JP3528422B2 - Method for manufacturing thin film transistor - Google Patents

Method for manufacturing thin film transistor

Info

Publication number
JP3528422B2
JP3528422B2 JP11215496A JP11215496A JP3528422B2 JP 3528422 B2 JP3528422 B2 JP 3528422B2 JP 11215496 A JP11215496 A JP 11215496A JP 11215496 A JP11215496 A JP 11215496A JP 3528422 B2 JP3528422 B2 JP 3528422B2
Authority
JP
Japan
Prior art keywords
film
gate electrode
concentration impurity
region
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11215496A
Other languages
Japanese (ja)
Other versions
JPH09283767A (en
Inventor
克彦 両澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP11215496A priority Critical patent/JP3528422B2/en
Publication of JPH09283767A publication Critical patent/JPH09283767A/en
Application granted granted Critical
Publication of JP3528422B2 publication Critical patent/JP3528422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 【0001】 【発明が属する技術分野】この発明は、薄膜トランジス
タの製造方法に関する。 【0002】 【従来の技術】液晶表示装置に使用する薄膜トランジス
タ(以下「TFT」という)は、ガラス基板上に形成さ
れる。TFTを製造する場合には、図8に示すように、
まずガラス基板11の上面にアルミニウム等のメタル膜
を堆積し、フォトリソグラフィによりパターニングし
て、ゲート電極12を形成する。次に、このゲート電極
12を含むガラス基板11の上面にSiO2等からなる
ゲート絶縁膜13を形成し、さらにこのゲート絶縁膜1
3の上面にi−Si(真性のアモルファスシリコン)膜
14を堆積する。次に、i−Si膜14の上面にSiN
(窒化シリコン)の膜を堆積し、このSiN膜の上面に
フォトレジストを塗布する。そして、ゲート電極12を
フォトマスクにしてガラス基板11側から自己整合的に
露光し、エッチングによりゲート電極12と同じ形状の
SiN膜からなるBL(ブロッキング膜)15を形成す
る。次に、BL15を含むi−Si膜14の上面にi−
Si膜を堆積し、イオン注入によりオーミックコンタク
トをとるための高濃度不純物拡散領域であるn+−Si
膜16を形成する。さらに、このn+−Si膜16の上
面にアルミニウム等の金属膜17を堆積し、その上面に
フォトレジストを塗布する。そして、所定のパターンを
フォトマスクにしてガラス基板11と反対側から露光
し、エッチングにより金属膜及びn+−Si膜をエッチ
ングする。この場合、BL15がエッチングのストッパ
ーとなるのでその下面のi−Si膜14は侵食されな
い。この結果、ドレイン領域16a及びソース領域16
b並びにドレイン電極17a及びソース電極17bが形
成される。この場合、ゲート電極12に対応するi−S
i膜14がチャネル領域となる。 【0003】ところが、このような構造のTFTに電圧
を印加して動作させた場合、ゲート電極12に対応する
i−Si膜14の領域すなわちチャネル領域がドレイン
電圧の影響を強く受けて、図9に示すように、電界集中
領域14aが発生する。このため、この領域で電子が加
速されて電子の平均エネルギーが(3/2)kTよりも
大きくなるホットエレクトロン状態となるためTFTの
特性を劣化させる要因となる。そこで、このような電界
集中を緩和するために、チャネル領域以外のi−Si膜
14にイオン注入を行って、低濃度不純物領域を形成し
たLDD構造のものが用いられてきている。さらに、こ
の場合においてオン電流の低下を防止するために、ゲー
ト電極12の外縁よりも内側に対応するi−Si膜14
の領域にまで低濃度不純物領域を拡げたゲートオーバー
ラップのTFTが採用されている。 【0004】 【発明が解決しようとする課題】しかしながら、このよ
うなゲートオーバーラップのTFTを製造するために
は、斜め回転イオン注入によりゲート電極12の外縁よ
りも内側に低濃度不純物領域を形成しなければならず、
イオン注入装置が高価になるという問題がある。一方、
通常のイオン注入によりゲート電極12の外縁よりも内
側に低濃度不純物領域を形成するためには、BL(ブロ
ッキングレイヤ)15を形成する前に、イオン注入用の
マスクをフォトリソグラフィにより形成するか、あるい
はBL15を形成する際にゲート電極12よりもチャネ
ル長方向に短い形状のBL15のマスクをフォトリソグ
ラフィにより形成する必要があり、いずれも工程が増え
るという問題がある。この発明の課題は、高価なイオン
注入装置を使用することなくかつ最小限の工程で、ゲー
トオーバーラップのLDD構造TFTを製造することで
ある。 【0005】 【課題を解決するための手段】請求項1記載の発明は、
ゲート電極及びこのゲート電極より幅広の半導体膜を備
える薄膜トランジスタの製造方法において、ホスフィン
プラズマ処理により、前記半導体膜の表面における両端
部からそれぞれ前記ゲート電極の両端部に対応する領域
より内側まで、低濃度不純物拡散領域を形成し、前記半
導体膜の裏面には前記低濃度不純物拡散領域が形成され
ていないようにしている。この発明によれば、ホスフィ
ンプラズマ処理を施すことによりイオン注入装置を用い
ることなく不純物領域を形成することができる。また
求項記載の発明は、ゲート電極は半導体膜の下方に形
成され、半導体膜上に絶縁層及びレジストを積層後、ゲ
ート電極の下方側から露光し、残存するレジストをマス
クとして絶縁層をエッチングしてチャネル保護膜を形成
し、当該チャネル保護膜をマスクとして半導体膜に低濃
度不純物拡散領域を形成するようにしている。この発明
によれば、ゲート電極と自己整合的に形成されたチャネ
ル保護膜をマスクとしてホスフィンプラズマ処理を施す
ので、半導体膜中に低濃度不純物が等方性に拡散され、
ゲートオーバーラップ型の低濃度不純物拡散領域を有す
る薄膜トランジスタを製造することができる。そして
求項記載の発明は、チャネル保護膜の下方を除く低濃
度不純物拡散領域上方に高濃度不純物層を形成するよう
にしている。さらに請求項記載の発明では、ホスフィ
ンプラズマ処理は、プラズマ処理装置内において、ホス
フィンガスを導入し、高濃度不純物層は、プラズマ処理
装置内にホスフィンガス及びシランガスを導入し、連続
して形成するようにしている。したがってこれらの発明
によれば、フォトリソ工程を2回することなく、ゲート
オーバーラップ型の低濃度不純物拡散領域を形成し、ゲ
ート電極と自己整合的に高濃度不純物層を形成すること
ができる。 【0006】 【発明の実施の形態】以下、図1〜図6を参照してこの
発明による薄膜トランジスタ製造方法の実施形態を説明
する。プラズマ処理装置(図示せず)のチャンバー内
で、図1に示すように、まずガラス基板1の上面にゲー
ト電極2を形成する。次に、このゲート電極2を含むガ
ラス基板1の上面にSiO2等からなるゲート絶縁膜3
を形成し、さらにこのゲート絶縁膜3の上面にi−Si
(真性のアモルファスシリコン)膜4を堆積する。次
に、i−Si膜4の上面にSiN(窒化シリコン)膜5
を堆積し、このSiN膜5の上面にフォトレジスト6を
塗布する。そして、ゲート電極2をフォトマスクにして
ガラス基板1側から自己整合的に露光し、図2に示すよ
うに、エッチングによりゲート電極2と同じ形状のフォ
トレジスト6aを形成する。そして、フォトレジスト6
aの下面の部分以外のSiN膜5をエッチングにより除
去した後、残ったフォトレジスト6aを剥離する。この
結果、図3に示すように、ゲート電極2と同じ形状のS
iN膜のチャネル保護膜であるBL5aが形成される。 【0007】次に、プラズマ処理装置内にホスフィン
(PH3)ガス及び水素(H2)ガスを入れて、リン
(P)を低い濃度でi−Si膜4に拡散させる。この結
果、図3に示すように、BL5aの中央部に対応する部
分を除く範囲に、低濃度不純物拡散領域であるn-−S
iのドレイン領域4a、同じく、低濃度不純物拡散領域
であるn-−Siのソース領域4bが形成される。BL
5aの中央部に対応する部分は、i−Siのチャネル領
域4cとなる。この場合、BL5aの内側までリンが拡
散するため、チャネル領域4cはゲート電極2よりも小
さい範囲となり、ゲート電極2が低濃度不純物拡散領域
にオーバーラップする。 【0008】次に、BL5aを含むn-−Siの低濃度
不純物拡散領域にi−Si膜を堆積して、n-−Siを
形成した同じプラズマ処理装置(図示せず)のチャンバ
ー内で、図4に示すように、ホスフィン(PH3)ガス
及び水素(H2)ガスにシラン(SiH4)ガスを加えた
雰囲気中で、リンを高い濃度で拡散させて高濃度不純物
膜であるn+−Si膜7を連続して形成する。さらに、
図5に示すように、n+−Si膜7の上面にアルミニウ
ム等のメタル層8を堆積し、その上面にフォトレジスト
9を塗布し、チャネル領域4cに対応する位置等を開口
する。そして、図6に示すように、エッチングによりメ
タル層8及びオーミックコンタクトとなる高濃度不純物
膜のn+−Si膜7に開口部10を形成して、ドレイン
電極8a及びソース電極8bを形成する。 【0009】この結果、i−Si膜4におけるBL5a
の端部より内側までリンが拡散するため、ゲート電極2
に対応する範囲の内側の範囲に低濃度不純物拡散領域が
形成され、高価な斜め回転イオン注入装置を使用するこ
となく、また、2回のフォトリソ工程を行うことなくゲ
ートオーバーラップのLDD構造を形成することができ
る。また、低濃度不純物拡散領域を形成したプラズマ処
理装置と同じ装置でオーミックコンタクトである高濃度
不純物膜を連続して形成するので、最小限の工程でゲー
トオーバーラップのLDD構造TFTを製造することが
できるとともに、生産資源を有効に活用することができ
る。 【0010】なお、上記実施形態では、低濃度不純物拡
散領域をチャネル領域4a以外のi−Si膜4全体に形
成するようにしたが、図7に示すように、低濃度不純物
拡散領域をi−Si膜4の表面にのみ拡散して、ドレイ
ン領域4a及びソース領域4bを形成してもよい。この
場合には、低濃度不純物拡散領域の拡散時間を短縮する
ことができる。 【0011】また、上記実施形態では、n-系及びn+
の不純物拡散領域を形成するようにしたが、p-系及び
+系の不純物拡散領域を形成するようにしてもよい。
また、半導体としてもアモルファスシリコンに限らずポ
リシリコン等の他の半導体でもよい。また、ボトムゲー
ト型に限らず、半導体膜上にブロッキングレイヤを形成
し、低濃度不純物拡散領域及び高濃度不純物膜を形成
後、ゲート絶縁膜、ゲート電極を形成したトップゲート
型TFTとしてもよい。 【0012】 【発明の効果】この発明によれば、ホスフィンプラズマ
処理によってチャネル保護膜の外縁よりも内側すなわち
ゲート電極の外縁よりも内側に低濃度不純物拡散領域を
形成する。したがって、高価なイオン注入装置を使用す
ることなくゲートオーバーラップのLDD構造TFTを
製造することができる。この場合において、低濃度不純
物拡散領域を形成するプラズマ装置と同じ装置で高濃度
不純物拡散領域を形成することにより、最小限の工程で
ゲートオーバーラップのLDD構造TFTを製造するこ
とができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film transistor. 2. Description of the Related Art Thin film transistors (hereinafter referred to as "TFTs") used in liquid crystal display devices are formed on a glass substrate. When manufacturing a TFT, as shown in FIG.
First, a metal film such as aluminum is deposited on the upper surface of the glass substrate 11 and patterned by photolithography to form a gate electrode 12. Next, a gate insulating film 13 made of SiO 2 or the like is formed on the upper surface of the glass substrate 11 including the gate electrode 12.
An i-Si (intrinsic amorphous silicon) film 14 is deposited on the upper surface of the substrate 3. Next, SiN is formed on the upper surface of the i-Si film 14.
A (silicon nitride) film is deposited, and a photoresist is applied on the upper surface of the SiN film. Then, exposure is performed in a self-aligned manner from the glass substrate 11 side using the gate electrode 12 as a photomask, and a BL (blocking film) 15 made of a SiN film having the same shape as the gate electrode 12 is formed by etching. Next, an i-Si film 14 is formed on the upper surface of the i-Si film 14 including the BL 15.
N + -Si as a high concentration impurity diffusion region for depositing a Si film and making ohmic contact by ion implantation
A film 16 is formed. Further, a metal film 17 such as aluminum is deposited on the upper surface of the n + -Si film 16, and a photoresist is applied on the upper surface. Then, using a predetermined pattern as a photomask, light is exposed from the side opposite to the glass substrate 11, and the metal film and the n + -Si film are etched by etching. In this case, since the BL 15 serves as an etching stopper, the i-Si film 14 on the lower surface is not eroded. As a result, the drain region 16a and the source region 16
b, a drain electrode 17a and a source electrode 17b are formed. In this case, i-S corresponding to the gate electrode 12
The i film 14 becomes a channel region. However, when the TFT having such a structure is operated by applying a voltage, the region of the i-Si film 14 corresponding to the gate electrode 12, that is, the channel region is strongly affected by the drain voltage. As shown in FIG. 7, an electric field concentration region 14a is generated. For this reason, electrons are accelerated in this region, and the average energy of the electrons becomes a hot electron state in which the average energy is larger than (3/2) kT, which is a factor of deteriorating the characteristics of the TFT. In order to alleviate such electric field concentration, an LDD structure having a low-concentration impurity region formed by implanting ions into the i-Si film 14 other than the channel region has been used. Further, in this case, in order to prevent a decrease in on-current, the i-Si film 14 corresponding to the inside of the outer edge of the gate electrode 12 is formed.
, A gate-overlap TFT in which the low-concentration impurity region is extended to the region of FIG. [0004] However, in order to manufacture such a gate-overlap TFT, a low-concentration impurity region is formed inside the outer edge of the gate electrode 12 by oblique rotation ion implantation. Must be
There is a problem that the ion implanter becomes expensive. on the other hand,
In order to form a low-concentration impurity region inside the outer edge of the gate electrode 12 by normal ion implantation, a mask for ion implantation is formed by photolithography before forming a BL (blocking layer) 15 or Alternatively, when forming the BL15, it is necessary to form a mask of the BL15 having a shorter shape in the channel length direction than the gate electrode 12 by photolithography, and there is a problem that the number of steps is increased in each case. An object of the present invention is to manufacture a gate-overlap LDD structure TFT without using an expensive ion implantation apparatus and with a minimum number of steps. [0005] The invention as defined in claim 1 is:
In a method of manufacturing a thin film transistor including a gate electrode and a semiconductor film wider than the gate electrode, a phosphine plasma treatment is used to form both ends of a surface of the semiconductor film.
Area corresponding to both ends of the gate electrode
More to the inside, to form a low concentration impurity diffused region, wherein a half
The low concentration impurity diffusion region is formed on the back surface of the conductive film.
Not to be. According to the present invention, the impurity region can be formed by performing the phosphine plasma treatment without using an ion implantation apparatus. The請<br/> Motomeko 1 the described invention, the gate electrode is formed under the semiconductor film, after laminating the insulating layer and the resist on the semiconductor film, and exposed from the lower side of the gate electrode, the resist remaining A channel protection film is formed by etching the insulating layer as a mask, and a low concentration impurity diffusion region is formed in the semiconductor film using the channel protection film as a mask. According to the present invention, since the phosphine plasma treatment is performed using the channel protective film formed in a self-aligned manner with the gate electrode as a mask, low-concentration impurities are isotropically diffused into the semiconductor film,
A thin film transistor having a gate overlap type low-concentration impurity diffusion region can be manufactured. In the invention according to claim 1 , the high-concentration impurity layer is formed above the low-concentration impurity diffusion region except under the channel protective film. Further, according to the first aspect of the present invention, in the phosphine plasma processing, a phosphine gas is introduced into a plasma processing apparatus, and the high-concentration impurity layer is formed continuously by introducing a phosphine gas and a silane gas into the plasma processing apparatus. Like that. Therefore, according to these inventions, a gate-overlap type low-concentration impurity diffusion region can be formed and a high-concentration impurity layer can be formed in a self-aligned manner with the gate electrode without performing the photolithography step twice. Hereinafter, an embodiment of a method of manufacturing a thin film transistor according to the present invention will be described with reference to FIGS. First, a gate electrode 2 is formed on an upper surface of a glass substrate 1 in a chamber of a plasma processing apparatus (not shown), as shown in FIG. Next, a gate insulating film 3 made of SiO 2 or the like is formed on the upper surface of the glass substrate 1 including the gate electrode 2.
Is formed, and an i-Si
(Intrinsic amorphous silicon) film 4 is deposited. Next, a SiN (silicon nitride) film 5 is formed on the upper surface of the i-Si film 4.
Is deposited, and a photoresist 6 is applied on the upper surface of the SiN film 5. Then, exposure is performed in a self-aligned manner from the glass substrate 1 side using the gate electrode 2 as a photomask, and as shown in FIG. 2, a photoresist 6a having the same shape as the gate electrode 2 is formed by etching. And photoresist 6
After the SiN film 5 other than the lower surface portion of a is removed by etching, the remaining photoresist 6a is peeled off. As a result, as shown in FIG.
BL5a, which is a channel protection film of the iN film, is formed. Next, a phosphine (PH 3 ) gas and a hydrogen (H 2 ) gas are put into the plasma processing apparatus to diffuse phosphorus (P) into the i-Si film 4 at a low concentration. As a result, as shown in FIG. 3, n −S, which is a low-concentration impurity diffusion region, is provided in a range excluding a portion corresponding to the center of BL5a.
An i-type drain region 4a and an n -Si source region 4b, which is a low-concentration impurity diffusion region, are also formed. BL
A portion corresponding to the central portion of 5a becomes an i-Si channel region 4c. In this case, since phosphorus is diffused to the inside of the BL 5a, the channel region 4c is in a range smaller than the gate electrode 2, and the gate electrode 2 overlaps with the low concentration impurity diffusion region. Next, an i-Si film is deposited in the n -- Si low concentration impurity diffusion region including the BL5a, and n -- Si is formed in a chamber of the same plasma processing apparatus (not shown). As shown in FIG. 4, phosphorus is diffused at a high concentration in an atmosphere in which a silane (SiH 4 ) gas is added to a phosphine (PH 3 ) gas and a hydrogen (H 2 ) gas to form a high concentration impurity film n +. -Forming an Si film 7 continuously; further,
As shown in FIG. 5, a metal layer 8 of aluminum or the like is deposited on the upper surface of the n + -Si film 7, a photoresist 9 is applied on the upper surface, and openings are formed at positions corresponding to the channel region 4c. Then, as shown in FIG. 6, an opening 10 is formed in the metal layer 8 and the n + -Si film 7 of the high-concentration impurity film which becomes an ohmic contact by etching, and a drain electrode 8a and a source electrode 8b are formed. As a result, the BL 5a in the i-Si film 4
Diffuses inward from the end of the gate electrode 2 so that the gate electrode 2
A low-concentration impurity diffusion region is formed in a region inside the region corresponding to the above, and an LDD structure of a gate overlap is formed without using an expensive oblique rotation ion implantation apparatus and without performing two photolithography steps. can do. In addition, since a high-concentration impurity film that is an ohmic contact is continuously formed in the same apparatus as the plasma processing apparatus in which the low-concentration impurity diffusion region is formed, it is possible to manufacture an LDD TFT having a gate overlap with a minimum number of steps. And production resources can be used effectively. In the above embodiment, the low-concentration impurity diffusion region is formed on the entire i-Si film 4 except for the channel region 4a. However, as shown in FIG. The drain region 4a and the source region 4b may be formed by diffusing only into the surface of the Si film 4. In this case, the diffusion time of the low concentration impurity diffusion region can be reduced. [0011] In the above embodiment, n - but so as to form an impurity diffusion region of the system and the n + type, p - may be formed of impurity diffusion regions of the system and the p + type.
The semiconductor is not limited to amorphous silicon, but may be another semiconductor such as polysilicon. The present invention is not limited to the bottom gate type, and a top gate type TFT in which a gate insulating film and a gate electrode are formed after a blocking layer is formed on a semiconductor film, a low concentration impurity diffusion region and a high concentration impurity film are formed. According to the present invention, the low concentration impurity diffusion region is formed inside the outer edge of the channel protective film, that is, inside the outer edge of the gate electrode by the phosphine plasma treatment. Therefore, a gate-overlap LDD structure TFT can be manufactured without using an expensive ion implantation apparatus. In this case, by forming the high-concentration impurity diffusion region using the same apparatus as the plasma device for forming the low-concentration impurity diffusion region, an LDD TFT having a gate overlap can be manufactured in a minimum number of steps.

【図面の簡単な説明】 【図1】この発明の実施形態における薄膜トランジスタ
の製造工程を示す断面図。 【図2】図1に続く製造工程を示す断面図。 【図3】図2に続く製造工程を示す断面図。 【図4】図3に続く製造工程を示す断面図。 【図5】図4に続く製造工程を示す断面図。 【図6】図5に続く製造工程を示す断面図。 【図7】この発明の他の実施形態における薄膜トランジ
スタの製造工程を示す断面図。 【図8】従来の薄膜トランジスタの製造工程を示す断面
図。 【図9】図8に続く製造工程を示す断面図。 【符号の説明】 1 ガラス基板 2 ゲート電極 4a チャネル領域 6 低濃度不純物領域(n-−Si) 7 高濃度不純物領域(n+−Si) 8a ドレイン電極 8b ソース電極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a manufacturing process of a thin film transistor according to an embodiment of the present invention. FIG. 2 is a sectional view showing a manufacturing step following FIG. 1; FIG. 3 is a sectional view showing a manufacturing step following FIG. 2; FIG. 4 is a sectional view showing a manufacturing step following FIG. 3; FIG. 5 is a sectional view showing a manufacturing step following FIG. 4; FIG. 6 is a sectional view showing a manufacturing step following FIG. 5; FIG. 7 is a sectional view showing a manufacturing process of a thin film transistor according to another embodiment of the present invention. FIG. 8 is a sectional view showing a manufacturing process of a conventional thin film transistor. FIG. 9 is a sectional view showing a manufacturing step following FIG. 8; [Description of Signs] 1 Glass substrate 2 Gate electrode 4a Channel region 6 Low-concentration impurity region (n -- Si) 7 High-concentration impurity region (n + -Si) 8a Drain electrode 8b Source electrode

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ゲート電極及び当該ゲート電極より幅広
の半導体膜を備える薄膜トランジスタの製造方法におい
て、前記ゲート電極は前記半導体膜の下方に形成され、前記
半導体膜上に絶縁層及びレジストを積層後、前記ゲート
電極の下方側から露光し、残存するレジストをマスクと
して前記絶縁層をエッチングしてチャネル保護膜を形成
し、プラズマ処理装置内において、当該チャネル保護膜
をマスクとしてホスフィンガスを導入したホスフィンプ
ラズマ処理により、前記半導体膜における両端部からそ
れぞれ前記ゲート電極の両端部に対応する領域より内側
まで低濃度不純物拡散領域を形成し、連続して前記プラ
ズマ処理装置内にホスフィンガス及びシランガスを導入
して、前記チャネル保護膜の下方を除く低濃度不純物拡
散領域上方に高濃度不純物層を形成する ことを特徴とす
る薄膜トランジスタの製造方法。
(57) In a method for manufacturing a thin film transistor including a gate electrode and a semiconductor film wider than the gate electrode, the gate electrode is formed below the semiconductor film;
After laminating an insulating layer and a resist on the semiconductor film, the gate
Exposure from the lower side of the electrode, and use the remaining resist as a mask
To form a channel protective film by etching the insulating layer
In the plasma processing apparatus, the channel protective film
With phosphine gas introduced as a mask
By the plasma treatment, both ends of the semiconductor film are removed.
Inside the region corresponding to both ends of the gate electrode
A low-concentration impurity diffusion region is formed up to
Introduce phosphine gas and silane gas into the plasma processing equipment
As a result, low-concentration impurity diffusion except under the channel protective film is performed.
A method for manufacturing a thin film transistor, comprising forming a high-concentration impurity layer above a diffusion region .
JP11215496A 1996-04-10 1996-04-10 Method for manufacturing thin film transistor Expired - Fee Related JP3528422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11215496A JP3528422B2 (en) 1996-04-10 1996-04-10 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11215496A JP3528422B2 (en) 1996-04-10 1996-04-10 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPH09283767A JPH09283767A (en) 1997-10-31
JP3528422B2 true JP3528422B2 (en) 2004-05-17

Family

ID=14579592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11215496A Expired - Fee Related JP3528422B2 (en) 1996-04-10 1996-04-10 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP3528422B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458842B1 (en) * 1997-12-01 2005-04-06 삼성전자주식회사 Thin film transistor for liquid crystal display device and manufacturing method
KR100500631B1 (en) * 1998-10-23 2005-11-25 삼성전자주식회사 Manufacturing Method of Thin Film Transistor
US6579749B2 (en) * 1998-11-17 2003-06-17 Nec Corporation Fabrication method and fabrication apparatus for thin film transistor
US6580094B1 (en) 1999-10-29 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Electro luminescence display device
JP4395612B2 (en) * 2001-09-26 2010-01-13 カシオ計算機株式会社 Liquid crystal display element
KR100786498B1 (en) * 2005-09-27 2007-12-17 삼성에스디아이 주식회사 Transparent thin film transistor and manufacturing method thereof
KR20090124527A (en) 2008-05-30 2009-12-03 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
JP5888802B2 (en) * 2009-05-28 2016-03-22 株式会社半導体エネルギー研究所 Device having a transistor

Also Published As

Publication number Publication date
JPH09283767A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JP3528422B2 (en) Method for manufacturing thin film transistor
JPH04196328A (en) Field-effect transistor
JPH1032327A (en) Semiconductor device, its manufacture formation of resist pattern, and reticle used for the formation
JPH10189968A (en) Manufacture of mos element
KR100362191B1 (en) Thin film transistor in semiconductor device and manufacturing method thereof
KR100298874B1 (en) Method for forming transistor
JPH11220128A (en) Mosfet and manufacture thereof
JP3923600B2 (en) Thin film transistor manufacturing method
JP2630195B2 (en) Thin film field effect transistor and method of manufacturing the same
KR100929422B1 (en) Manufacturing method of semiconductor device
JP2716035B2 (en) Thin film field effect transistor
KR0166888B1 (en) Thin film transistor &amp; its making method
JP3221777B2 (en) Manufacturing method of thin film transistor
KR970003742B1 (en) Thin film transistor manufacturing method
KR100214460B1 (en) Method for fabricating thin film transistor
KR100304911B1 (en) Method for manufacturing thin film transistor
KR100223918B1 (en) Structure of semiconductor devices and the manufacturing method thereof
KR100503379B1 (en) Method for fabricating gate electrode of semiconductor
KR970006740B1 (en) Method for manufacturing thin film transistor
KR100223917B1 (en) The structure of a mos transistor
KR100422823B1 (en) Method for fabricating mos transistor
KR20010045138A (en) Manufacturing method for semiconductor device
KR100386235B1 (en) Method for manufacturing liquid crystal display panel
JPH11340469A (en) Thin film transistor
KR20010037868A (en) Method for Manufacturing of Semiconductor Device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees