JP3532398B2 - Semiconductor integrated circuit device and semiconductor integrated circuit memory device - Google Patents
Semiconductor integrated circuit device and semiconductor integrated circuit memory deviceInfo
- Publication number
- JP3532398B2 JP3532398B2 JP30239797A JP30239797A JP3532398B2 JP 3532398 B2 JP3532398 B2 JP 3532398B2 JP 30239797 A JP30239797 A JP 30239797A JP 30239797 A JP30239797 A JP 30239797A JP 3532398 B2 JP3532398 B2 JP 3532398B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- capacitance
- electrode
- integrated circuit
- semiconductor integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 62
- 239000000758 substrate Substances 0.000 claims description 32
- 239000010410 layer Substances 0.000 claims description 21
- 239000011229 interlayer Substances 0.000 claims description 10
- 238000002955 isolation Methods 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- 229910052814 silicon oxide Inorganic materials 0.000 description 22
- 230000001360 synchronised effect Effects 0.000 description 10
- 238000005530 etching Methods 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 244000228957 Ferula foetida Species 0.000 description 1
- -1 Phospho Chemical class 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体チップのピ
ン容量の調整を必要とする半導体集積回路装置に関し、
特に、シンクロナスDRAM(Synchronous Dynamic Ra
ndom Access Memory)を有する半導体集積回路装置に適
用して有効な技術に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device requiring adjustment of pin capacitance of a semiconductor chip,
Especially, synchronous DRAM (Synchronous Dynamic Ra
The present invention relates to a technique effectively applied to a semiconductor integrated circuit device having an ndom access memory).
【0002】[0002]
【従来の技術】シンクロナスDRAMは、システムクロ
ックと同期させて、すべての入出力情報を半導体チップ
の入出力部のラッチでとり込み動作させる同期動作方式
であり、すべての動作モードをシステムクロック幅に等
しいコマンド信号の組み合わせで指定できるので、従来
の高速ページモード以上の高スループット機能をもつ。2. Description of the Related Art Synchronous DRAM is a synchronous operation system in which all input / output information is taken in by a latch of an input / output unit of a semiconductor chip in synchronization with a system clock, and all operation modes are set to system clock width. Since it can be specified by a combination of command signals equal to, it has high throughput function over the conventional high speed page mode.
【0003】すなわち、クロックパルス幅に等しい外部
信号の組み合わせでチップの動作モードが決まり、この
モードがチップ内のコマンドデコーダで解読され、これ
をもとにチップ内部の動作が始まる。ここで、列アドレ
スやバースト長などをクロックサイクル数という形でア
ドレスピンから初期入力すると、バンクを切り換えても
連続データが絶え間無く得られる。これらの動作は、バ
ーストモードのアドレスをアドレスカウンタによって発
生して、順次列デコーダに送ることによって実現されて
いる。That is, the operation mode of the chip is determined by the combination of external signals having the same clock pulse width, this mode is decoded by the command decoder in the chip, and the operation inside the chip is started based on this. Here, if the column address, burst length, etc. are initially input from the address pins in the form of the number of clock cycles, continuous data can be obtained continuously even if the banks are switched. These operations are realized by generating a burst mode address by an address counter and sending it to a sequential column decoder.
【0004】従って、このシンクロナスDRAMでは、
高速動作を実現するために、半導体チップのピン容量の
最大値が規定されており、例えば、I/O部(入出力
部)のピン容量は4〜5pF、他のピン容量は2. 5p
F以下に設定される。ここでピン容量とは、半導体チッ
プの外部、すなわち、リードフレームから見た半導体集
積回路装置の内部回路、ボンディングパッド、ワイヤー
などの全容量である。Therefore, in this synchronous DRAM,
In order to realize high-speed operation, the maximum value of the pin capacitance of the semiconductor chip is specified. For example, the pin capacitance of the I / O unit (input / output unit) is 4 to 5 pF, and the other pin capacitance is 2.5 pF.
It is set to F or less. Here, the pin capacitance is the total capacitance of the external circuit of the semiconductor chip, that is, the internal circuit of the semiconductor integrated circuit device viewed from the lead frame, the bonding pad, the wire and the like.
【0005】なお、シンクロナスDRAMについては、
例えば、培風館発行「超LSIメモリ」 1994年11
月5日発行、伊藤清男著、P346に記載されている。Regarding the synchronous DRAM,
For example, published by Baifukan "Ultra LSI Memory", 1994 11
Published on May 5, published by Kiyoo Ito, P346.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、シンク
ロナスDRAMにおいては、ノイズの発生を抑え、ま
た、発生したノイズの反射を抑えるために、インピーダ
ンスの整合をとらなくてはならず、このため、ピン容量
の最大値に加えてピン容量の最小値を規定する必要が生
じた。However, in the synchronous DRAM, impedance matching must be taken in order to suppress the generation of noise and the reflection of the generated noise. It became necessary to specify the minimum value of pin capacitance in addition to the maximum value of capacitance.
【0007】ところが、本発明者が検討したところによ
ると、ピン容量の最小値を設定するために、単に、ボン
ディングパッドと内部回路との間に容量素子を接続する
と、ピン容量が規格の最大値よりも増加して回路動作に
影響を及ぼすという問題が生ずる。However, according to a study made by the present inventor, if a capacitance element is simply connected between the bonding pad and the internal circuit in order to set the minimum value of the pin capacitance, the pin capacitance is the maximum value of the standard. However, there is a problem that it increases more than that and affects the circuit operation.
【0008】本発明の目的は、半導体集積回路装置の回
路動作に影響を及ぼすことなくピン容量を制御すること
ができる技術を提供することにある。An object of the present invention is to provide a technique capable of controlling the pin capacitance without affecting the circuit operation of the semiconductor integrated circuit device.
【0009】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
【0010】[0010]
【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。Among the inventions disclosed in the present application, a brief description will be given to the outline of typical ones.
It is as follows.
【0011】すなわち、本発明の半導体集積回路装置
は、半導体チップのピン容量を調整するための容量素子
を有しており、上記容量素子がボンディングパッドと内
部回路との間以外の領域でボンディングパッドに直付け
されているものである。That is, the semiconductor integrated circuit device of the present invention has a capacitance element for adjusting the pin capacitance of the semiconductor chip, and the capacitance element has a bonding pad in a region other than between the bonding pad and the internal circuit. It is directly attached to.
【0012】上記した手段によれば、ボンディングパッ
ドに容量素子を直付けすることによってピン容量の最小
値が確保され、また、ボンディングパッドと内部回路と
の間に上記容量素子は形成されないので、容量素子の容
量成分は信号パス上には現れず、回路動作には影響を及
ぼさない。According to the above-mentioned means, the minimum value of the pin capacitance is secured by directly attaching the capacitance element to the bonding pad, and the capacitance element is not formed between the bonding pad and the internal circuit. The capacitive component of the element does not appear on the signal path and does not affect the circuit operation.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.
【0014】なお、実施の形態を説明するための全図に
おいて同一機能を有するものは同一の符号を付し、その
繰り返しの説明は省略する。In all the drawings for explaining the embodiments, parts having the same functions are designated by the same reference numerals, and the repeated description thereof will be omitted.
【0015】図1は、本発明の一実施の形態であるピン
容量調整用の容量素子を説明するための入力端子部の回
路図を示す。FIG. 1 is a circuit diagram of an input terminal portion for explaining a capacitance element for adjusting a pin capacitance according to an embodiment of the present invention.
【0016】半導体集積回路装置の内部回路とボンディ
ングパッドとの間には、静電気放電(Electrostatic Di
scharge ;ESD)入力保護素子が設けられている。Electrostatic discharge (Electrostatic Dielectric) is provided between the internal circuit of the semiconductor integrated circuit device and the bonding pad.
scharge (ESD) input protection element is provided.
【0017】接地していない導電体や人間は、誘電によ
り、あるいは電荷を帯びた絶縁物に触れることによって
静電気を蓄える。このような導電体や人間が半導体チッ
プに触れて回路中の放電向きのパスを通じて静電気が放
電されると、瞬間的に大電流が流れ回路が破壊されるこ
とがある。そこで、信頼性を確保するために、内部回路
をESDから保護する頑丈な入力デバイス、すなわちE
SD保護素子が設けられている。Non-grounded conductors and humans store static electricity by dielectrics or by touching electrically charged insulators. When such a conductor or a person touches the semiconductor chip and static electricity is discharged through a path for discharging in the circuit, a large current may momentarily flow to destroy the circuit. Therefore, in order to ensure reliability, a robust input device that protects the internal circuit from ESD, that is, E
An SD protection element is provided.
【0018】さらに、ボンディングパッドには、例え
ば、約1pFの容量を有するピン容量調整用の容量素子
Cが直付けされている。信号のアクセス時間は信号パス
の遅延時間(抵抗×容量)によって決まるが、ピン容量
調整用の容量素子Cはボンディングパッドと内部回路と
の間には形成されずに、ボンディングパッドに直付けさ
れているので、容量素子Cの容量成分は信号パス上には
現れない。Further, a capacitance element C for adjusting the pin capacitance having a capacitance of, for example, about 1 pF is directly attached to the bonding pad. The signal access time is determined by the delay time (resistance × capacitance) of the signal path, but the capacitance element C for adjusting the pin capacitance is not formed between the bonding pad and the internal circuit, but is directly attached to the bonding pad. Therefore, the capacitive component of the capacitive element C does not appear on the signal path.
【0019】次に、シンクロナスDRAMに適用された
本実施の形態のピン容量調整用の容量素子Cの製造方法
を図2および図3を用いて説明する。図2はピン容量調
整用の容量素子Cの要部平面図、図3は図2のA−A’
線の要部断面図である。なお、シンクロナスDRAMを
構成するメモリセルのメモリセル選択用MISFETと
情報蓄積用容量素子および周辺回路は図には示さず、ピ
ン容量調整用の容量素子Cのみを示す。Next, a method of manufacturing the capacitance element C for adjusting the pin capacitance according to the present embodiment applied to the synchronous DRAM will be described with reference to FIGS. 2 is a plan view of a main part of the capacitance element C for adjusting the pin capacitance, and FIG. 3 is AA ′ of FIG.
It is an important section sectional view of a line. It should be noted that the memory cell selecting MISFET, the information storage capacitive element, and the peripheral circuit of the memory cells that form the synchronous DRAM are not shown in the figure, and only the pin capacitance adjusting capacitive element C is shown.
【0020】まず、p- 型シリコン単結晶からなる半導
体基板1の主面上に周知の方法で、p型ウエルおよびn
型ウエルを形成し、次いで、素子間分離用のフィールド
絶縁膜を形成する。ここで、上記フィールド絶縁膜と同
一層の絶縁膜2によってピン容量調整用の容量素子Cの
容量絶縁膜が形成される。First, the p-type well and the n-type well are formed on the main surface of the semiconductor substrate 1 made of p - type silicon single crystal by a known method.
A mold well is formed, and then a field insulating film for element isolation is formed. Here, the capacitance insulating film of the capacitance element C for adjusting the pin capacitance is formed by the insulating film 2 in the same layer as the field insulating film.
【0021】次に、半導体基板1上にメモリセルのメモ
リセル選択用MISFET(MetalInsulator Semicondu
ctor Field Effect Transistor )および周辺回路のM
ISFETのゲート絶縁膜を形成する。この後、半導体
基板1上に堆積された第1の窒化シリコン膜、第1のタ
ングステンシリサイド(WSix )膜および第1の多結
晶シリコン膜からなる積層膜を順次エッチングすること
により、第1のWSix 膜および第1の多結晶シリコン
膜からなるメモリセルのメモリセル選択用MISFET
および周辺回路のMISFETのゲート電極を形成す
る。Next, a memory cell selecting MISFET (Metal Insulator Semiconductor) is formed on the semiconductor substrate 1.
ctor Field Effect Transistor) and peripheral circuit M
A gate insulating film of ISFET is formed. Thereafter, the first silicon nitride film deposited on the semiconductor substrate 1, by sequentially etching the laminated film made of the first tungsten silicide (WSi x) film and the first polycrystalline silicon film, a first MISFET for memory cell selection of memory cell composed of WSi x film and first polycrystalline silicon film
And the gate electrode of the MISFET of the peripheral circuit is formed.
【0022】ここで、上記ゲート電極と同一層の導電膜
3を一方の電極とし、半導体基板1を他方の電極とした
ピン容量調整用の容量素子Cが形成される。ピン容量調
整用の容量素子Cの一方の電極を構成する導電膜3の面
積は、ピン容量の規格値0.5〜1. 5pFを満たすよ
うに最適設計される。Here, the capacitance element C for adjusting the pin capacitance is formed using the conductive film 3 in the same layer as the gate electrode as one electrode and the semiconductor substrate 1 as the other electrode. The area of the conductive film 3 forming one electrode of the capacitance element C for adjusting the pin capacitance is optimally designed so as to satisfy the standard value of the pin capacitance of 0.5 to 1.5 pF.
【0023】なお、上記ゲート電極を構成するメタルシ
リサイド膜にWSix 膜を用いたが、その他のメタルシ
リサイド膜、例えばモリブデンシリサイド(MoS
ix )膜、チタンシリサイド(TiSix )膜、タンタ
ルシリサイド(TaSix )膜などを用いてもよい。Although the WSi x film is used as the metal silicide film forming the gate electrode, other metal silicide films such as molybdenum silicide (MoS) are used.
i x) film, a titanium silicide (TiSi x) film, a tantalum silicide (or the like may be used TaSi x) film.
【0024】次に、周辺回路のnチャネル型MISFE
Tのn型半導体領域およびpチャネル型MISFETの
p型半導体領域を形成した後、半導体基板1上に堆積さ
れた第2の窒化シリコン膜をRIE(Reactive Ion Etc
hing)法などの異方性エッチングで加工することによっ
て、上記ゲート電極の側壁にサイドウォールスペーサを
形成し、ゲート電極を第1の窒化シリコン膜および第2
の窒化シリコン膜からなる絶縁膜4で覆う。この際、ピ
ン容量調整用の容量素子Cの一方の電極を構成する導電
膜3も上記絶縁膜4によって覆われる。Next, the n-channel type MISFE of the peripheral circuit
After forming the n-type semiconductor region of T and the p-type semiconductor region of the p-channel type MISFET, the second silicon nitride film deposited on the semiconductor substrate 1 is subjected to RIE (Reactive Ion Etc).
Hing) method or the like to form a side wall spacer on the side wall of the gate electrode by processing the gate electrode with the first silicon nitride film and the second silicon film.
Covered with an insulating film 4 made of a silicon nitride film. At this time, the conductive film 3 forming one electrode of the capacitance element C for adjusting the pin capacitance is also covered with the insulating film 4.
【0025】次に、半導体基板1上に第1の酸化シリコ
ン膜5および第1のBPSG(Boron-doped Phospho Si
licate Glass)膜6をCVD(Chemical Va
por Deposition)法によって順次堆積し
た後、900〜950℃のリフロー処理により上記第1
のBPSG膜6の表面を平坦化する。Next, the first silicon oxide film 5 and the first BPSG (Boron-doped Phospho Si) are formed on the semiconductor substrate 1.
The licate glass film 6 is formed by CVD (Chemical Va
por deposition method and then sequentially depositing it, and then performing a reflow treatment at 900 to 950 ° C.
The surface of the BPSG film 6 is flattened.
【0026】次に、図には示さないが、メモリセルのメ
モリセル選択用MISFETと情報蓄積用容量素子を形
成する。まず、レジストパターンをマスクにして第1の
BPSG膜6、酸化シリコン膜5およびゲート絶縁膜と
同一層の絶縁膜を順次エッチングすることにより、メモ
リセル選択用MISFETの一方の後に形成されるn型
半導体領域上に第1のコンタクトホールを形成する。Next, although not shown in the figure, a memory cell selecting MISFET and an information storing capacitive element of the memory cell are formed. First, the first BPSG film 6, the silicon oxide film 5, and the insulating film in the same layer as the gate insulating film are sequentially etched using the resist pattern as a mask to form an n-type formed after one of the memory cell selecting MISFETs. A first contact hole is formed on the semiconductor region.
【0027】次いで、上記第1のコンタクトホール内に
Pが導入された第2の多結晶シリコン膜からなる第1の
プラグ電極を形成する。なお、この第2の多結晶シリコ
ン膜に導入されたPの拡散によってメモリセル選択用M
ISFETの一方のn型半導体領域が形成される。Next, a first plug electrode made of a second polycrystalline silicon film having P introduced therein is formed in the first contact hole. It should be noted that the M for memory cell selection is diffused by diffusion of P introduced into the second polycrystalline silicon film.
One n-type semiconductor region of the ISFET is formed.
【0028】次に、半導体基板1上に第2の酸化シリコ
ン膜7をCVD法によって堆積する。次いで、レジスト
パターンをマスクにして第2の酸化シリコン膜7、第1
のBPSG膜6、第1の酸化シリコン膜5およびゲート
絶縁膜と同一層の絶縁膜を順次エッチングすることによ
り、メモリセル選択用MISFETの他方の後に形成さ
れるn型半導体領域上に第2のコンタクトホールを形成
する。Next, a second silicon oxide film 7 is deposited on the semiconductor substrate 1 by the CVD method. Then, using the resist pattern as a mask, the second silicon oxide film 7 and the first silicon oxide film 7 are formed.
By sequentially etching the BPSG film 6, the first silicon oxide film 5, and the insulating film in the same layer as the gate insulating film, thereby forming a second film on the n-type semiconductor region formed after the other of the memory cell selecting MISFETs. Form a contact hole.
【0029】次いで、半導体基板1上にPが導入された
第3の多結晶シリコン膜および第2のWSix 膜をC
VD法によって順次堆積した後、レジストパターンをマ
スクにして第2のWSix 膜および第3の多結晶シリコ
ン膜を順次エッチングすることにより、第2のWSix
膜および第3の多結晶シリコン膜からなるビット線を形
成する。Next, the third polycrystalline silicon film having P introduced thereinto and the second WSi x film on the semiconductor substrate 1 are replaced with C
After sequentially deposited by VD method, by sequentially etching the second WSi x film and the third polycrystalline silicon film using the resist pattern as a mask, the second WSi x
A bit line composed of the film and the third polycrystalline silicon film is formed.
【0030】また、上記第3の多結晶シリコン膜に導入
されたPの拡散によってメモリセル選択用MISFET
の他方のn型半導体領域は形成され、ビット線は第2の
コンタクトホールを通して、このメモリセル選択用MI
SFETの他方のn型半導体領域に接続される。In addition, by diffusion of P introduced in the third polycrystalline silicon film, a MISFET for memory cell selection.
The other n-type semiconductor region is formed, and the bit line passes through the second contact hole to allow the memory cell selection MI.
It is connected to the other n-type semiconductor region of the SFET.
【0031】次に、半導体基板1上に第3の酸化シリコ
ン膜8、第3の窒化シリコン膜および第2のBPSG膜
をCVD法によって順次堆積した後、900〜950℃
のリフロー処理により上記第2のBPSG膜の表面を平
坦化する。Next, a third silicon oxide film 8, a third silicon nitride film and a second BPSG film are sequentially deposited on the semiconductor substrate 1 by the CVD method, and then 900 to 950 ° C.
The surface of the second BPSG film is flattened by the reflow treatment of.
【0032】次に、半導体基板1上にPが導入された第
4の多結晶シリコン膜をCVD法によって堆積した後、
レジストパターンをマスクにしてこの第4の多結晶シリ
コン膜をエッチングする。次いで、半導体基板1上にC
VD法によって堆積されたPが導入された第5の多結晶
シリコン膜をRIE法などの異方性エッチングによって
加工し、第4の多結晶シリコン膜の側壁に第5の多結晶
シリコン膜からなるサイドウォールスペーサを形成す
る。Next, after a fourth polycrystalline silicon film having P introduced therein is deposited on the semiconductor substrate 1 by the CVD method,
This fourth polycrystalline silicon film is etched using the resist pattern as a mask. Then, C on the semiconductor substrate 1
The fifth polycrystalline silicon film having P introduced therein, which is deposited by the VD method, is processed by anisotropic etching such as the RIE method to form the fifth polycrystalline silicon film on the side wall of the fourth polycrystalline silicon film. Form sidewall spacers.
【0033】次いで、レジストパターンをマスクにして
メモリセルの第2のBPSG膜、第3の窒化シリコン
膜、第3の酸化シリコン膜8および第2の酸化シリコン
膜7を順次エッチングすることにより、第1のコンタク
トホール内に設けられた第1のプラブ電極上に第3のコ
ンタクトホールを形成した後、半導体基板1上にPが導
入された第6の多結晶シリコン膜および第3のBPSG
膜をCVD法によって順次堆積する。Next, by using the resist pattern as a mask, the second BPSG film, the third silicon nitride film, the third silicon oxide film 8 and the second silicon oxide film 7 of the memory cell are sequentially etched, thereby After forming the third contact hole on the first plug electrode provided in the first contact hole, the sixth polycrystalline silicon film in which P is introduced on the semiconductor substrate 1 and the third BPSG.
The films are sequentially deposited by the CVD method.
【0034】次に、レジストパターンをマスクにして上
記第3のBPSG膜、第6多結晶シリコン膜および第4
の多結晶シリコン膜を順次エッチングした後、半導体基
板1上にPが導入された第7の多結晶シリコン膜をCV
D法によって堆積する。次いで、この第7の多結晶シリ
コン膜をRIE法などの異方性エッチングによって加工
し、メモリセルの第3のBPSG膜、第6の多結晶シリ
コン膜および第4の多結晶シリコン膜の側壁に第7の多
結晶シリコン膜を残す。Next, using the resist pattern as a mask, the third BPSG film, the sixth polycrystalline silicon film and the fourth film are formed.
After sequentially etching the polycrystalline silicon films of C, the seventh polycrystalline silicon film having P introduced therein is CV-doped on the semiconductor substrate 1.
It is deposited by the D method. Then, the seventh polycrystalline silicon film is processed by anisotropic etching such as RIE to form sidewalls of the third BPSG film, the sixth polycrystalline silicon film and the fourth polycrystalline silicon film of the memory cell. The seventh polycrystalline silicon film is left.
【0035】次に、例えば、フッ酸溶液を用いたウエッ
トエッチングによって、第3のBPSG膜および第2の
BPSG膜を除去し、メモリセルに第4の多結晶シリコ
ン膜から第7の多結晶シリコン膜によって構成される円
筒型の蓄積電極を形成する。Next, the third BPSG film and the second BPSG film are removed by, for example, wet etching using a hydrofluoric acid solution, and the fourth polycrystalline silicon film to the seventh polycrystalline silicon are formed in the memory cell. A cylindrical storage electrode composed of a film is formed.
【0036】次に、半導体基板1上に厚さ約2nmの第
4の窒化シリコン膜をCVD法によって堆積し、続い
て、厚さ約30nmの非晶質の酸化タンタル(Ta2 O
5 )膜をCVD法によって堆積した後、半導体基板1に
熱酸化処理を施すことによって、上記Ta2 O5 膜を結
晶化する。その後、半導体基板1上に窒化チタン(Ti
N)膜をCVD法によって堆積し、次いで、レジストパ
ターンをマスクにしてこのTiN膜をエッチングするこ
とにより、TiN膜からなるプレート電極を形成する。Next, a fourth silicon nitride film having a thickness of about 2 nm is deposited on the semiconductor substrate 1 by the CVD method, and subsequently, an amorphous tantalum oxide (Ta 2 O) having a thickness of about 30 nm is deposited.
5 ) After the film is deposited by the CVD method, the semiconductor substrate 1 is subjected to thermal oxidation treatment to crystallize the Ta 2 O 5 film. After that, titanium nitride (Ti
A N) film is deposited by the CVD method, and then the TiN film is etched using the resist pattern as a mask to form a plate electrode made of the TiN film.
【0037】なお、容量絶縁膜にTa2 O5 膜を用いた
が、その他の酸化メタル膜(例えば、(Ba,Sr)T
iO膜またはPb(Zr,Ti)O3 膜)などを用いて
もよく、また、上記プレート電極にTiN膜を用いた
が、その他のメタルナイトライド膜(例えば、WN膜)
またはメタル膜(例えば、W膜)などを用いてもよい。Although the Ta 2 O 5 film is used as the capacitance insulating film, other metal oxide films (for example, (Ba, Sr) T) are used.
For example, an iO film or a Pb (Zr, Ti) O 3 film) may be used, and a TiN film is used as the plate electrode, but other metal nitride films (for example, WN film) are used.
Alternatively, a metal film (for example, a W film) or the like may be used.
【0038】以上の製造工程により、メモリセルのメモ
リセル選択用MISFETと情報蓄積用容量素子が完成
する。Through the above manufacturing steps, the memory cell selecting MISFET and the information storing capacitive element of the memory cell are completed.
【0039】次に、半導体基板1上に第4の酸化シリコ
ン膜9および第4のBPSG膜10をCVD法によって
順次堆積した後、900〜950℃のリフロー処理によ
り上記第4のBPSG膜10の表面を平坦化する。Next, after the fourth silicon oxide film 9 and the fourth BPSG film 10 are sequentially deposited on the semiconductor substrate 1 by the CVD method, the fourth BPSG film 10 is reflowed at 900 to 950 ° C. Flatten the surface.
【0040】次いで、プレート電極上、ビット線上、お
よび周辺回路のMISFETの半導体領域上とゲート電
極上に第4のコンタクトホールを形成する。この際、レ
ジストパターンをマスクにして第4のBPSG膜10、
第4の酸化シリコン膜9、第3の酸化シリコン膜8、第
2の酸化シリコン膜7、第1のBPSG膜6、第1の酸
化シリコン膜5および絶縁膜4を順次エッチングするこ
とにより、ピン容量調整用の容量素子Cの一方の電極で
ある導電膜3上にも第4のコンタクトホール11を形成
する。Next, a fourth contact hole is formed on the plate electrode, the bit line, and the semiconductor region of the MISFET of the peripheral circuit and the gate electrode. At this time, the fourth BPSG film 10 is formed by using the resist pattern as a mask,
By sequentially etching the fourth silicon oxide film 9, the third silicon oxide film 8, the second silicon oxide film 7, the first BPSG film 6, the first silicon oxide film 5 and the insulating film 4, The fourth contact hole 11 is also formed on the conductive film 3 which is one electrode of the capacitance element C for capacitance adjustment.
【0041】次に、半導体基板1上に金属膜(図示せ
ず)を堆積した後、レジストパターンをマスクにして上
記金属膜をエッチングすることにより、第1層目のメタ
ル配線M1 が形成される。次いで、半導体基板1上にE
CR(Electron Cyclotron Resonance:電子サイクロト
ロン共鳴)プラズマCVD法によって第5の酸化シリコ
ン膜を堆積し、この第5の酸化シリコン膜によって構成
される第1の層間絶縁膜12を設ける。Next, after depositing a metal film (not shown) on the semiconductor substrate 1, the metal film M 1 of the first layer is formed by etching the metal film using the resist pattern as a mask. It Then, E on the semiconductor substrate 1
A fifth silicon oxide film is deposited by a CR (Electron Cyclotron Resonance) plasma CVD method, and a first interlayer insulating film 12 constituted by the fifth silicon oxide film is provided.
【0042】次に、レジストパターンをマスクにして上
記第1の層間絶縁膜12をエッチングすることにより、
第1層目のメタル配線M1 に達するスルーホール13を
形成した後、半導体基板1上に金属膜を堆積し、次い
で、この金属膜をレジストパターンをマスクにしてエッ
チングすることにより、第2層目のメタル配線M2 を形
成する。Next, by etching the first interlayer insulating film 12 using the resist pattern as a mask,
After forming the through hole 13 reaching the metal wiring M 1 of the first layer, a metal film is deposited on the semiconductor substrate 1 and then the metal film is etched using the resist pattern as a mask to form the second layer. An eye metal wiring M 2 is formed.
【0043】さらに、半導体基板1上にECRプラズマ
CVD法によって第6の酸化シリコン膜を堆積し、この
第6の酸化シリコン膜によって構成される第2の層間絶
縁膜14を設ける。Further, a sixth silicon oxide film is deposited on the semiconductor substrate 1 by the ECR plasma CVD method, and a second interlayer insulating film 14 composed of the sixth silicon oxide film is provided.
【0044】次に、レジストパターンをマスクにして上
記第2の層間絶縁膜14をエッチングすることにより、
第2層目のメタル配線M2 に達するスルーホール15を
形成した後、半導体基板1上に金属膜を堆積し、次い
で、この金属膜をレジストパターンをマスクにしてエッ
チングすることにより、第3層目のメタル配線M3 を形
成する。Next, the second interlayer insulating film 14 is etched by using the resist pattern as a mask,
After forming the through hole 15 reaching the second-layer metal wiring M 2 , a metal film is deposited on the semiconductor substrate 1 and then the metal film is etched using the resist pattern as a mask to form the third layer. The eye metal wiring M 3 is formed.
【0045】最後に、半導体基板1の表面をパッシベー
ション膜16で被覆し、次いで、レジストパターンをマ
スクにして上記パッシベーション膜16をエッチングす
ることにより、ボンディングパッドを構成する第3層目
のメタル配線M3 上にホール17を形成する。Finally, the surface of the semiconductor substrate 1 is covered with the passivation film 16, and then the passivation film 16 is etched by using the resist pattern as a mask to form the metal wiring M of the third layer constituting the bonding pad. A hole 17 is formed on the top surface 3 .
【0046】以上の製造方法によって、本実施の形態の
ピン容量調整用の容量素子Cを有するシンクロナスDR
AMが完成する。By the above manufacturing method, the synchronous DR having the capacitance element C for adjusting the pin capacitance of this embodiment is provided.
AM is completed.
【0047】このように、本実施の形態によれば、メモ
リセルのメモリセル選択用MISFETおよび周辺回路
のMISFETのゲート電極と同一層の導電膜3を一方
の電極とし、半導体基板1を他方の電極とし、フィール
ド絶縁膜と同一層の絶縁膜2を容量絶縁膜とする容量素
子Cをボンディングパッドに直付けして容量成分を形成
し、この容量素子Cを最適設計することによってピン容
量の最小値を設定することができる。さらに、上記容量
素子Cはボンディングパッドと内部回路との間には設け
られていないので、容量素子Cの容量成分は信号パス上
には現れず、容量素子Cを設けても回路動作には影響を
及ぼさない。As described above, according to the present embodiment, the conductive film 3 in the same layer as the gate electrodes of the memory cell selecting MISFET of the memory cell and the peripheral circuit MISFET is used as one electrode, and the semiconductor substrate 1 is used as the other electrode. Capacitance element C having an insulating film 2 of the same layer as the field insulation film as a capacitance insulation film is directly attached to the bonding pad to form a capacitance component, and this capacitance element C is optimally designed to minimize the pin capacitance. You can set the value. Furthermore, since the capacitive element C is not provided between the bonding pad and the internal circuit, the capacitive component of the capacitive element C does not appear on the signal path, and providing the capacitive element C does not affect the circuit operation. Does not reach.
【0048】以上、本発明者によってなされた発明を発
明の実施の形態に基づき具体的に説明したが、本発明は
前記実施の形態に限定されるものではなく、その要旨を
逸脱しない範囲で種々変更可能であることはいうまでも
ない。Although the invention made by the present inventor has been specifically described based on the embodiments of the present invention, the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the scope of the invention. It goes without saying that it can be changed.
【0049】例えば、前記実施の形態では、ピン容量調
整用の容量素子は、メモリセルのメモリセル選択用MI
SFETおよび周辺回路のMISFETのゲート電極と
同一層の導電膜を一方の電極とし、半導体基板を他方の
電極とし、フィールド絶縁膜を容量絶縁膜としたが、上
記他方の電極を半導体基板に設けられたウエル領域とし
てもよい。また、層間絶縁膜を介して上下に位置するメ
タル配線の上層のメタル配線を一方の電極とし、下層の
メタル配線を他方の電極とし、上記層間絶縁膜を容量絶
縁膜としてピン容量調整用の容量素子を構成してもよ
い。For example, in the above embodiment, the capacitance element for adjusting the pin capacitance is the memory cell selection MI of the memory cell.
Although the conductive film in the same layer as the gate electrode of the SFET and the MISFET of the peripheral circuit was used as one electrode, the semiconductor substrate was used as the other electrode, and the field insulating film was used as the capacitive insulating film, the other electrode was provided on the semiconductor substrate. Well region. In addition, the metal wiring in the upper layer above and below the inter-layer insulating film is used as one electrode, the metal wiring in the lower layer is used as the other electrode, and the inter-layer insulating film is used as a capacitance insulating film to adjust the capacitance for pin capacitance adjustment. The element may be configured.
【0050】[0050]
【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下のとおりである。The effects obtained by the typical ones of the inventions disclosed in this application will be briefly described as follows.
It is as follows.
【0051】本発明によれば、回路動作に影響を及ぼす
ことなくボンディングパッドに直付けされた容量素子に
よってピン容量を調整することができる。According to the present invention, the pin capacitance can be adjusted by the capacitance element directly attached to the bonding pad without affecting the circuit operation.
【図1】本発明の一実施の形態であるピン容量調整用の
容量素子を説明するための入力端子部の回路図を示す。FIG. 1 is a circuit diagram of an input terminal portion for explaining a capacitance element for adjusting a pin capacitance according to an embodiment of the present invention.
【図2】本発明の一実施の形態であるピン容量調整用の
容量素子の製造方法を説明するための半導体基板の要部
平面図である。FIG. 2 is a plan view of a principal part of a semiconductor substrate for explaining a method of manufacturing a capacitive element for adjusting pin capacitance according to an embodiment of the present invention.
【図3】図2のA−A’線における半導体基板の要部断
面図である。3 is a cross-sectional view of the main part of the semiconductor substrate taken along the line AA ′ in FIG.
1 半導体基板 2 絶縁膜 3 導電膜 4 絶縁膜 5 第1の酸化シリコン膜 6 第1のBPSG膜 7 第2の酸化シリコン膜 8 第3の酸化シリコン膜 9 第4の酸化シリコン膜 10 第4のBPSG膜 11 第4のコンタクトホール 12 第1の層間絶縁膜 13 スルーホール 14 第2の層間絶縁膜 15 スルーホール 16 パッシベーション 17 ホール C 容量素子 M1 第1層目のメタル配線 M2 第2層目のメタル配線 M3 第3層目のメタル配線1 semiconductor substrate 2 insulating film 3 conductive film 4 insulating film 5 first silicon oxide film 6 first BPSG film 7 second silicon oxide film 8 third silicon oxide film 9 fourth silicon oxide film 10 fourth BPSG film 11 Fourth contact hole 12 First interlayer insulating film 13 Through hole 14 Second interlayer insulating film 15 Through hole 16 Passivation 17 Hole C Capacitive element M 1 First layer metal wiring M 2 Second layer Metal wiring M 3 Third layer metal wiring
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/60 H01L 21/822 H01L 21/82 H01L 27/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/60 H01L 21/822 H01L 21/82 H01L 27/04
Claims (3)
の容量素子が、前記半導体チップ内に半導体基板または
ウエル領域を一方の電極とし、MISFETのゲート電
極と同一層の導電膜を他方の電極とし、素子間分離用の
フィールド絶縁膜を容量絶縁膜として形成され、かつボ
ンディングパッドにスルーホールおよび層間配線層を介
して接続され、前記容量素子は、前記ボンディングパッ
ドから内部回路もしくは入力保護素子へつながる配線よ
りも前記ボンディングパッドに近接した近傍領域に形成
されていることを特徴とする半導体集積回路装置。1. A capacitive element for adjusting the pin capacitance of a semiconductor chip is a semiconductor substrate or a semiconductor substrate in the semiconductor chip.
The well region is used as one electrode, and the gate voltage of the MISFET is
The conductive film of the same layer as the electrode is used as the other electrode to separate the elements.
The field insulating film is formed as a capacitive insulating film , and the bonding pad is provided with a through hole and an interlayer wiring layer.
And the capacitive element is connected to the bonding pad.
From the internal circuit to the input protection element.
Formed in the vicinity of the bonding pad
A semiconductor integrated circuit device characterized by being provided .
って、前記容量素子の容量値は、0.5〜1.5pFであ
ることを特徴とする半導体集積回路装置。2. The semiconductor integrated circuit device according to claim 1, wherein the capacitance value of the capacitive element is 0.5 to 1.5 pF.
るための容量素子が、前記DRAMの半導体チップ内に
形成され、かつ前記容量素子は一方の電極を前記半導体
チップの基板もしくは基板内に形成されたウエルとし、
他方の電極はゲート電極を形成する導電膜とし、容量絶
縁膜は素子分離用のフィールド絶縁膜とした構造からな
り、前記容量素子はボンディングパッドから内部回路も
しくは入力保護素子へつながる前に前記ボンディングパ
ッドにスルーホールおよび層間配線層を介して接続され
ていることを特徴とする半導体集積回路メモリ装置。3. A capacitive element for adjusting the pin capacitance of the I / O portion of the DRAM is formed in the semiconductor chip of the DRAM, and one electrode of the capacitive element is the substrate of the semiconductor chip or in the substrate. And the well formed in
The other electrode is a conductive film that forms a gate electrode, and the capacitive insulating film is a field insulating film for element isolation, and the capacitive element has the bonding pad before connecting to the internal circuit or the input protection element. A semiconductor integrated circuit memory device, wherein the semiconductor integrated circuit memory device is connected to the semiconductor device through a through hole and an interlayer wiring layer .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30239797A JP3532398B2 (en) | 1997-11-05 | 1997-11-05 | Semiconductor integrated circuit device and semiconductor integrated circuit memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30239797A JP3532398B2 (en) | 1997-11-05 | 1997-11-05 | Semiconductor integrated circuit device and semiconductor integrated circuit memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11145394A JPH11145394A (en) | 1999-05-28 |
JP3532398B2 true JP3532398B2 (en) | 2004-05-31 |
Family
ID=17908431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30239797A Expired - Fee Related JP3532398B2 (en) | 1997-11-05 | 1997-11-05 | Semiconductor integrated circuit device and semiconductor integrated circuit memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3532398B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10131940B4 (en) | 2001-07-02 | 2006-01-19 | Infineon Technologies Ag | Semiconductor chip and method for forming contacts on a semiconductor device |
JP4240983B2 (en) | 2002-10-07 | 2009-03-18 | 沖電気工業株式会社 | How to set the input pin capacitance |
-
1997
- 1997-11-05 JP JP30239797A patent/JP3532398B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11145394A (en) | 1999-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6569742B1 (en) | Method of manufacturing semiconductor integrated circuit device having silicide layers | |
US6130102A (en) | Method for forming semiconductor device including a dual inlaid structure | |
KR100532787B1 (en) | Metal-to-metal capacitor device and manufacturing method | |
JP5744790B2 (en) | Integrated circuit and method | |
JPH0730077A (en) | Semiconductor device and manufacturing method thereof | |
JPH11186518A (en) | Semiconductor integrated circuit device and its manufacture | |
KR20000053397A (en) | A semiconductor integrated circuit device and process for manufacturing the same | |
JPH0567792A (en) | Semiconductor device with ferrodielectric | |
JP3943294B2 (en) | Semiconductor integrated circuit device | |
US6661062B2 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
KR100496243B1 (en) | Semiconductor device | |
JP3269528B2 (en) | Semiconductor device having capacitive element and method of manufacturing the same | |
KR20240147973A (en) | METHOD AND STRUCTURES PERTAINING TO IMPROVED FERROELECTRIC RANDOM-ACCESS MEMORY (FeRAM) | |
JPH1050956A (en) | Manufacturing method of semiconductor integrated circuit device | |
JPH1079478A (en) | Dynamic ram device and its manufacture | |
JP3532398B2 (en) | Semiconductor integrated circuit device and semiconductor integrated circuit memory device | |
JPH10209394A (en) | Semiconductor storage device and its manufacture | |
JPH0774268A (en) | Semiconductor memory and fabrication thereof | |
US6603164B2 (en) | Integrated semiconductor memory configuration | |
JPH098244A (en) | Semiconductor device and its manufacture | |
JPH0955478A (en) | Manufacture of semiconductor integrated circuit | |
JP3030812B2 (en) | Manufacturing method of DRAM capacitor using chemical mechanical polishing method | |
JP2000332105A (en) | Manufacture of semiconductor device | |
JP2000077624A (en) | High integrated semiconductor memory device and its manufacture | |
NL1007804C2 (en) | IC production with embedded DRAM circuits and logic circuits on single chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040303 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080312 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090312 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100312 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110312 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110312 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120312 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120312 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140312 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |