were. For this reason, finishing work had to be performed after the above-mentioned rolling work. Further, in the case of the helical pinion gear for a steering device as described above, since the helical pinion gear has a cylindrical portion having a diameter larger than the tooth tip diameter of the gear following the pinion gear portion, it is used for rolling. In order to prevent the gear tool from interfering with the large-diameter cylindrical portion, an annular relief groove is previously formed between the cylindrical portion and the portion where the gear is formed. Therefore, there is a possibility that a problem in strength occurs.
[0006]
Further, a method of manufacturing a helical pinion gear by forging by extrusion has been considered. In this method, a plurality of teeth are simultaneously formed on the outer peripheral surface of a cylindrical gear material by placing a die having a tooth forming shape portion in a lower mold and pressing a cylindrical gear material into the die with a punch. I do. A die used for manufacturing a helical pinion gear by such an extrusion process is provided with a plurality of tooth forming portions which are obliquely twisted with respect to the axis thereof. FIG. 6 is a view showing the inner surface shape of the die 122 in a developed manner. The process of manufacturing the helical pinion gear by extrusion will be described with reference to FIG.
[0007]
FIG. 6 is an expanded view of the shape of the inner surface of the die 122 as viewed in the horizontal direction, in which a plurality of tooth forming portions 136 are provided at equal intervals and obliquely inclined. The upper end surface 136e of each tooth forming shape portion 136 is at the same height in the circumferential direction (the left-right direction in FIG. 6), and accordingly, this end surface 136e and the tooth surfaces 136c, 136d on both sides of the tooth forming shape portion 136. Angles are different. That is, as shown in FIG. 6, when the tooth forming part 136 is inclined from upper left to lower right, the upper end surface 136e of the tooth forming part 136 and one tooth surface (right tooth surface in the figure) 136c Is an obtuse angle, and the angle between the end surface 136e and the other tooth surface (left tooth surface in the drawing) 136d is an acute angle. When a columnar gear material is pushed into the die 122 having the tooth forming portion 136 having such a shape by punching in the direction of the arrow P and extruded, the material has an obtuse angle with the upper end surface 136e. A high-precision tooth surface is formed by flowing smoothly toward the forming tooth surface 136c, but high precision because the metal material is less likely to flow toward the tooth surface 136d that forms an acute angle with the end surface 136e. Can not get. Therefore, one tooth surface of each tooth of the manufactured helical pinion gear is processed with high precision, but the other tooth surface becomes inaccurate, so that an accurate helical pinion gear is manufactured by extrusion. That was impossible.
[0008]
The present invention has been made in order to eliminate the above-mentioned drawbacks, and has as its object to provide a highly accurate and compact helical pinion gear that can be manufactured by forging.
[0009]
Another object of the present invention is to provide a method and an apparatus for manufacturing the helical pinion gear.
[0010]
[Means for Solving the Problems]
The helical pinion gear according to the present invention is provided with a cylindrical portion, a gear portion having a plurality of helical teeth in a circumferential direction, and provided between the cylindrical portion and the gear portion, from the gear portion side toward the cylindrical portion side. In a helical pinion gear provided with a cut-up portion formed so as to increase the diameter, the helical tooth is formed by extruding the gear portion in a die, and the tip portion is formed on the cylindrical portion side. A first tooth surface opposed to the cylindrical portion at the end, a second tooth surface formed on the opposite side of the first tooth surface, and an end of the first tooth surface on the side of the cylindrical portion. A build-up portion in which the circumferential width of the tooth tip portion increases toward the cylindrical portion side, wherein the build-up portion is formed by a first tooth surface forming portion that forms the first tooth surface of the die. It is formed by a depressed portion formed on the cylindrical portion side end face .
[0011]
According to a second aspect of the present invention, a plurality of obliquely twisted tooth forming parts are formed on the inner peripheral surface, and a large diameter part having a larger diameter than the tooth forming parts is provided above the tooth forming parts. The gear section having teeth that are twisted obliquely with respect to the axis by pressing and extruding a cylindrical gear material into a die that has a tapered surface that connects the tooth forming section and the large diameter section In the method of manufacturing a helical pinion gear provided with the above, by forming on the upper end surface of each tooth forming shape portion a cut-out portion in which a part of the tooth surface side facing downward is cut out in a substantially triangular shape, When the metal of the above-described material is flown from the upper end surface of the tooth forming portion to the two tooth surfaces to form each tooth of the gear portion, the metal is made to flow almost evenly from the upper end surface of each tooth forming portion to both tooth surfaces. It was made.
[0012]
Further, in the third invention, a plurality of tooth forming parts which are obliquely twisted are provided on the inner peripheral surface, and a large diameter part having a larger diameter than the tooth forming parts is provided above the tooth forming parts. A helical pinion gear manufacturing apparatus comprising: a die provided with a tapered surface connecting the tooth forming portion and the large diameter portion; and a punch which moves up and down to push a cylindrical gear material into the die. In the above, a cut-out portion is formed in the upper end surface of each tooth forming portion, in which a part of the tooth surface side facing downward is cut out in a substantially triangular shape.
[0013]
[Action]
In the first aspect, the cylindrical portion, the gear portion having a plurality of helical teeth in the circumferential direction, and the cylindrical portion are provided between the cylindrical portion and the gear portion, and the diameter is increased from the gear portion side to the cylindrical portion side. A helical pinion gear provided with a notch formed so that the helical pinion portion is formed by extruding the gear portion in a die, and the cylindrical portion side end portion. A first tooth surface opposed to the cylindrical portion, a second tooth surface formed on the opposite side of the first tooth surface, and the tooth at an end of the cylindrical portion on the first tooth surface side. A build-up portion in which the circumferential width of the tip portion increases toward the cylindrical portion side, wherein the build-up portion is the column of the first tooth surface forming portion that forms the first tooth surface of the die. by the to be formed by a lowered portion formed in the part-side end face, Herikarupinio by forging It is possible to produce a gear, it is possible to mass-produce high-precision products at low cost.
[0014]
Further, in the second invention, the upper end surface of each tooth forming shape portion is formed by forming a cut-out portion in which a part of the tooth surface side facing downward is cut out in a substantially triangular shape on the upper end surface. When the metal of the above-mentioned material is flowed from the upper surface to both tooth surfaces to form each tooth of the gear portion, it is made to flow almost evenly from the upper end surface to both tooth surfaces. Both can be processed with high precision.
[0015]
Furthermore, in the third invention, a cut-out portion in which a part of the tooth surface side facing downward is cut out in a substantially triangular shape is formed at the upper end surface of each tooth forming shape portion of the die. It is possible to obtain a manufacturing apparatus by forging, which is cheaper and can mass-produce a highly accurate helical pinion gear.
[0016]
【Example】
Hereinafter, the present invention will be described with reference to embodiments shown in the drawings. FIG. 1 is a front view showing a helical pinion gear (indicated by reference numeral 1 as a whole) according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view thereof. The helical pinion gear 1 of this embodiment is applied to a rack and pinion type steering device, and includes a pinion gear portion 2 meshing with a rack of the steering device, and a circle having a diameter larger than the diameter of the tip of the gear portion 2. And a spline 4 formed on the inner peripheral surface at the end of the cylindrical portion 6 so as to be connected to an input shaft which is rotated by operating a steering wheel. . The gear portion 2 and the large-diameter cylindrical portion 6 are connected by a cut-up portion 8 having an inclination of about 45 degrees.
[0017]
The gear portion 2, the teeth 10 are a plurality of formed at equal intervals twisted obliquely with respect to the axis A 1 of the helical pinion gear 1. The width of the tip 10a of each tooth 10 is the same as the normal gear over the entire length of the tooth trace, but the end near the column 6 (ie, the gear 2 and the column 6 A substantially triangular build-up portion 12 is formed at the tooth tip of an end located on the cut-up portion 8 to be connected. Each tooth 10 of the helical pinion gear 1 is inclined from the upper right to the lower left in FIG. 1, and the overlaid portion 12 faces the tooth surface 10 d on the left side of each tooth 10 (that is, faces the column 6 side). Tooth surface). The upper surface (surface on the outer peripheral side) of the built-up portion 12 is on the same plane as the upper surface of the tooth tip 10a of the other portion of the tooth trace.
[0018]
Although the spline 4 is not shown in detail, concave portions and convex portions are alternately formed at equal intervals in the circumferential direction on the inner peripheral surface of the large-diameter cylindrical portion 6, and the spline 4 is formed on the outer peripheral surface of the distal end portion of the input shaft similarly. The helical pinion gear 1 and the input shaft are relatively rotatable by the gap between the irregularities. In order to rotate further, the concave and convex portions of the two engage with each other to rotate integrally. The connecting portion of the helical pinion gear 1 with the input shaft is not limited to the spline 4. For example, a substantially diamond-shaped engaging portion is provided at the tip of the input shaft, and the inner surface of the end portion of the helical pinion gear is provided. When the diamond-shaped engaging portion is fitted, relative rotation of a predetermined angle is possible, and when rotated more than a predetermined angle, a substantially rectangular concave portion is engaged so that the diamond-shaped engaging portion is engaged to directly transmit rotation. It may be formed.
[0019]
FIG. 3 is a simplified longitudinal sectional view showing a manufacturing apparatus for manufacturing the helical pinion gear 1 having the above-described shape by forging by extrusion. The lower mold 14 includes a large-diameter outer ring 16 and the outer ring 16. An inner ring 20 disposed on the inner surface of the inner ring 20, a die 22 disposed on the inner surface of the inner ring 20, and a work guide 24 mounted on the upper surfaces of the outer ring 16, the inner ring 20 and the die 22 are provided. . A guide hole 24a having an inner diameter substantially equal to the outer diameter of the columnar gear material is formed in the work guide 24, and a processing hole 26 for extrusion processing to be described later is formed in the die 22, and these holes 24a are formed. , 26 are vertically overlapped and fixed so that the axes of the shafts coincide with each other.
[0020]
On the other hand, an upper mold 28 is arranged above the lower mold 14 composed of the members 16, 20, 22, 24 so as to be able to move up and down. The upper die 28 includes a guide punch 30 that pushes the cylindrical gear material inserted into the guide hole 24 a of the work guide 24 of the lower die 14 into the processing hole 26 of the die 22. And a spline forming punch 32 which is fitted on the outer periphery of the small diameter portion 30a formed at the lower end and moves up and down integrally. Therefore, in the present embodiment, the front extrusion of the gear portion 2 and the rear extrusion of the spline 4 are simultaneously performed by one operation of the upper mold 28. When this extrusion is performed, the phase between the gear portion 2 and the spline 4 is matched by positioning between the upper die 28 and the work guide 24. In this embodiment, by one operation of the upper mold 28, the gear portion 2 is formed by extrusion in the lower part of the cylindrical gear material, and the spline 4 is formed by extrusion in the upper part at the same time. Therefore, the spline forming punch 32 is fixed to the outer periphery of the small diameter portion 30a provided at the lower end of the guide punch 30. However, only the gear portion 2 is formed in a single processing step, and the spline 4 is formed by another processing. In the case of forming by spline forming, the spline forming punch 32 may be omitted. A knockout 34 is arranged below the lower mold 14 so that the helical pinion gear 1 after molding is pushed up and removed from the lower mold 14.
[0021]
The processing hole 26 for the extrusion process of the die 22 includes a large diameter portion 26a having substantially the same diameter as the guide hole 24a of the work guide 24, a tapered portion 26b having a gradually decreasing diameter downward, and the gear portion 2 in order from the top. And a small diameter portion 26c having a diameter substantially equal to the diameter of the tooth tip. On the inner peripheral surface of the small diameter portion 26c, there is provided a tooth forming portion 36 for forming the tooth shape of the gear portion 2 of the helical pinion gear 1 shown in FIG. The apparatus of the present embodiment is characterized by the shape of the tooth forming portion 36 provided on the inner surface of the die 22, and the shape will be described with reference to FIG. FIG. 4 is an expanded view of the inner surface of the small-diameter portion 26c of the die 22 as viewed from the horizontal direction, in which a plurality of obliquely inclined tooth forming portions 36 are provided at equal intervals. A tapered portion 26b having a slope substantially equal to the slope of the cut-up portion 8 of the helical pinion gear 1 and a large-diameter portion having an inner diameter substantially equal to the outer diameter of the cylindrical portion 6 are provided above the tooth forming portion 36 shown in FIG. 26a is provided.
[0022]
Each tooth forming part 36 has a shape twisted obliquely with respect to the axis A 2 of the die 22, and the tip 36 a of each tooth forming part 36 is located between the teeth 10 of the helical pinion gear 1. The roots 10b form the roots 10b, the roots 36b between the tooth formations 36 form the tips 10a of the helical pinion gear 1, and a set of opposed tooth surfaces 36c of two adjacent tooth formations 36. , 36d form tooth surfaces 10c, 10d on both sides of one tooth 10 of the helical pinion gear 1. The large-diameter portion 26a-side end surface (upper end surface in FIG. 4) of each tooth forming portion 36 is partially cut out in a substantially triangular shape.
[0023]
The difference between the shape of the tooth forming portion 36 of the die 22 according to the present embodiment and the shape of the tooth forming portion 136 of the conventional die shown in FIG. 6 will be described with reference to FIG. The tooth forming parts 36, 136 are inclined from the upper left to the lower right in the figure, and in the conventional shape, the upper end surface 136e of each tooth forming part 136 is entirely the same plane. Therefore, the angle between the upper end surface 136e and the right tooth surface 136c in the drawing is an obtuse angle, and the angle between the upper end surface 136e and the left tooth surface 136d is an acute angle. On the other hand, in the die 22 according to the present embodiment, a cut-down portion 36f in which the left half of the drawing is cut out in a substantially triangular shape is provided on the upper end surface of each tooth forming portion 36. Therefore, an uncut portion (right portion in the drawing) 36e of the upper end surface of the tooth forming portion 36 and a right tooth surface 36c form an obtuse angle as in the conventional configuration. The left cut-down portion 36f and the left tooth surface 36d form an angle larger than that of the conventional shape. Although this angle can be appropriately selected, it is particularly preferable to set the obtuse angle to the same degree as the right side.
[0024]
A manufacturing process using the manufacturing apparatus for the helical pinion gear 1 according to the above configuration will be described. First, a columnar long material is cut into a predetermined length, and pre-processes such as annealing and bonding are performed. Then, the columnar gear material is inserted into a guide hole of the work guide 24 of the lower die 14. 24a. Next, the upper mold 28 is lowered to push the cylindrical gear material into the processing hole 26 of the die 22. Then, the portion of the lower end surface of the cylindrical gear material near the outer periphery is pressed against the flat upper end surface 36e and the cut-down portion 36f of the tooth forming portion 36 provided on the inner peripheral surface of the die 22, and is plastically deformed. The fluid flows to both sides of the upper end face 36e and the cut-down portion 36f and flows into the groove between the two tooth surfaces 36c and 36d of the tooth forming portion 36 to form the tooth profile 10 (see FIG. 1). When plastically deforming in this manner, the flat portion 36e of the upper end surface of the tooth forming portion 36 that is not cut off and the right tooth surface 36c connected to the flat portion 36e are at an obtuse angle. Gear material metal flows in smoothly. Also, since the left side portion of the upper end surface in the drawing is also a cut-down portion 36f, the metal material is more likely to flow on the tooth surface 36d side continuous with the cut-down portion 36f side as compared with the die of the conventional device. The metal smoothly flows into the tooth surface 36d on the left side of the tooth forming portion, so that the tooth surfaces 10c and 10d and the tooth tip 10a are formed with higher precision than the manufacturing method using the conventional manufacturing apparatus. You.
[0025]
As described above, while the gear material is pressed by the upper mold 28 and pressed into the die 22 of the lower mold 14 to form the gear portion 2, the guide punch of the upper mold 28 is provided on the upper end surface of the gear material. A small-diameter portion 30a formed at the distal end of 30 and a spline forming punch 32 fixed to the outer periphery thereof are pushed in, and the spline 4 is simultaneously formed by backward extrusion.
[0026]
The upper mold 28 is lowered by a predetermined amount with respect to the lower mold 14 to form the gear portion 2 below the columnar gear material, and the spline 4 is formed on the inner peripheral surface at the upper end. Stop descent. As a result, a cut-up portion 8 having a taper surface of about 45 degrees is continuously formed above the gear portion 2, and a large-diameter cylindrical portion whose outer peripheral surface is not processed is formed above the cut-up portion 8. 6, the helical pinion gear 1 as shown in FIG. 1 is formed.
[0027]
In the present embodiment, the helical pinion gear 1 is configured as shown in FIG. 1, so that the helical pinion gear 1 can be manufactured by forging by extrusion, mass production is easy, and the cost is low. is there. Moreover, the surface roughness of the tooth surface is superior to that of the helical pinion gear manufactured by cutting, and the length of the cut-up portion 8 can be shortened to make it compact. Furthermore, the helical pinion gear manufactured by rolling is superior in tooth lead accuracy, and furthermore, there is no need to form a clearance groove between the gear portion 2 and the large diameter portion, and the strength is improved. The excellent effect of can be achieved. Note that, in the above-described embodiment device, the number of teeth is small, and in the case of an odd number of teeth, a gear portion with higher precision can be formed particularly than in the conventional case. However, the present invention is not limited to such a helical pinion gear. Even when the number of teeth is large or the number of teeth is even, it is possible to manufacture a helical pinion gear having a more accurate tooth profile than a conventional manufacturing method. Further, the angle of the cut-up portion 8 is set to approximately 45 degrees, but it is a matter of course that the present invention is not limited to this angle.
[0028]
【The invention's effect】
As described above, according to the present invention, a cylindrical portion, a gear portion having a plurality of helical teeth in a circumferential direction, and provided between the cylindrical portion and the gear portion, and from the gear portion side to the cylindrical portion side. A helical pinion gear having a cut-up portion formed so as to increase in diameter toward the helical pinion , wherein the helical tooth is formed by extruding the gear portion in a die, A first tooth surface opposed to the cylindrical portion at the end of the cylindrical portion, a second tooth surface formed on the opposite side of the first tooth surface, and the cylindrical portion on the first tooth surface side A circumferential portion of the tooth tip portion at a side end portion having a built-up portion in which a circumferential width increases toward a cylindrical portion; and the built-up portion includes a first tooth forming the first tooth surface of the die. by the to be formed by a lowered portion formed in the cylindrical portion side end surface of the surface forming portion, by extrusion It is possible to manufacture by granulation, high-precision helical pinion gears can be manufactured at a low cost. Further, the helical pinion gear manufacturing apparatus has a plurality of tooth forming parts obliquely twisted on the inner surface of a die constituting the helical pinion gear manufacturing apparatus, and a large diameter part having a larger diameter than the tooth forming part on the upper side of the tooth forming part. A tapered surface that connects the tooth forming part and the large diameter part is provided, and furthermore, a lower part of the tooth side facing downward is cut off in a substantially triangular shape on the upper end surface of the tooth forming part. Because the surface is formed, when extruding the gear material into the die with a punch by punching, it can be flowed almost evenly from the upper end surface of the tooth forming shape part to both tooth surfaces, so that the tooth profile with high precision Can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view of a helical pinion gear according to one embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the helical pinion gear.
FIG. 3 is a longitudinal sectional view of a helical pinion gear manufacturing apparatus according to one embodiment of the present invention.
FIG. 4 is an explanatory diagram showing an inner peripheral surface of a die forming the helical pinion gear manufacturing apparatus in a developed manner.
FIG. 5 is an explanatory view showing a developed view of the die shown in FIG. 4 and a developed view of the conventional die shown in FIG. 6 in a superimposed manner.
FIG. 6 is an explanatory view showing an inner peripheral surface of a die constituting a conventional helical pinion gear manufacturing apparatus in a developed manner.
FIG. 7 is a conceptual diagram of a rolling method shown as an example of a conventional apparatus for manufacturing a helical pinion gear.
[Explanation of symbols]
A 1 Axis of helical pinion gear 1 helical pinion gear 2 gear portion 6 large-diameter cylindrical portion 8 cut-up portion 10 teeth 10d tooth surface 12 facing cylindrical direction Overlay portion 22 dice 36 tooth forming portion 36e of tooth forming portion Upper end surface 36f Cut-down surface of tooth forming section

Claims (4)

円柱部と、周方向に複数のはす歯を有するギア部と、前記円柱部とギア部との間に設けられ、ギア部側から円柱部側に向かって拡径するように形成された切上り部とを備えたヘリカルピニオンギアにおいて、
前記はす歯は、前記ギア部をダイス内で押出し加工することにより形成される歯先部と、前記円柱部側端部において円柱部に対向する第1の歯面と、該第1の歯面の反対側に形成された第2の歯面と、前記第1の歯面側の前記円柱部側端部において前記歯先部の周方向幅が円柱部側に向かって拡大する肉盛り部とを有し、前記肉盛り部は、前記ダイスの前記第1の歯面を形成する第1歯面形成部の前記円柱部側端面に形成された切下げ部によって形成されることを特徴とするヘリカルピニオンギア。
A columnar portion, a gear portion having a plurality of helical teeth in a circumferential direction, and a cutting portion provided between the columnar portion and the gear portion, and formed to increase in diameter from the gear portion side toward the columnar portion side. In a helical pinion gear with an up section,
The helical tooth is formed by extruding the gear portion in a die, a first tooth surface opposed to the cylindrical portion at the cylindrical portion-side end, and the first tooth. A second tooth surface formed on the opposite side of the surface, and a built-up portion in which the circumferential width of the tooth tip portion increases toward the cylindrical portion side at the end of the cylindrical portion on the first tooth surface side. Wherein the build-up portion is formed by a cut-down portion formed on the cylindrical portion side end surface of the first tooth surface forming portion forming the first tooth surface of the die. Helical pinion gear.
斜めにねじれた複数の歯形成形部が内周面に形成されるとともに、この歯形成形部の上側に歯形成形部より大径の大径部を有し、その中間には歯形成形部と大径部とを接続するテーパ面を設けたダイス内に、円柱状の歯車素材を押込んで押出し加工をすることにより、軸線に対して斜めにねじれた歯を有するギア部を備えたヘリカルピニオンギアを製造する方法において、上記各歯形成形部の上端面に、下方を向いた歯面側の一部をほぼ三角形状に切り欠いた切下げ部を形成することにより、上記各歯形成形部の上端面から両歯面側へ上記素材の金属を流動させてギア部の各歯を成形する際に、各歯形成形部の上端面から両歯面側へほぼ均等に流動させるようにしたことを特徴とするヘリカルピニオンギアの製造方法。A plurality of obliquely twisted tooth-forming portions are formed on the inner peripheral surface, and a large-diameter portion having a larger diameter than the tooth-forming portion is provided above the tooth-forming portion, and the tooth-forming portion and the large-diameter portion are located between them. A helical pinion gear with a gear part having teeth that are twisted obliquely to the axis by extruding a cylindrical gear material into a die with a tapered surface that connects the part and extruding it. In the method, a cut-out portion in which a part of the tooth surface side facing downward is cut out in a substantially triangular shape is formed on the upper end surface of each tooth forming shape portion, so that both of the tooth forming shape portions are cut off from the upper end surface. A helical structure wherein when the metal of the above-mentioned material is caused to flow to the tooth surface side to form each tooth of the gear portion, it is made to flow almost evenly from the upper end surface of each tooth forming shape portion to both tooth surface sides. Manufacturing method of pinion gear. 斜めにねじれた複数本の歯形成形部が内周面に設けられるとともに、この歯形成形部の上側に歯形成形部より大径の大径部を有し、その中間にはこれら歯形成形部と大径部とを接続するテーパ面を設けたダイスと、上下動して、円柱状の歯車素材を上記ダイス内に押込むパンチとを備えたヘリカルピニオンギアの製造装置において、上記各歯形成形部の上端面に、下方を向いた歯面側の一部をほぼ三角形状に切り欠いた切下げ部を形成したことを特徴とするヘリカルピニオンギアの製造装置。A plurality of obliquely twisted tooth-forming portions are provided on the inner peripheral surface, and a large-diameter portion having a larger diameter than the tooth-forming portion is provided above the tooth-forming portion. In a helical pinion gear manufacturing apparatus including a die having a tapered surface connecting a radial portion and a punch that moves up and down to push a cylindrical gear material into the die, An apparatus for manufacturing a helical pinion gear, wherein a cut-out portion is formed on an upper end surface of a part of a tooth surface side facing downward in a substantially triangular shape. 上記ダイスは、内周面の上部に円柱状の歯車素材の外径とほぼ一致する内径を有する大径部が、下部に斜めにねじれた複数本の歯形成形部が、そして、中間にこれら大径部と歯形成形部とを接続するテーパ面が設けられており、パンチにより歯車素材をダイス内に押込む際に、この歯車素材の上部を上記ダイスの大径部内に残した位置で停止させることを特徴とする請求項3に記載のヘリカルピニオンギアの製造装置。The above-mentioned die has a large-diameter portion having an inner diameter substantially matching the outer diameter of a cylindrical gear material at an upper portion of an inner peripheral surface, a plurality of obliquely twisted tooth forming portions at a lower portion, and an intermediate portion of these large-diameter portions. A tapered surface that connects the diameter portion and the tooth forming portion is provided, and when the gear material is pressed into the die by the punch, the upper portion of the gear material is stopped at a position left in the large diameter portion of the die. The helical pinion gear manufacturing apparatus according to claim 3, wherein:
JP12953994A 1994-05-19 1994-05-19 Helical pinion gear and method and apparatus for manufacturing the same Expired - Fee Related JP3541433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12953994A JP3541433B2 (en) 1994-05-19 1994-05-19 Helical pinion gear and method and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12953994A JP3541433B2 (en) 1994-05-19 1994-05-19 Helical pinion gear and method and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07310807A JPH07310807A (en) 1995-11-28
JP3541433B2 true JP3541433B2 (en) 2004-07-14

Family

ID=15012033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12953994A Expired - Fee Related JP3541433B2 (en) 1994-05-19 1994-05-19 Helical pinion gear and method and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3541433B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059566A (en) * 1999-06-17 2001-03-06 Sawai Narejji Laboratory:Kk Helical gear with shaft, method of extrusion molding of helical tooth and dies for extrusion molding of helical tooth
US6293164B1 (en) * 1999-06-30 2001-09-25 Trw Inc. Rack and pinion steering apparatus and method for manufacturing a helical pinion
KR100397952B1 (en) 2000-03-01 2003-09-13 세키구치 산교 가부시키가이샤 Cold forging method and device
EP1834716B1 (en) 2004-11-29 2012-08-08 Nsk Ltd. Method of producing toothed transmission member having oil holders and toothed transmission member produced by the method
JP5091041B2 (en) * 2008-07-24 2012-12-05 日立オートモティブシステムズ株式会社 Power steering device, pinion shaft, and method of manufacturing pinion shaft
CN111545637B (en) * 2020-04-03 2021-08-03 浙江三维大通精锻股份有限公司 Input shaft hub blind hole spline machining method

Also Published As

Publication number Publication date
JPH07310807A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
US4708912A (en) Sintered metal body with at least one toothing
US6151941A (en) Apparatus and method for roll forming gears
US8091236B2 (en) Manufacturing method for toothed power transmission member having oil reservoir and toothed power transmission member manufactured by this manufacturing method
JP3541433B2 (en) Helical pinion gear and method and apparatus for manufacturing the same
KR19980071700A (en) Method and apparatus for manufacturing rack shaft
JPH0469496B2 (en)
JP2005254307A (en) Gear, method and apparatus for producing gear
JP3564728B2 (en) Helical pinion gear for steering and method of manufacturing the same
KR100237124B1 (en) Rolling method and apparatus of gear
US4571972A (en) Skewed-axis cylindrical die rolling
EP2422898B1 (en) Method for plastic forming of toothed shafts
JP4038101B2 (en) Gear shaft and rolling flat dies
JPS63120958A (en) Speed change gear and manufacture thereof
JP3429711B2 (en) Cup-shaped gear manufacturing equipment
JPS6045021B2 (en) Tools and methods for rolling splines etc.
US4506537A (en) Die for splining thin-wall power transmitting members
JP3700156B2 (en) Helical gear and differential device
JPH033726A (en) Method of manufacturing helical gear cold stamping die
JPH1110274A (en) Helical gear, production method and producing device therefor
US4882926A (en) Roll forming notches in a thin-wall power transmission member
JPH04366028A (en) Manufacturing device for transmission gear
JP4883340B2 (en) Worm manufacturing method and rolling die
JPS60261638A (en) Manufacture of gear provided with boss
JP3713465B2 (en) Rolling method
JP3403687B2 (en) Manufacturing method of multi-stage gear

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees