JP3535940B2 - Spot welding electrode and method of manufacturing the same - Google Patents

Spot welding electrode and method of manufacturing the same

Info

Publication number
JP3535940B2
JP3535940B2 JP18936296A JP18936296A JP3535940B2 JP 3535940 B2 JP3535940 B2 JP 3535940B2 JP 18936296 A JP18936296 A JP 18936296A JP 18936296 A JP18936296 A JP 18936296A JP 3535940 B2 JP3535940 B2 JP 3535940B2
Authority
JP
Japan
Prior art keywords
electrode
spot welding
welding
aging treatment
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18936296A
Other languages
Japanese (ja)
Other versions
JPH1029073A (en
Inventor
崇夫 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP18936296A priority Critical patent/JP3535940B2/en
Publication of JPH1029073A publication Critical patent/JPH1029073A/en
Application granted granted Critical
Publication of JP3535940B2 publication Critical patent/JP3535940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特にAlまたはAl合
金のスポット溶接に適した、電極寿命が大幅に改善され
たスポット溶接用電極およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for spot welding, which is suitable for spot welding of Al or Al alloy, and has a significantly improved electrode life, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】抵抗スポット溶接は、自動車の組立工程
で最も多く用いられている溶接方法である。自動車のボ
ディシートには、従来より、圧延鋼板、特に亜鉛メッキ
鋼板が多用されていたが、最近は省エネルギー、環境問
題等を背景に、自動車の軽量化が要求され、AlまたはAl
合金が使用されるようになってきた。そして、前記Alま
たはAl合金のスポット溶接用電極には、高温強度、電気
伝導度、および熱伝導度が高く、比較的低コストの Cu-
1wt%Cr合金が用いられている。ところで、電極には、ス
ポット溶接の際の押圧力に耐える強度と十分な熱伝導性
(導電率)とが要求される。熱伝導性が低いと電極の先
端が被溶接材料と反応して合金化し、合金化した部分が
被溶接材に移着して電極が消耗し、それに伴って電流密
度が低下し、その結果溶接ナゲット(圧着部分)が小さ
くなって所定の溶接強度(引張り剪断荷重)が得られな
くなる。
2. Description of the Related Art Resistance spot welding is the most frequently used welding method in the assembly process of automobiles. Conventionally, rolled steel sheets, especially galvanized steel sheets, have been widely used for automobile body sheets, but recently, due to energy saving, environmental problems, etc., weight reduction of automobiles has been demanded.
Alloys have come into use. The Al or Al alloy spot welding electrode has high temperature strength, high electrical conductivity, and high thermal conductivity, and has a relatively low cost Cu-
1wt% Cr alloy is used. By the way, the electrode is required to have sufficient strength to withstand the pressing force during spot welding and sufficient thermal conductivity (electrical conductivity). When the thermal conductivity is low, the tip of the electrode reacts with the material to be welded and alloys, the alloyed part is transferred to the material to be welded, the electrode is consumed, and the current density decreases accordingly, resulting in welding. The nugget (press-bonded portion) becomes small, and a predetermined welding strength (tensile shear load) cannot be obtained.

【0003】[0003]

【発明が解決しようとする課題】従来の Cu-1wt%Cr合金
電極で亜鉛メッキ鋼板をスポット溶接した場合の電極寿
命は5千点以上(圧延鋼板の場合は1万点以上)と言わ
れている。それに対しAlまたはAl合金は1千点程度であ
り、これにZn等の金属メッキを施したものは更に短寿命
となる。なお、電極寿命とは、スポット溶接で連続打点
した際、所定の溶接強度が得られなくなった時点までの
打点数のことである。自動車産業ではAlまたはAl合金並
びにそれらに金属メッキした材料を溶接する際の電極寿
命を現在のメッキ鋼板並の5千点以上に改善することが
重要課題とされており、それを叶える電極の開発が強く
望まれている。このようなことから、本発明者等はAlま
たはAl合金をスポット溶接する際の Cu-1wt%Cr合金電極
の寿命が短い原因について研究を行い、その原因は Cu-
1wt%Cr合金電極は強度が不十分なことにあり、Crを多量
に含有させることにより改善し得ることを知見し、更に
研究を進めて本発明を完成させるに至った。
It is said that the life of an electrode when spot-welding a galvanized steel sheet with a conventional Cu-1wt% Cr alloy electrode is 5,000 points or more (10,000 points or more in the case of rolled steel sheet). There is. On the other hand, the number of Al or Al alloys is about 1,000, and a metal plated with such as Zn has a shorter life. Note that the electrode life is the number of spots until a predetermined welding strength cannot be obtained during continuous spot welding. In the automobile industry, it is an important issue to improve the electrode life when welding Al or Al alloys and their metal-plated materials to more than 5,000 points, which is equivalent to that of current plated steel sheets. Is strongly desired. From this, the present inventors have studied the cause of the short life of Cu-1wt% Cr alloy electrode when spot welding Al or Al alloy, the cause is Cu-
Since the 1 wt% Cr alloy electrode has insufficient strength, it was found that it can be improved by adding a large amount of Cr, and further research was conducted to complete the present invention.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
被溶接材を押圧し通電加熱して溶接するスポット溶接用
電極において、前記電極が、Crを10〜30wt% 含み、残部
がCuと不可避的不純物からなり、前記Crの晶出物がCuマ
トリックス中に押圧方向に伸長してファイバ状に分散し
ており、引張強さが800N/mm2以上、導電率が 75%IACS以
上であることを特徴とするスポット溶接用電極である。
The invention according to claim 1 is
In an electrode for spot welding, in which a material to be welded is pressed and electrically heated to be welded, the electrode contains 10 to 30 wt% of Cr, the balance consists of Cu and inevitable impurities, and the crystallized product of Cr is in a Cu matrix. The electrode for spot welding is characterized in that it extends in the pressing direction and is dispersed into fibers, and has a tensile strength of 800 N / mm 2 or more and an electrical conductivity of 75% IACS or more.

【0005】請求項2記載の発明は、被溶接材を押圧し
通電加熱してスポット溶接する電極において、Crを10〜
30wt% 含み、C 、B 、N の中から選ばれる1種または2
種以上を総計で 0.001〜0.1wt%含み、残部Cuと不可避的
不純物からなり、前記電極のCuマトリックス中にCrの晶
出物が押圧方向に伸長してファイバ状に分散しており、
引張強さが800N/mm2以上、導電率が 75%IACS以上である
ことを特徴とするスポット溶接用電極である。
According to a second aspect of the present invention, in an electrode for spot welding by pressing a material to be welded and heating it with electric current, Cr is 10 to 10.
1 or 2 selected from C, B and N containing 30 wt%
0.001 to 0.1 wt% in total containing at least one species, consisting of the balance Cu and unavoidable impurities, and the crystallized product of Cr in the Cu matrix of the electrode is dispersed in the fiber shape by stretching in the pressing direction,
This spot welding electrode is characterized by a tensile strength of 800 N / mm 2 or more and an electrical conductivity of 75% IACS or more.

【0006】請求項3記載の発明は、Crを10〜30wt% 含
み、残部がCuと不可避的不純物からなる銅合金に熱間加
工、溶体化処理、冷間加工、および時効処理を施すスポ
ット溶接用電極の製造方法であって、前記冷間加工での
断面減少率を 90%以上とし、前記時効処理を 400〜600
℃の温度範囲内で行うことを特徴とするスポット溶接用
電極の製造方法である。
The invention according to claim 3 is spot welding in which a copper alloy containing 10 to 30 wt% of Cr and the balance of Cu and inevitable impurities is subjected to hot working, solution treatment, cold working, and aging treatment. The method for manufacturing an electrode for use, wherein the cross-sectional reduction rate in the cold working is 90% or more, and the aging treatment is 400 to 600.
A method for manufacturing an electrode for spot welding, which is performed within a temperature range of ° C.

【0007】請求項4記載の発明は、Crを10〜30wt% 含
み、C 、B 、N の中から選ばれる1種または2種以上を
総計で 0.001〜0.1wt%含み、残部がCuと不可避的不純物
からなる銅合金に熱間加工、溶体化処理、冷間加工、時
効処理を施すスポット溶接用電極の製造方法であって、
前記冷間加工での断面減少率を 90%以上とし、前記時効
処理を 400〜600 ℃の温度範囲内で行うことを特徴とす
るスポット溶接用電極の製造方法である。
The invention according to claim 4 contains 10 to 30 wt% of Cr, and 0.001 to 0.1 wt% in total of one or more selected from C, B and N, and the balance is Cu and unavoidable. Of a spot welding electrode to which hot working, solution treatment, cold working, and aging treatment are applied to a copper alloy consisting of static impurities,
The method for producing an electrode for spot welding is characterized in that the area reduction rate in the cold working is 90% or more and the aging treatment is performed within a temperature range of 400 to 600 ° C.

【0008】[0008]

【発明の実施の形態】本発明のスポット溶接用電極にお
いて、Crの晶出物をCuマトリックス中に押圧方向に伸長
してファイバ状に分散させるのは、押圧方向への強度を
増して、溶接時に電極が変形するのを防止するためであ
る。ここで、ファイバ状とは、棒状、ひも状、切片状、
糸状、不定形状等任意の細長いものであり、断面形状
も、円形、楕円形、多角形状等任意である。またCr晶出
物のファイバ状伸長物の長さLと径Tとの比率L/Tが
3を超えると、より高強度が得られ望ましい。前記長さ
Lと径Tは、Crのファイバ状伸長物を無作為にサンプリ
ングして測定し、それらを平均した値を用いるのが良
い。このときのサンプル数は20以上が望ましい。この発
明において、Cr量を10〜30wt% に規定した理由は、 10w
t%未満では十分な強度が得られず、 30wt%を超えると冷
間加工等が困難になるためである。
BEST MODE FOR CARRYING OUT THE INVENTION In the spot welding electrode of the present invention, the crystallized substance of Cr is expanded in the pressing direction in the pressing direction and dispersed in a fiber shape by increasing the strength in the pressing direction and welding. This is to prevent the electrodes from being deformed at times. Here, the fiber shape means a rod shape, a string shape, a section shape,
The shape is an arbitrary elongated shape such as a thread shape or an indefinite shape, and the cross-sectional shape is also an arbitrary shape such as a circle, an ellipse, or a polygon. Further, when the ratio L / T of the length L and the diameter T of the fibrous extension of the Cr crystallized product exceeds 3, it is desirable that higher strength can be obtained. As the length L and the diameter T, it is preferable to use the values obtained by randomly sampling and measuring the fibrous extensions of Cr and averaging them. The number of samples at this time is preferably 20 or more. In this invention, the reason why the Cr amount is specified to be 10 to 30 wt% is 10 w
This is because if it is less than t%, sufficient strength cannot be obtained, and if it exceeds 30 wt%, cold working becomes difficult.

【0009】この発明において、引張強さを800N/mm2
上に規定した理由は、800N/mm2未満ではスポット溶接の
際に電極が変形する場合があるためである。引張強さを
800N/mm2以上にするには、Crを10〜30wt% 含有させ、前
記Crの晶出物をCuマトリックス中に押圧方向に伸長した
ファイバ状に分散させることにより達成される。この発
明において、導電率を 75%IACS以上に規定した理由は、
75%IACS未満では熱伝導性(放熱性)が悪く電極先端部
が温度上昇して被溶接材との間で合金化が起きて融点が
低下し、被溶接材との間での溶着頻度が増すためであ
る。Crはその大部分が晶出するが、一部は固溶し導電率
を大幅に下げる。導電率を75%IACS以上にすることは、
固溶Crを時効処理により析出させることにより達成され
る。
In the present invention, the reason why the tensile strength is specified to be 800 N / mm 2 or more is that if the tensile strength is less than 800 N / mm 2 , the electrode may be deformed during spot welding. Tensile strength
To obtain 800 N / mm 2 or more, Cr is contained in an amount of 10 to 30 wt%, and the crystallized product of Cr is dispersed in a Cu matrix in the form of fibers extending in the pressing direction. In this invention, the reason why the conductivity is specified to be 75% IACS or more is as follows.
If it is less than 75% IACS, the thermal conductivity (heat dissipation) is poor and the temperature of the electrode tip rises, alloying occurs with the material to be welded and the melting point decreases, and the welding frequency with the material to be welded decreases. This is to increase. Most of Cr crystallizes out, but a part of it solid-dissolves, significantly reducing the conductivity. To increase the conductivity to 75% IACS or higher,
This is achieved by precipitating solid solution Cr by aging treatment.

【0010】請求項2記載の発明において、C 、B 、N
の各元素は、Cr晶出物のファイバ状伸長物の分布状態を
より均一化する。また、強度を上昇させ、若干ながら溶
着頻度を低減する働きがある。前記C 、B 、N の総量を
0.001〜0.1wt%に規定する理由は、前記総量が0.001wt%
未満ではその効果が十分に得られず、0.1wt%を超えると
加工性が低下するためである。この発明における引張強
さと導電率の規定理由は、請求項1の発明の場合と同じ
である。
In the invention according to claim 2, C, B, N
Each element of makes the distribution state of the fibrous extension of the Cr crystallized substance more uniform. It also has the function of increasing the strength and slightly reducing the welding frequency. The total amount of C, B and N
The reason for defining 0.001 to 0.1 wt% is that the total amount is 0.001 wt%
If it is less than 0.1%, the effect cannot be sufficiently obtained, and if it exceeds 0.1% by weight, workability is deteriorated. The reasons for defining the tensile strength and the conductivity in this invention are the same as those in the invention of claim 1.

【0011】請求項3記載の発明は、請求項1記載の発
明の電極の製造方法である。Cu-Cr系合金の晶出Crをフ
ァイバ状にその長さ方向を押圧方向に向けて分散させる
には様々な方法が考えられるが、工業的に容易に実現で
きる方法として高断面減少率で冷間加工する方法があ
る。この場合CrはCuより変形抵抗が大きいため、低加工
ではCr晶出物は伸長不十分でファイバ状とならず、また
押圧方向に十分に配向せず、従って得られる電極は強度
が不足し、寿命を大幅に改善することはできない。この
発明において、冷間加工での断面減少率を 90%以上に限
定した理由は、 90%未満ではCr晶出物をファイバ状に十
分伸長させることができず、電極を十分な強度(800N/m
m2以上)にできないためである。冷間加工での断面減少
率は 90%以上必要で、望ましくは 99%以上である。電極
の特性、特に強度は断面減少率により調整することが可
能である。この発明では、時効処理で固溶Crが析出し導
電率が回復する。時効処理温度を 400〜600 ℃に規定し
た理由は 400℃未満では導電率が十分に回復せず、 600
℃を超えるとファイバ状に伸長したCr晶出物が球状化し
て強度が低下し、いずれの場合も電極寿命の大幅な改善
が達成されないためである。時効処理を複数回行う場
合、そのうちの少なくとも1回が前記温度条件を満たし
ていれば良い。
The invention according to claim 3 is the method of manufacturing an electrode according to claim 1. Although various methods can be considered to disperse the crystallized Cr of the Cu-Cr alloy in the fiber shape with the length direction oriented in the pressing direction, as a method that can be easily realized industrially, cooling with a high reduction in area is possible. There is a method of machining. In this case, since Cr has a larger deformation resistance than Cu, the Cr crystallized product does not form a fiber due to insufficient elongation in low working, and is not sufficiently oriented in the pressing direction, and thus the resulting electrode lacks strength, Life cannot be significantly improved. In the present invention, the reason why the cross-sectional reduction rate in cold working is limited to 90% or more is that if it is less than 90%, the Cr crystallized product cannot be sufficiently expanded into a fiber shape, and the electrode has sufficient strength (800 N / m
m 2 or more). The cross-section reduction rate in cold working is required to be 90% or more, preferably 99% or more. The characteristics of the electrode, especially the strength, can be adjusted by the reduction rate of the cross section. In this invention, solid solution Cr is precipitated and the conductivity is restored by the aging treatment. The reason why the aging treatment temperature is specified to be 400 to 600 ° C is that the conductivity does not recover sufficiently below 400 ° C.
This is because, when the temperature exceeds ℃, the Cr crystallized product elongated in the form of fiber is spheroidized and the strength is reduced, and in any case, the electrode life is not significantly improved. When the aging treatment is performed a plurality of times, it is sufficient that at least one of them satisfies the temperature condition.

【0012】請求項4記載の発明は、請求項2記載の発
明の電極の製造方法であり、請求項1に記載された銅合
金にC 、B 、N が微量添加された以外は請求項3と同じ
構成で、作用効果も同じである。
The invention according to claim 4 is the method for producing an electrode according to claim 2, wherein the copper alloy according to claim 1 is added with a trace amount of C, B and N. It has the same structure as the above, and the same effect.

【0013】本発明の電極は、特にAlまたはAl合金をス
ポット溶接するのに適したものである。溶接の対象とな
るAl合金は、Alー Cu系、 Al-Mn系、 Al-Si系、 Al-Mg
系、Al-Mg-Cu系、Al-Mg-Si系、Al-Zn-Mg系、 Al-Zn-Mg-
Cu系等のAl合金である。本発明の電極は、当然ながら圧
延鋼板、亜鉛メッキ鋼板にも適用可能である。前記電極
を用いてその効果が発現されるスポット溶接機として
は、単相交流溶接機、単相整流溶接機、三相低周波溶接
機、三相整流式溶接機、インバータ溶接機、コンデンサ
ー式溶接機等がある。
The electrode of the present invention is particularly suitable for spot welding Al or Al alloy. Al alloys to be welded are Al-Cu series, Al-Mn series, Al-Si series, Al-Mg
System, Al-Mg-Cu system, Al-Mg-Si system, Al-Zn-Mg system, Al-Zn-Mg-
It is a Cu-based Al alloy. The electrode of the present invention is naturally applicable to a rolled steel plate and a galvanized steel plate. As the spot welder that produces the effect using the electrode, a single-phase AC welder, a single-phase rectifier welder, a three-phase low-frequency welder, a three-phase rectifier welder, an inverter welder, and a condenser welder. There are machines, etc.

【0014】[0014]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す組成の合金を溶解し、直径200m
m,長さ600mm の円柱状ビレットに鋳造した。ここで C,
B,Nの添加はCr-C,Cr-B,Cr-N化合物の粉末を溶湯中に添
加する方法により行った。得られた鋳塊を下記の〜
に示すいずれかの方法により電極に加工した。 鋳塊を1000℃で1時間再熱し、これを直径60mmに熱間
押出し、次いで直径56mmに外削した。次に直径18mmまで
冷間で引抜加工を行い (断面減少率90%)、次いで 500℃
で2時間の時効処理を施し、次いで電極形状に据え込
み、これを外削して電極に仕上げた。 鋳塊を1000℃で5時間均質化処理し、これを直径180m
m に外削した。次に直径18mmまで冷間で引抜加工を行い
(断面減少率99%)、次いで 500℃で2時間の時効処理を
施し、その後電極形状に据え込み、これを外削して電極
に仕上げた。 鋳塊を1000℃で1時間再熱し、これを直径68mmに熱間
押出し、次いで直径64mmに外削した。次に直径56mmまで
冷間で引抜加工を行い (断面減少率23%)、次いで 500℃
で2時間の時効処理を施した後、もう一度直径18mmまで
冷間で引抜加工を行い (断面減少率90%)、次いで 380℃
で2時間の調質焼鈍を施し、その後電極形状に据え込
み、これを外削して電極に仕上げた。 鋳塊を1000℃で1時間再熱し、これを直径60mmに熱間
押出し、次いで直径56mmに外削した。次に直径25mmまで
冷間で引抜加工を行い (断面減少率80%)、次いで 500℃
で2時間の時効処理を施し、次いで直径18mmに外削し、
その後電極形状に据え込み、これを外削して電極に仕上
げた。 鋳塊を1000℃で1時間再熱し、これを直径60mmに熱間
押出し、次いで直径56mmに外削した。次に直径40mmまで
冷間で引抜加工を行い (断面減少率49%)、次いで 450℃
で2時間時効処理を施した後、もう一度直径18mmまで冷
間で引抜加工を行い (断面減少率80%)、次いで 450℃で
2時間の調質焼鈍を施し、その後電極形状に据え込み、
これを外削して電極に仕上げた。 鋳塊を1000℃で1時間再熱し、これを直径60mmに熱間
押出し、次いで直径56mmに外削した。次に直径18mmまで
冷間で引抜加工を行い (断面減少率90%)、次いで 650℃
で2時間の時効処理を施し、その後電極形状に据え込
み、これを外削して電極に仕上げた。 鋳塊を1000℃で1時間再熱し、これを直径60mmに熱間
押出し、次いで直径56mmに外削した。次に直径18mmまで
冷間で引抜加工を行い (断面減少率90%)、次いで 350℃
で2時間の時効処理を施し、その後電極形状に据え込
み、これを外削して電極に仕上げた。
EXAMPLES The present invention will be described in detail below with reference to examples. (Example 1) An alloy having the composition shown in Table 1 was melted to a diameter of 200 m.
It was cast into a cylindrical billet having a length of m and a length of 600 mm. Where C,
The addition of B and N was carried out by adding powders of Cr-C, Cr-B and Cr-N compounds into the molten metal. The obtained ingot is
The electrode was processed by any of the methods shown in. The ingot was reheated at 1000 ° C. for 1 hour, hot extruded to a diameter of 60 mm and then trimmed to a diameter of 56 mm. Next, cold drawing is performed to a diameter of 18 mm (area reduction rate 90%), and then 500 ° C.
Was subjected to aging treatment for 2 hours, then set in the shape of the electrode, and externally cut to form an electrode. The ingot is homogenized at 1000 ℃ for 5 hours and the diameter is 180m.
trimmed to m. Next, cold drawing is performed up to a diameter of 18 mm.
(Cross-section reduction rate 99%), then aging treatment was performed at 500 ° C. for 2 hours, then set up in the shape of the electrode, and this was externally cut to finish the electrode. The ingot was reheated at 1000 ° C. for 1 hour, hot extruded to a diameter of 68 mm and then trimmed to a diameter of 64 mm. Next, cold drawing is performed up to a diameter of 56 mm (23% reduction in area), and then 500 ° C.
After aging treatment for 2 hours, cold drawing is performed again to a diameter of 18 mm (cross-section reduction rate 90%), then 380 ° C.
Was subjected to temper annealing for 2 hours, then set up in the shape of the electrode, and externally cut to finish the electrode. The ingot was reheated at 1000 ° C. for 1 hour, hot extruded to a diameter of 60 mm and then trimmed to a diameter of 56 mm. Next, cold drawing is performed to a diameter of 25 mm (area reduction rate 80%), and then 500 ° C.
Aged for 2 hours, then trimmed to 18mm in diameter,
After that, it was set up in the shape of an electrode, and this was externally cut to form an electrode. The ingot was reheated at 1000 ° C. for 1 hour, hot extruded to a diameter of 60 mm and then trimmed to a diameter of 56 mm. Next, cold drawing is performed up to a diameter of 40 mm (area reduction rate 49%), and then 450 ° C.
After aging treatment for 2 hours, cold drawing is performed again to a diameter of 18 mm (area reduction rate 80%), then temper annealing is performed at 450 ° C for 2 hours, and then it is set up in the electrode shape.
This was trimmed to form an electrode. The ingot was reheated at 1000 ° C. for 1 hour, hot extruded to a diameter of 60 mm and then trimmed to a diameter of 56 mm. Next, cold drawing is performed to a diameter of 18 mm (area reduction rate 90%), and then 650 ° C.
After aging treatment for 2 hours, the electrode shape was set up, and this was externally cut to form an electrode. The ingot was reheated at 1000 ° C. for 1 hour, hot extruded to a diameter of 60 mm and then trimmed to a diameter of 56 mm. Next, cold drawing is performed to a diameter of 18 mm (area reduction rate 90%), and then 350 ° C.
After aging treatment for 2 hours, the electrode shape was set up, and this was externally cut to form an electrode.

【0015】得られた電極について (イ)導電率,(ロ)引張
強さ,(ハ)耐熱性,(ニ)電極寿命を調べた。結果を表1に示
す。表1には組成、工程(製造方法)、晶出Crの形状を
併記した。比較のためCrの添加量が本発明の規定外のも
のについても同様の調査を行った。 (イ)導電率はJISH0505に準じて測定した。 (ロ)引張強さはJISZ2241に準じて測定した。引張試験片
にはJISZ2201に従い4号試験片を用いた。 (ハ)耐熱性は 180〜400 ℃の温度範囲で2時間加熱した
時の強度が、加熱前の強度の 90%以上を示す最高加熱温
度で示した。 (ニ)電極寿命は厚さ1mm,幅30mm, 長さ200mm のAl合金板
(Al-Mg系、A5182P-O材)を酸洗して表面の酸化皮膜を除
去し、この合金板を2枚重ねてスポット溶接して調べ
た。スポット溶接機には単相整流式抵抗溶接機を用い
た。溶接条件は加圧力:300kgf,通電時間:5サイクル, 溶
接電流:25000±1000A(各電極での適正溶接電流値),溶接
ピッチ:30mm,打点速度:1点/2秒とした。電極寿命はスポ
ット溶接されたAl合金板の溶接部をピール試験治具で剥
して10点毎にナゲットの長径と短径をノギスで測定し、
その平均値pが 4t×1/2 未満(但しtは被溶接材の板
厚で1mm 、従ってpは 4mm未満)になった時点、または
電極に割れまたは溶着が生じてその後の溶接ができなく
なった時点までの打点回数とした。スポット溶接するに
あたり、電極の晶出Crのファイバの長さ方向は、溶接す
るAl合金板の面に対し直角となる。
The obtained electrodes were examined for (a) conductivity, (b) tensile strength, (c) heat resistance, and (d) electrode life. The results are shown in Table 1. In Table 1, the composition, process (manufacturing method), and shape of crystallized Cr are shown together. For comparison, the same investigation was also conducted for the case where the added amount of Cr was out of the range of the present invention. (B) Conductivity was measured according to JIS H0505. (B) Tensile strength was measured according to JIS Z2241. As the tensile test piece, No. 4 test piece was used according to JIS Z2201. (C) Heat resistance was shown at the maximum heating temperature at which the strength when heated for 2 hours in the temperature range of 180 to 400 ° C. was 90% or more of the strength before heating. (D) Electrode life is 1 mm thick, 30 mm wide, and 200 mm long Al alloy plate
(Al-Mg system, A5182P-O material) was pickled to remove the oxide film on the surface, and two alloy plates were superposed and spot-welded. A single-phase rectification resistance welding machine was used as the spot welding machine. The welding conditions were as follows: welding pressure: 300 kgf, energization time: 5 cycles, welding current: 25000 ± 1000 A (appropriate welding current value at each electrode), welding pitch: 30 mm, and dot speed: 1 point / 2 seconds. The electrode life is measured by peeling the welded part of the spot-welded Al alloy plate with a peel test jig and measuring the major axis and minor axis of the nugget every 10 points with a caliper,
When the average value p becomes less than 4t × 1/2 (however, t is the plate thickness of the material to be welded, 1mm, so p is less than 4mm), or the electrode is cracked or welded and subsequent welding cannot be performed. The number of RBIs until the point In spot welding, the length direction of the crystallized Cr fiber of the electrode is perpendicular to the surface of the Al alloy plate to be welded.

【0016】[0016]

【表1】 [Table 1]

【0017】表1より明らかなように、本発明例品 (N
o.1〜9)は電極寿命がいずれも5千打点以上で、従来品
(No.17) と比べて大幅に改善されている。これに対し、
比較例品のNo.10 は、晶出Crはファイバ状に伸長してい
るが、Cr量が少ないため、強度が低下した。そのため電
極寿命は、従来品よりは良いが、本発明例品に較べると
明らかに劣る。No.11 はCr量が多いため、冷間加工中に
割れが生じ正常に加工することができなくなり、製造を
中止した。No.12,13は冷間加工での断面減少率が 90%に
満たず、晶出Crがファイバ状に伸長せず、従って強度が
低くなり、電極寿命が低下した。No.14 は時効温度が高
く、一旦ファイバ状に伸長したCrが時効により球状化
し、そのため強度が低くなり、電極寿命が低下した。N
o.15 は逆に時効温度が低いため、固溶Crが十分に析出
せず、従って電極の導電率(放熱性)が低く、電極寿命
が低下した。No.16 は多量のB を含んでいるため、冷間
加工中に割れが生じ正常に加工することができなくな
り、製造を中止した。なお、Cr晶出物のファイバ状伸長
物の形状は、断面がほぼ円形のひも状で、その長さLと
径Tとの比率L/Tの平均値(n=20) は、No.1,2,5が
2.7〜3.0 、他のNo.3,4,6〜9 は 3.1〜4.5 であり、前
記比率は大きい程電極寿命が長いことが認められた。比
較例品のNo.12,13は 2.0〜2.5 程度であった。本発明例
品を用いて鋼板および亜鉛めっき鋼板をスポット溶接し
たが、電極寿命は約2万点の電極寿命が得られた。
As is clear from Table 1, the products of the present invention (N
o.1 to 9) have electrode life of 5,000 points or more,
It is significantly improved compared to (No.17). In contrast,
In No. 10 of the comparative example product, the crystallized Cr was elongated in the shape of a fiber, but the strength was lowered because the amount of Cr was small. Therefore, the electrode life is better than that of the conventional product, but is clearly inferior to the product of the present invention. Since No. 11 had a large amount of Cr, cracking occurred during cold working and normal processing could not be performed, so production was discontinued. In Nos. 12 and 13, the cross-sectional reduction rate in cold working was less than 90%, the crystallized Cr did not extend into a fiber shape, and therefore the strength was lowered and the electrode life was shortened. In No. 14, the aging temperature was high, and Cr, which had once expanded into a fiber shape, became spherical due to aging, so the strength decreased and the electrode life decreased. N
On the contrary, o.15 had a low aging temperature, so solid solution Cr was not sufficiently precipitated, and therefore the conductivity (heat dissipation) of the electrode was low and the electrode life was shortened. Since No. 16 contained a large amount of B, cracking occurred during cold working and normal processing could not be performed, so production was discontinued. The shape of the fibrous extension of the Cr crystallized product is a string having a substantially circular cross section, and the average value (n = 20) of the ratio L / T of the length L and the diameter T is No. 1 , 2,5
2.7 to 3.0 and other Nos. 3, 4, 6 to 9 were 3.1 to 4.5, and it was recognized that the longer the ratio, the longer the electrode life. Comparative examples Nos. 12 and 13 were about 2.0 to 2.5. A steel plate and a galvanized steel plate were spot-welded using the product of the present invention, and an electrode life of about 20,000 was obtained.

【0018】[0018]

【発明の効果】以上に述べたように、本発明のスポット
溶接用電極は、Crを10〜30wt% 含み、前記Crの晶出物は
Cuマトリックス中に押圧方向に伸長してファイバ状に分
散しており、引張強さが800N/mm2以上、導電率が 75%IA
CS以上である。従って従来材より飛躍的に高い電極寿命
でAlまたはAl合金をスポット溶接することができる。ま
た前記電極は条件を規定することにより容易に製造する
ことができる。依って工業上顕著な貢献を奏する。
As described above, the electrode for spot welding of the present invention contains 10 to 30 wt% of Cr, and the crystallized product of Cr is
Stretched in the pressing direction in a Cu matrix and dispersed in fibers, tensile strength of 800 N / mm 2 or more, conductivity of 75% IA
CS or better. Therefore, Al or Al alloy can be spot-welded with a significantly longer electrode life than conventional materials. Further, the electrode can be easily manufactured by defining the conditions. Therefore, it makes a significant industrial contribution.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被溶接材を押圧し通電加熱して溶接する
スポット溶接用電極において、前記電極が、Crを10〜30
wt% 含み、残部がCuと不可避的不純物からなり、前記Cr
の晶出物がCuマトリックス中に押圧方向に伸長してファ
イバ状に分散しており、引張強さが800N/mm2以上、導電
率が 75%IACS以上であることを特徴とするスポット溶接
用電極。
1. An electrode for spot welding, which presses a material to be welded and heats it by energizing it for welding, wherein the electrode has a Cr content of 10 to 30.
wt%, the balance consisting of Cu and inevitable impurities.
For spot welding, the crystallized product of is extended in the pressing direction in the pressing direction and dispersed in a fiber shape, and has a tensile strength of 800 N / mm 2 or more and an electrical conductivity of 75% IACS or more. electrode.
【請求項2】 被溶接材を押圧し通電加熱してスポット
溶接する電極において、Crを10〜30wt% 含み、C 、B 、
N の中から選ばれる1種または2種以上を総計で 0.001
〜0.1wt%含み、残部Cuと不可避的不純物からなり、前記
電極のCuマトリックス中にCrの晶出物が押圧方向に伸長
してファイバ状に分散しており、引張強さが800N/mm2
上、導電率が 75%IACS以上であることを特徴とするスポ
ット溶接用電極。
2. An electrode for spot welding by pressing a material to be welded, heating it by applying electric current, and containing 10 to 30 wt% of Cr, C, B,
0.001 total of 1 or 2 or more selected from N
~ 0.1wt%, the balance consisting of Cu and unavoidable impurities, the crystallized product of Cr in the Cu matrix of the electrode is stretched in the pressing direction and dispersed in a fiber form, the tensile strength is 800 N / mm 2 Above, the electrode for spot welding is characterized by having an electrical conductivity of 75% IACS or more.
【請求項3】 Crを10〜30wt% 含み、残部がCuと不可避
的不純物からなる銅合金に熱間加工、溶体化処理、冷間
加工、および時効処理を施すスポット溶接用電極の製造
方法であって、前記冷間加工での断面減少率を 90%以上
とし、前記時効処理を 400〜600 ℃の温度範囲内で行う
ことを特徴とするスポット溶接用電極の製造方法。
3. A method for producing an electrode for spot welding, which comprises subjecting a copper alloy containing 10 to 30 wt% of Cr and the balance being Cu and inevitable impurities to hot working, solution treatment, cold working, and aging treatment. A method of manufacturing an electrode for spot welding, wherein the cross-section reduction rate in the cold working is 90% or more, and the aging treatment is performed within a temperature range of 400 to 600 ° C.
【請求項4】 Crを10〜30wt% 含み、C 、B 、N の中か
ら選ばれる1種または2種以上を総計で 0.001〜0.1wt%
含み、残部がCuと不可避的不純物からなる銅合金に熱間
加工、溶体化処理、冷間加工、時効処理を施すスポット
溶接用電極の製造方法であって、前記冷間加工での断面
減少率を 90%以上とし、前記時効処理を 400〜600 ℃の
温度範囲内で行うことを特徴とするスポット溶接用電極
の製造方法。
4. A total of 0.001 to 0.1 wt% containing 10 to 30 wt% of Cr, and one or more selected from C, B and N.
Including, the hot-working, solution treatment, cold-working, aging treatment on the copper alloy consisting of Cu and unavoidable impurities as the balance is a method for producing an electrode for spot welding, wherein the cross-section reduction rate in the cold working Is 90% or more, and the aging treatment is performed within a temperature range of 400 to 600 ° C.
JP18936296A 1996-07-18 1996-07-18 Spot welding electrode and method of manufacturing the same Expired - Fee Related JP3535940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18936296A JP3535940B2 (en) 1996-07-18 1996-07-18 Spot welding electrode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18936296A JP3535940B2 (en) 1996-07-18 1996-07-18 Spot welding electrode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1029073A JPH1029073A (en) 1998-02-03
JP3535940B2 true JP3535940B2 (en) 2004-06-07

Family

ID=16240060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18936296A Expired - Fee Related JP3535940B2 (en) 1996-07-18 1996-07-18 Spot welding electrode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3535940B2 (en)

Also Published As

Publication number Publication date
JPH1029073A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
AU725069B2 (en) High strength Al-Mg-Zn-Si alloy for welded structures and brazing application
CN113755728B (en) Steel-aluminum composite conductor rail and preparation method thereof
EP1021576B1 (en) Aluminum alloy sheet for spot welding
EP3847289A1 (en) Aluminum alloy for heat exchanger fins
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
EP0953062A1 (en) Al ALLOY AND METHOD
JP7126359B2 (en) Copper alloy materials and terminals with excellent contact corrosion resistance to aluminum
JP3535940B2 (en) Spot welding electrode and method of manufacturing the same
JP2628672B2 (en) Manufacturing method of Al alloy fin material for heat exchanger
EP0519407A2 (en) Spot-weldable aluminum sheet and production thereof
JPH08283891A (en) Clad material of al alloy for brazing
JPH07258804A (en) Production of copper alloy for electronic equipment
JP2000063973A (en) Aluminum alloy extruded material for automobile body structural member, and its manufacture
JPH07284958A (en) Electrode material for resistance welding
JP2711957B2 (en) Aluminum alloy material for upset butt welding
JPH0790431A (en) Electrode material for resistant welding and its manufacture
JP2005081371A (en) Electrode material and its production method
JPS63264280A (en) Electrode material for resistance welding
JP3378621B2 (en) Electrode for resistance welding and method of manufacturing the same
CN111615565B (en) Welding electrode for aluminium or steel sheets and method for obtaining same
JP3349457B2 (en) Aluminum alloy extruded material for automobile body structural member and method for producing the same
JPH07290255A (en) Electrode material for spot-welding aluminum or aluminum alloy, its production and method for spot-welding aluminum or aluminum alloy
JPH0681057A (en) Cu-fe alloy for welding electrode and soldering iron tip excellent in molten metal corrosion resistance and strength at high temperature and its production
JP3830659B2 (en) Aluminum alloy material for projection weld nuts
JP2005288519A (en) Electrode material and its production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees