JP3528285B2 - Axial blower - Google Patents

Axial blower

Info

Publication number
JP3528285B2
JP3528285B2 JP31022894A JP31022894A JP3528285B2 JP 3528285 B2 JP3528285 B2 JP 3528285B2 JP 31022894 A JP31022894 A JP 31022894A JP 31022894 A JP31022894 A JP 31022894A JP 3528285 B2 JP3528285 B2 JP 3528285B2
Authority
JP
Japan
Prior art keywords
blade row
blade
rotating
annular blade
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31022894A
Other languages
Japanese (ja)
Other versions
JPH08165999A (en
Inventor
幸二 中川
泰弘 加藤
恭 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31022894A priority Critical patent/JP3528285B2/en
Priority to CN95121881A priority patent/CN1058774C/en
Priority to KR1019950049110A priority patent/KR0161107B1/en
Publication of JPH08165999A publication Critical patent/JPH08165999A/en
Application granted granted Critical
Publication of JP3528285B2 publication Critical patent/JP3528285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単段あるいは段間距離の
広い多段軸流送風機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-stage or multi-stage axial blower having a wide distance between stages.

【0002】[0002]

【従来の技術】一般に軸流送風機は、回転円環翼列と静
止円環翼列の組合せを基本として構成され、圧力上昇が
大きい機種の場合は組合せを多数直列に配置する、いわ
ゆる多段機とする。
2. Description of the Related Art Generally, an axial flow fan is constructed based on a combination of a rotating annular blade row and a stationary annular blade row, and in the case of a model with a large pressure rise, a large number of combinations are arranged in series, and a so-called multistage To do.

【0003】始めに回転円環翼列の場合について説明す
る。流れが内側のケ−シング、外側のケ−シング流路を
流れる際、壁面との摩擦により、図19に示すように、
壁面近くの流れは運動エネルギ−を失う。このため回転
円環翼列に流入する流れは、内外の壁面付近では壁面か
ら離れた中間部分に比較して流速が小さい。この流速が
小さい層、いわゆる境界層の存在により流路の実質断面
積が減少する。実質断面積の減少分をブロッケ−ジと呼
び、通常数パ−セントに達する。翼の設計時には実際の
流入流れの分布が既知であることはまれである。このた
め回転円環翼列の回転軸に平行な一様流入流れを仮定し
て翼を設計する。この際ブロッケ−ジを無視して翼高さ
を決定すると、翼中央部分の流速が設計値より大きくな
り、設計圧力上昇を達成できなくなる。このため、ブロ
ッケ−ジ分だけ翼を高くして、翼中央部分は設計状態の
流れを実現して、所定の圧力上昇を得る設計法が広く用
いられている。この方法の場合、内外の壁面付近では翼
は回転円環翼列の回転軸に平行な一様流入流れに対して
構成される。翼の入口部分は翼に相対的な流入流れの方
向を向ける。内外の壁面付近の実際の流入流れの軸方向
流速は、一様流入流れに比較して著しく小さいから、こ
のように設計された翼に対しては実際の流入流れが強く
衝突し、損失が大きくなる問題があった。同様の問題は
静止円環翼列を構成する翼についても存在する。
First, the case of a rotary annular blade row will be described. When the flow flows through the inner casing and the outer casing flow passage, as shown in FIG. 19, due to friction with the wall surface,
The flow near the wall loses kinetic energy. Therefore, the flow velocity of the flow flowing into the rotating annular blade row is smaller in the vicinity of the inner and outer wall surfaces than in the intermediate portion separated from the wall surface. The substantial cross-sectional area of the flow channel decreases due to the existence of a layer having a low flow velocity, a so-called boundary layer. The decrease in the actual cross-sectional area is called a blockage, and usually reaches several percent. It is rare that the actual inflow distribution is known at the time of blade design. Therefore, the blade is designed assuming a uniform inflow flow parallel to the rotation axis of the rotating annular blade row. At this time, if the blade height is determined by ignoring the blockage, the flow velocity in the central portion of the blade becomes larger than the design value, and the design pressure rise cannot be achieved. For this reason, a design method is widely used in which the blade is raised by the amount of the blockage and the central portion of the blade realizes a flow in a designed state to obtain a predetermined pressure rise. In this method, near the inner and outer wall surfaces, the blades are configured for a uniform inflow flow parallel to the rotation axis of the rotating annular blade row. The inlet portion of the blade directs the incoming flow relative to the blade. Since the axial velocity of the actual inflow flow near the inner and outer wall surfaces is significantly smaller than that of the uniform inflow flow, the actual inflow flow collides strongly with the blade designed in this way, resulting in a large loss. There was a problem. A similar problem exists for the blades that make up the stationary annular cascade.

【0004】この問題に対してN.A.Cumpsty
(エヌ.エイ.カンプシイ)著Aerodynamic
s of Compressors(エアロダイナミッ
クスオブ コンプレッサ−ズ) 353頁−355頁に
は静翼について内外の壁面付近で翼形の反りを強くし
て、翼入口部分の形状を実際の流入流れの角度に合わせ
る方法を用いた6段軸流圧縮機での効率向上例が示され
ている。また特開昭62−195495号公報では、動
翼、静翼の内外の壁面付近で図20、図21に示すよう
に、翼形の反り角を大きくして(θa>θo)、βo>
βaとなるように翼入口部分の形状を実際の流入流れの
角度に合わせるとともに、圧力上昇が減少しない方法が
示されている。翼形の反り角を大きくしないで翼入口部
分の形状を実際の流入流れの角度に合わせると翼形の出
口側の角度が回転の周方向に近づき、翼を通過する流れ
の圧力上昇が減少するためである。
To solve this problem, N. A. Cumsty
(NA Kampshii) by Aerodynamic
s of Compressors (Aerodynamics of Compressors) pp. 353-355, the vane profile of the vanes is strengthened near the inner and outer wall surfaces to match the shape of the blade inlet with the actual inflow angle. An example of efficiency improvement in a six-stage axial compressor using the method is shown. Further, in Japanese Patent Application Laid-Open No. 62-195495, as shown in FIGS. 20 and 21, the warp angle of the airfoil is increased near the inner and outer wall surfaces of the moving blade and the stationary blade (θa> θo), and βo>.
A method is shown in which the shape of the blade entrance is adjusted to the angle of the actual inflow flow so as to be βa, and the pressure rise is not reduced. If the shape of the blade inlet is adjusted to the angle of the actual inflow without increasing the warp angle of the airfoil, the angle on the outlet side of the blade will approach the circumferential direction of rotation, and the pressure rise of the flow passing through the blade will decrease. This is because.

【0005】これらの方法では、静翼の内外の壁面付近
の翼入口部分で流れの方向が翼形に滑らかに流入しない
ことに基づく、いわゆる衝突損失については改善がされ
るものの、翼形の反りを強くするため、2次流れが強く
なり、2次流れによる損失の増加が避けられない。しか
しながら2次流れが強くなることは、内外の壁面付近の
流れと、壁面から離れた部分の流れの混合を促進するた
め、多段圧縮機の場合動翼の下流側に設置された静翼に
流入する流れの内外の壁面付近の境界層が薄くなる。こ
の効果によって動翼の効率が向上し、動翼、静翼の衝突
損失の低減と併せて、圧縮機としては動翼、静翼の2次
流れによる損失の増加を補って余りある効率の向上が実
現されると考えられる。これらの方法は、内外の壁面付
近の流れと、壁面から離れた部分の流れの混合促進の効
果が大きい多段軸流圧縮機では効果的である。しかし、
軸流送風機ではひと組の回転翼列と静止翼列によって構
成される単段のもの、あるいは段の間隔が広い多段のも
のが大部分である。単段の機種では次段が無いから、内
外の壁面付近の流れと、壁面から離れた部分の流れの混
合促進による次段の効率向上効果は無い。また段の間隔
が広い機種では、前段の出口から次段の入口までに内外
の壁面付近の流れと、壁面から離れた部分の流れの混合
が行われ易いから、翼形の反りを強くすることによる2
次流れによる損失の増加と衝突損失の減少が相殺して、
効率の向上幅が減少する。
These methods improve the so-called collision loss based on the fact that the flow direction does not smoothly flow into the airfoil at the blade inlet portions near the inner and outer wall surfaces of the vane, but the airfoil warpage is improved. The secondary flow becomes strong to increase the loss, and an increase in loss due to the secondary flow cannot be avoided. However, the strengthening of the secondary flow promotes the mixing of the flow near the inner and outer wall surfaces and the flow in the part away from the wall surfaces, so in the case of a multi-stage compressor, it flows into the stationary blades installed downstream of the rotor blades. The boundary layer near the inner and outer walls of the flowing flow becomes thinner. Due to this effect, the efficiency of the moving blade is improved, and in addition to reducing the collision loss of the moving blade and the stationary blade, as a compressor, the increase in the loss due to the secondary flow of the moving blade and the stationary blade compensates for the excessive efficiency improvement. Will be realized. These methods are effective in a multi-stage axial compressor, which has a large effect of promoting the mixing of the flow near the inner and outer wall surfaces and the flow in the portion away from the wall surfaces. But,
Most of the axial flow blowers are a single-stage type composed of a set of rotating blades and a stationary blade row, or a multi-stage type having a wide interval between stages. Since there is no next stage in the single-stage model, there is no effect of improving the efficiency of the next stage by promoting the mixing of the flow near the inner and outer wall surfaces and the flow in the part away from the wall. For models with wide gaps between stages, the flow near the inner and outer wall surfaces and the flow away from the wall easily mix from the outlet of the previous stage to the inlet of the next stage. By 2
The increase in loss due to the next flow and the decrease in collision loss offset each other,
The efficiency improvement is reduced.

【0006】図22に示すように、翼列を構成する複数
の翼の前縁を含む平面から前縁が離れないように翼を傾
斜させると、翼の一方の翼端では負圧面側が側壁と鋭角
をなし、残る他方の翼端では負圧面側が側壁と鈍角をな
す。負圧面側が側壁と鋭角をなす翼端では2次流れによ
る損失が増加し、負圧面側が側壁と鈍角をなす翼端では
2次流れによる損失が減少することは、たとえばC.
J.Robinson(シ−.ジェイ.ロビンソン)ほ
か2名”Measurement and Calcu
lation of the Three−Dimen
sional Flow in Axial Comp
ressor Stators, With and
Without End−Bends,ASME PA
per 89−GT−6(メジャ−メント アンド カ
ルキュレ−ション オブ ザ スリ−ディメンジョナル
フロ− イン アキシャル コンプレッサ− ステイ
タ−ズ, ウィズ アンド ウィズアウト エンドベン
ズ, エイエスエムイ− ペイパ− 89−ジ−ティ−
6)”に述べてあるように広く知られている。しかし両
翼端を傾斜させると、翼端を側壁面に固定する際の加工
が困難となり、特に中空翼を溶接により固定する際の困
難が大きい。
As shown in FIG. 22, when the blades are inclined so that the leading edges are not separated from the plane including the leading edges of the plurality of blades forming the blade row, the suction surface side is the side wall at one of the blade tips. An acute angle is formed, and at the other blade tip, the suction surface side forms an obtuse angle with the side wall. The loss due to the secondary flow increases at the blade tip where the suction surface side forms an acute angle with the side wall, and the loss due to the secondary flow decreases at the blade tip where the suction surface side forms an obtuse angle with the side wall.
J. Robinson (C.J.Robinson) and 2 others "Measurement and Calcu"
lation of the Three-Dimen
regional Flow in Axial Comp
restress stators, with and
Without End-Bends, ASME PA
per 89-GT-6 (Measurement and Calculation of the Three Dimensional Flow In Axial Compressor Statuses, With and Without End Bends, EYME PAY 89-G-Tee
6) ”. However, when both blade tips are inclined, it becomes difficult to fix the blade tips to the side wall surface, especially when fixing the hollow blade by welding. large.

【0007】騒音を低減するために軸流送風機の翼を回
転軸に垂直な面内で傾斜させた例が、特開昭52−34
409号公報、特開昭52−62712号公報に示され
ている。 特開昭52−34409号公報は、静翼の前
縁と動翼の後縁を交差させて、干渉騒音の低減を図るの
が目的である。多くの場合、動翼の後縁は回転軸に対し
てほぼ直角(放射状)方向であるため、結果として静翼
は傾斜することとなる。このため静翼の負圧面と内外の
側壁面の成す角を鋭角にしないという概念が入っていな
い。特開昭52−34409号公報の実施例では回転方
向が示されていないため静翼のいずれの面が負圧面であ
るかは判別できないが、回転が左右いずれの方向でも静
翼の負圧面と内側あるいは外側の一方の側壁面の成す角
は鋭角になる。なお実施例では静翼の内周端は円筒状の
側壁面が存在しない形状であるが、この形状は一般的で
なくかつ本発明が対象とする形状と著しく異なるため内
周側に円筒状の側壁面がある形状を公知例として想定し
ている。
An example in which the blades of an axial blower are tilted in a plane perpendicular to the rotation axis in order to reduce noise is disclosed in JP-A-52-34.
No. 409 and Japanese Patent Application Laid-Open No. 52-62712. JP-A-52-34409 aims at reducing the interference noise by intersecting the leading edge of the stationary blade with the trailing edge of the moving blade. In many cases, the trailing edge of the blade is almost perpendicular (radial) to the axis of rotation, resulting in tilting of the vane. Therefore, there is no concept that the angle formed between the suction surface of the stationary blade and the inner and outer side wall surfaces is not an acute angle. In the embodiment of Japanese Patent Laid-Open No. 52-34409, since the direction of rotation is not shown, it cannot be determined which surface of the vane is the suction surface. The angle formed by one of the inner and outer side wall surfaces is an acute angle. In the embodiment, the inner peripheral end of the stationary blade has a shape in which a cylindrical side wall surface does not exist, but since this shape is not general and is significantly different from the shape targeted by the present invention, a cylindrical shape is formed on the inner peripheral side. A shape having a side wall surface is assumed as a known example.

【0008】特開昭52−62712号公報の場合は、
静翼の内周側を回転方向に傾斜させることが明示されて
おり、この場合は外側の壁面と静翼の負圧面の成す角が
鋭角になり2次流れによる損失の低減は図れない。
In the case of JP-A-52-62712,
It is clarified that the inner circumferential side of the vane is inclined in the rotation direction. In this case, the angle between the outer wall surface and the suction surface of the vane becomes an acute angle, and the loss due to the secondary flow cannot be reduced.

【0009】特開昭57−186097号公報には、動
翼の下流側の静止翼の先端側を動翼の回転方向にわん曲
させて騒音低減と効率の向上を図る方法が示されている
が、下流側に静止翼を収容する外筒を持たない構造の軸
流送風機を対象としており、静止翼の先端側から流出す
る翼端渦による損失は存在するが、静止翼と外側の円筒
面で囲まれた流路は構成されないので、2次流れ損失は
存在せず、従って先端側を動翼の回転方向にわん曲させ
た静止翼に2次流れ損失低減の作用効果は無い。
Japanese Unexamined Patent Publication (Kokai) No. 57-186097 discloses a method of reducing the noise and improving the efficiency by bending the tip side of the stationary blade downstream of the moving blade in the rotating direction of the moving blade. However, it is intended for an axial blower with a structure that does not have an outer cylinder that houses the stationary blades on the downstream side.There is a loss due to the tip vortex flowing out from the tip side of the stationary blade, but the stationary blade and the outer cylindrical surface Since the flow path surrounded by is not formed, there is no secondary flow loss. Therefore, the stationary blade whose tip side is curved in the rotating direction of the moving blade has no effect of reducing the secondary flow loss.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、回転
翼列と静止翼列によって構成される単段あるいは段の間
隔が広い多段の場合に、2次流れによる損失を減少して
高い効率を有する軸流送風機を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce loss due to secondary flow and to improve efficiency in the case of a single stage composed of a rotor blade row and a stationary blade row or a multi-stage having a wide step interval. It is to provide an axial-flow blower having.

【0011】[0011]

【課題を解決するための手段】上記目的は、回転円環翼
列を構成する翼と、この翼を固定する内周側の壁と、静
止円環翼列と、この翼を固定する外周側の壁と、前記回
転円環翼列を支承回転せしめる手段と、これら回転円環
翼列、静止円環翼列及び回転円環翼列を支承回転せしめ
る手段を収容するケ−シングとを備える軸流送風機にお
いて、前記回転円環翼列の回転軸を軸とする円筒面上に
表れる翼形を平面に展開したときの翼形の反り線の前縁
における接線と後縁における接線との成す角を反り角と
定義するとき、前記回転円環翼列もしくは静止円環翼列
を、反り角が内周側の壁面付近と外周側の壁面付近の中
間で最大となる翼により構成する、ことによって達成さ
れる。
Means for Solving the Problems The above-mentioned object is to provide a blade constituting a rotating annular blade row, an inner peripheral wall fixing the blade, a stationary annular blade row, and an outer peripheral side fixing the blade. And a casing for accommodating the rotating and rotating blade rows, and means for supporting and rotating the rotating and rotating blade rows, the stationary ring blade rows and the rotating and rotating blade rows. In a blower, the angle formed by the tangent line at the leading edge and the tangent line at the trailing edge of the warp line of the airfoil when the airfoil appearing on the cylindrical surface whose axis is the rotation axis of the rotating annular blade row is developed into a plane. Is defined as the warp angle, the rotating annular blade row or the stationary annular blade row is constituted by a blade whose warp angle is maximum between the inner wall side and the outer wall side. To be achieved.

【0012】また上記目的は、回転円環翼列の回転軸を
軸とする円筒面上に表れる翼形を平面に展開したときの
翼形の反り線の前縁における接線と後縁における接線の
成す角を反り角と定義するとき、前記回転円環翼列もし
くは静止円環翼列の翼の反り角を内周側の壁面付近と外
周側の壁面付近の中間で最大となる翼により構成し、こ
の回転円環翼列の回転軸を軸とする円筒面上に表れる翼
形を平面に展開したときの翼形の前縁と後縁とを結ぶ直
線と、円筒面上に表れる翼列の前縁を結んだ線と直角に
交わる線との成す角をスタガ−角と定義するとき、前記
静止円環翼列ではスタガ−角を内周側から外周側に向か
ってスタガ−角が減少する部分と一定である部分とで形
成し、前記スタガ−角を内周側から外周側に向かう距離
で2回微分した値を変化率と定義するとき、変化率が正
であるか、もしくは前記翼のスタガ−角を回転円環翼列
では内周側から外周側に向かってスタガ−角が増加する
部分と一定である部分とで形成し、変化率が正である、
ことによって達成される。
[0012] Further, the above-mentioned object is that the tangent line at the leading edge and the tangent line at the trailing edge of the warp line of the airfoil when the airfoil appearing on the cylindrical surface having the axis of rotation of the rotary toroidal blade row as the axis is developed into a plane. When the angle formed is defined as a warp angle, the blade angle of the blade of the rotating annular blade row or the stationary annular blade row is composed of the blade having the maximum in the middle between the wall surface on the inner peripheral side and the wall surface on the outer peripheral side. , A straight line connecting the leading edge and the trailing edge of the airfoil when the airfoil appearing on the cylindrical surface with the axis of rotation of this rotating annular blade row as an axis is developed on a plane, and the blade row appearing on the cylindrical surface When the angle formed by the line connecting the leading edges and the line intersecting at right angles is defined as the stagger angle, the stagger angle decreases from the inner peripheral side to the outer peripheral side in the stationary annular blade row. A value obtained by twice differentiating the stagger angle by the distance from the inner peripheral side to the outer peripheral side, which is formed by a portion and a constant portion. When the rate of change is defined, the rate of change is positive, or the stagger angle of the blade is constant in the rotating annular blade row where the stagger angle increases from the inner circumference side to the outer circumference side. Formed with and the rate of change is positive,
To be achieved.

【0013】さらに上記目的は、回転円環翼列の下流に
設置される静止円環翼列を構成する翼の前縁、後縁もし
くは円筒断面内の翼形の重心のそれぞれを結んだ線のい
ずれかが、内周側の壁面付近では回転円環翼列の回転軸
に対して直角(放射状)であり、外周側の壁面付近では
回転方向に傾斜している、ことによって達成される。
Further, the above object is to provide a line connecting each of the leading edge, the trailing edge, or the center of gravity of the airfoil in the cylindrical cross section, which constitutes the stationary annular blade row installed downstream of the rotating annular blade row. One of them is achieved by the fact that it is perpendicular (radial) to the rotation axis of the rotary annular blade row near the inner wall surface and inclined in the rotation direction near the outer wall surface.

【0014】さらに上記目的は、回転円環翼列の下流に
設置される静止円環翼列を構成する翼の前縁、後縁もし
くは円筒断面内の翼形の重心のそれぞれを結んだ線のい
ずれか、またはこれらの全てが、内周側の壁面付近では
回転円環翼列の回転軸に対して直角(放射状)であり、
外周側の壁面付近では回転方向に傾斜し、この回転円環
翼列の回転軸を軸とする円筒面上に表れる翼形を平面に
展開したときの翼形の前縁と後縁を結ぶ直線と、翼のス
タガ−角を翼の根元から先端に向かってスタガ−角が減
少する部分と一定である部分とで形成し、変化率が正で
あるか、もしくはスタガ−角を内周側から外周側に向か
ってスタガ−角が増加する部分と一定である部分とで形
成し、変化率が正である、ことによって達成される。
Further, the above object is to provide a line connecting each of a leading edge, a trailing edge or a center of gravity of an airfoil in a cylindrical cross section, which constitutes a stationary annular blade row installed downstream of the rotating annular blade row. Any or all of these are at right angles (radial) to the rotation axis of the rotating annular blade row in the vicinity of the wall surface on the inner peripheral side,
A straight line that connects the leading edge and the trailing edge of the airfoil when it is developed on a plane that is inclined in the direction of rotation near the outer wall and that appears on a cylindrical surface whose axis is the axis of rotation of this rotating annular blade row. And the stagger angle of the wing is formed by a part where the stagger angle decreases from the root of the wing toward the tip and a part where the stagger angle is constant, and the rate of change is positive, or the stagger angle is from the inner peripheral side. This is achieved by forming the stagger angle toward the outer peripheral side and the constant portion to form a constant rate of change.

【0015】[0015]

【作用】回転円環翼列の反り角を内外周の壁面の中間で
大きく、壁面近くで小さく構成すると以下の作用により
効率が向上する。
When the warp angle of the rotary annular blade row is set to be large in the middle of the inner and outer wall surfaces and small in the vicinity of the wall surface, the efficiency is improved by the following operation.

【0016】第一は2次流れによる損失の低減である。
2次流れによる損失は、翼列入口の内外周壁面の境界層
が厚いほど、また翼形の反り角が大きい程、大きくなる
傾向がある。内外周の壁面近くの反り角を減少させるこ
とにより翼列入口の内外周壁面の境界層による2次流れ
損失が減少する。
The first is the reduction of loss due to the secondary flow.
The loss due to the secondary flow tends to increase as the boundary layer on the inner and outer peripheral wall surfaces of the blade row inlet becomes thicker and as the airfoil warp angle increases. By reducing the warp angle near the inner and outer wall surfaces, the secondary flow loss due to the boundary layer of the inner and outer wall surfaces of the blade row inlet is reduced.

【0017】第二は翼高さ方向の仕事量配分による効率
向上である。翼列の内外周の壁の中間部分で発生する圧
力損失は、翼表面と流れの摩擦により生じる損失のみで
あり小さい。従って内外周の壁の中間では高い効率で流
れに機械的エネルギ−を伝達できる。一方内外周の壁面
近くでは、翼表面と流れの摩擦により生じる損失に加
え、内外周の壁面との干渉により2次流れが発生し、損
失が大きいため流れに機械的エネルギ−を伝達する効率
は大幅に低下する。反り角を内外周の壁面の中間で大き
く、壁面近くで小さく構成すると、高効率で流れに仕事
を与えることができる部分の仕事量(あるいは動力)が
大きく、流れに仕事を与える効率が低い部分の仕事量
(あるいは動力)が小さいから、動力が全体として効率
良く流れに伝達される。
The second is to improve efficiency by distributing the work in the blade height direction. The pressure loss that occurs in the middle portion of the inner and outer peripheral walls of the blade row is only the loss that occurs due to the friction between the blade surface and the flow, and is small. Therefore, mechanical energy can be transmitted to the flow with high efficiency in the middle of the inner and outer walls. On the other hand, near the inner and outer wall surfaces, in addition to the loss caused by the friction between the blade surface and the flow, a secondary flow occurs due to the interference with the inner and outer wall surfaces, and the loss is large, so the efficiency of transmitting mechanical energy to the flow is Drastically reduced. If the warp angle is large in the middle of the inner and outer walls and small near the wall, the work (or power) of the part that can give work to the flow with high efficiency is large, and the part that gives work to the flow has low efficiency. Since the work amount (or power) of is small, the power as a whole is efficiently transmitted to the flow.

【0018】外周側の壁面付近の反り角が最小となるの
で翼の外周端での翼の負荷が少ないから、圧力面と負圧
面の圧力差が少なく、翼の外周端と壁面との間隙を通過
する漏洩流量が減少し、漏洩流量減少による効率向上が
得られる。また外周側の壁面近くは内周側に比較して翼
の周速が大きいので、翼形の反り角を単純に内外周の壁
面の中間で大きく、壁面近くで小さく構成すると、翼列
出口の内周側の流れの淀み点圧力は外周側に比較して著
しく低くなり、翼列下流側の混合損失が増加する。しか
し外周側の翼形の反り角は内周側に比較して小さく構成
してあるので、淀み点圧力の著しく低い分布を避け翼列
下流側の混合損失増加が生じない。
Since the warp angle in the vicinity of the wall surface on the outer peripheral side is minimized, the load on the blade at the outer peripheral edge of the blade is small, so the pressure difference between the pressure surface and the suction surface is small, and the gap between the outer peripheral edge of the blade and the wall surface is reduced. The leakage flow rate passing through is reduced, and the efficiency is improved by reducing the leakage flow rate. Also, since the peripheral speed of the blade near the outer wall is higher than that at the inner wall, if the warp angle of the airfoil is simply large in the middle of the inner and outer walls and small near the wall, The pressure at the stagnation point of the flow on the inner peripheral side becomes significantly lower than that on the outer peripheral side, and the mixing loss on the downstream side of the blade row increases. However, since the airfoil angle on the outer peripheral side is smaller than that on the inner peripheral side, the distribution of the pressure at the stagnation point is extremely low and the mixing loss on the downstream side of the blade row does not increase.

【0019】軸流送風機を構成する静止円環翼列の場合
は、反り角を内外周の壁面の中間で大きく、壁面近くで
小さく構成すると2次流れによる損失の低減の作用によ
り効率が向上する。
In the case of the stationary annular blade row which constitutes the axial blower, if the warp angle is set to be large in the middle of the inner and outer wall surfaces and small near the wall surface, the efficiency is improved by the action of reducing the loss due to the secondary flow. .

【0020】回転円環翼列、静止円環翼列のいずれの場
合でも翼形の反り角が内周側の壁面付近と外周側の壁面
付近の中間で最大にする場合、反り角の最大値が内周側
の壁面付近あるいは外周側の壁面付近と大差ないと効率
向上の効果が得にくい。回転円環翼列の場合は、翼の根
元から先端に向かってスタガ−角が増加と一定値を組み
合わせた変化をし、かつ変化率が正であるように翼を構
成し、静止円環翼列の場合は内周側から外周側に向かっ
てスタガ−角が減少と一定値を組み合わせた変化をし、
かつ変化率が正であるように翼を構成すると反り角の最
大値が過小でないように決定できる。
In both cases of the rotating annular blade row and the stationary annular blade row, if the warp angle of the airfoil is maximized in the middle between the wall surface on the inner peripheral side and the wall surface on the outer peripheral side, the maximum value of the warp angle is obtained. Is not much different from the inner wall surface or the outer wall surface, it is difficult to obtain the effect of improving efficiency. In the case of a rotating annular blade row, the blade is configured so that the stagger angle changes from the root to the tip of the blade in combination with an increase and a constant value, and the rate of change is positive. In the case of rows, the stagger angle decreases from the inner circumference side to the outer circumference side and changes with a combination of constant values,
In addition, if the blade is configured so that the rate of change is positive, it is possible to determine that the maximum value of the warp angle is not too small.

【0021】また反り角が内周側の壁面付近と外周側の
壁面付近の中間で最大になり、かつ翼の外周側の壁面付
近の反り角が内周側の壁面付近の反り角より小さく翼を
構成することにより、翼の外周側の壁面付近の負荷を低
減しているので、先端側の損失低減のため翼の弦長を長
くして翼面積を増加させる必要が無い。このため軸流送
風機の効率を向上させると同時に翼の弦長を内周側から
外周側に向かって単調に減少させることが可能になり、
チタニウムなどの特殊材料を使用することなく高速回転
の遠心力に耐えられるように翼を構成できる。
Further, the warp angle is maximum between the inner wall surface and the outer wall surface, and the warp angle of the blade near the outer wall surface is smaller than that near the inner wall surface. Since the load near the wall surface on the outer peripheral side of the blade is reduced by configuring above, it is not necessary to increase the chord length of the blade to increase the blade area in order to reduce the loss on the tip side. Therefore, it is possible to improve the efficiency of the axial blower and at the same time reduce the chord length of the blade from the inner circumference side to the outer circumference side monotonously.
The blades can be configured to withstand the centrifugal forces of high speed rotation without the use of special materials such as titanium.

【0022】静止円環翼列を構成する翼の前縁、後縁あ
るいは円筒断面内の静翼の重心のそれぞれを結んだ線の
いずれか、あるいはこれらの組合せが、内周側の壁面付
近あるいは外周側の壁面付近の一方では回転円環翼列の
回転軸に対して直角(放射状)であり、他方では回転方
向に傾斜させて翼端では負圧面側が側壁と鈍角をなすよ
うに構成してあると、回転方向に傾斜している翼端では
2次流れによる損失が減少する。他方の翼端は翼の前
縁、後縁あるいは円筒断面内の静翼の重心を結んだ線の
いずれかが、内周側の壁面付近あるいは外周側の壁面付
近の一方では回転円環翼列の回転軸に対して直角(放射
状)であるため、翼端を側壁面に固定する際の位置ぎめ
加工が容易となり、特に中空翼を溶接により固定する際
の効果が大きい。
Either the leading edge, the trailing edge of the blades forming the stationary annular blade row, or the line connecting the centers of gravity of the stationary blades in the cylindrical cross section, or a combination thereof, is used near the inner wall surface or On one side near the outer wall surface, it is perpendicular (radial) to the rotation axis of the rotating annular blade row, and on the other side, it is inclined in the rotation direction so that the suction surface side forms an obtuse angle with the side wall at the blade tip. If so, the loss due to the secondary flow is reduced at the blade tip inclined in the rotation direction. At the other tip, either the leading edge, the trailing edge of the blade, or the line connecting the centers of gravity of the stationary blades in the cylindrical cross section, is located near the inner wall surface or the outer wall surface. Since it is perpendicular (radial) to the rotation axis of, the positioning work when fixing the blade tip to the side wall surface becomes easy, and particularly the effect of fixing the hollow blade by welding is great.

【0023】さらに静止円環翼列を構成する翼の反り角
を内外周の壁面の中間で大きく、壁面近くで小さく構成
し、望ましくは内周側から外周側に向かってスタガ−角
が減少と一定値を組み合わせた変化をし、かつ変化率が
正であるように翼を構成すると、2次流れによる損失が
減少する。翼の前縁、後縁あるいは円筒断面内の静翼の
重心を結んだ線のいずれか、あるいはこれらの組合せ
が、内周側の壁面付近あるいは外周側の壁面付近の一方
では回転円環翼列の回転軸に対して直角(放射状)に
し、他方では回転方向に傾斜させて翼端では負圧面側が
側壁と鈍角をなすように構成してあると、回転方向に傾
斜している翼端では2次流れによる損失がさらに減少す
る。他方の翼端は翼の前縁、後縁あるいは円筒断面内の
静翼の重心を結んだ線のいずれかが、内周側の壁面付近
あるいは外周側の壁面付近の一方では回転円環翼列の回
転軸に対して直角(放射状)であるため、翼端を側壁面
に固定する際の位置ぎめ加工が容易となり、特に中空翼
を溶接により固定する際の効果が大きい。
Further, the warp angle of the blades forming the stationary annular blade row is set to be large in the middle of the inner and outer wall surfaces and small in the vicinity of the wall surfaces, and preferably the stagger angle decreases from the inner peripheral side to the outer peripheral side. If the blade is configured so that it has a combination of constant values and the rate of change is positive, the loss due to the secondary flow is reduced. Either the leading edge, the trailing edge of the blade, or the line connecting the centers of gravity of the stationary blades in the cylindrical cross section, or a combination of these, is installed in the rotating annular blade row near either the inner wall surface or the outer wall surface. If it is configured so that the suction surface side forms an obtuse angle with the side wall at the blade tip, it is 2 The loss due to the secondary flow is further reduced. At the other tip, either the leading edge, the trailing edge of the blade, or the line connecting the centers of gravity of the stationary blades in the cylindrical cross section, is located near the inner wall surface or the outer wall surface. Since it is perpendicular (radial) to the rotation axis of, the positioning work when fixing the blade tip to the side wall surface becomes easy, and particularly the effect of fixing the hollow blade by welding is great.

【0024】[0024]

【実施例】図1から図5によって本発明の第一の実施例
を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A first embodiment of the present invention will be described with reference to FIGS.

【0025】図1は2段機の軸流送風機の縦断面図であ
り、回転円環翼列と静止円環翼列の組合せを基本として
構成されている。動翼1は回転体2の外周に円環状に複
数個取り付けられて回転円環翼列を構成する。動翼1の
外観形状(実線)を図2に示す。静翼3は内周のケ−シ
ング4もしくは外周のケ−シング5のいずれか一方もし
くは両方に固定され、静止円環翼列を構成する。気体の
流れ6は回転体2の外周、内周のケ−シング4、外周の
ケ−シング5により構成される流路を流れ、回転円環翼
列を通過する間に運動エネルギ−を与えられるとともに
圧力が増大する。また静止円環翼列を通過する間に流れ
の運動エネルギ−の一部が圧力に変換され、さらに圧力
が増大する。図2中の破線は、比較のため従来広く使用
されている自由渦形とよばれる流れ分布を想定した場合
の翼を示したものである。
FIG. 1 is a longitudinal sectional view of a two-stage axial flow fan, which is basically constructed by a combination of a rotating annular blade row and a stationary annular blade row. A plurality of moving blades 1 are attached to the outer circumference of the rotating body 2 in an annular shape to form a rotating annular blade row. The external shape (solid line) of the moving blade 1 is shown in FIG. The stationary blades 3 are fixed to either one or both of the inner casing 4 and the outer casing 5 to form a stationary annular blade row. The gas flow 6 flows through a flow path composed of the outer circumference, the inner circumference of the casing 4, and the outer circumference of the rotor 2, and is given kinetic energy while passing through the rotating annular blade row. With that, the pressure increases. Moreover, a part of the kinetic energy of the flow is converted into pressure while passing through the stationary annular blade row, and the pressure further increases. The broken line in FIG. 2 shows the blade in the case of assuming a flow distribution called a free vortex shape which is widely used in the past for comparison.

【0026】図3は翼1の高さ方向の翼形の反り角の分
布を示す図で、翼形の反り角は根元(内周)のケ−シン
グ4の壁面付近と先端(外周)のケ−シング5の壁面付
近の中間で最大となり、かつケ−シング5の壁面付近の
反り角がケ−シング4の壁面付近の反り角より小さくな
るように構成する。図4中の破線は、比較のため従来広
く使用されている自由渦形とよばれる流れ分布を想定し
た場合の分布を示したものである。
FIG. 3 is a diagram showing the distribution of the warp angle of the airfoil in the height direction of the blade 1. The warp angle of the airfoil is at the root (inner circumference) near the wall surface of the casing 4 and at the tip (outer circumference). The maximum warp angle is near the wall surface of the casing 5, and the warp angle near the wall surface of the casing 5 is smaller than the warp angle near the wall surface of the casing 4. The broken line in FIG. 4 shows the distribution when a flow distribution called a free vortex shape, which is widely used conventionally, is assumed for comparison.

【0027】2次流れによる損失は、翼列入口の内外周
壁面の境界層が厚いほど、また翼形の反り角が大きい
程、大きくなる傾向がある。内外周の壁面近くの反り角
を減少させることにより翼列入口の内外周壁面の境界層
による2次流れ損失が減少する。動翼1の場合、反り角
を内外周の壁面の中間で大きく、壁面近くで小さく構成
することにより、2次流れ損失を減少させると2重に効
率を向上させる効果がある。 図4、図5により効率向
上の理由を説明する。図4は動翼1で構成される回転円
環翼列を流れが通過するとき、動翼1が流れに機械的エ
ネルギ−を伝達する効率の分布を示す。図4中の破線は
比較のため従来広く使用されている自由渦形と呼ばれる
流れ分布の場合を示したものである。内外周の壁の中間
部分で発生する損失は、翼表面と流れの摩擦により生じ
る損失のみで小さいので効率は高い。従来の自由渦形の
場合に対して反り角の増加は数度以下のため内外周の壁
の中間部分で発生する損失は、自由渦形の場合と大差な
いから効率もほぼ同じである。一方内外周の壁面近くで
は、翼表面と流れの摩擦により生じる損失に加え、内外
周の壁面との干渉により2次流れが発生し、損失が大き
いため効率は低下する。しかし反り角を内外周の壁面の
中間で大きく、壁面近くで小さく構成すると2次流れに
よる損失が減少するから、流れに機械的エネルギ−を伝
達する効率が向上する。
The loss due to the secondary flow tends to increase as the boundary layer on the inner and outer peripheral wall surfaces of the blade row inlet becomes thicker and as the airfoil warp angle increases. By reducing the warp angle near the inner and outer wall surfaces, the secondary flow loss due to the boundary layer of the inner and outer wall surfaces of the blade row inlet is reduced. In the case of the rotor blade 1, the warp angle is large in the middle of the inner and outer peripheral wall surfaces and small in the vicinity of the wall surfaces, so that reducing secondary flow loss has the effect of doubly improving efficiency. The reason why the efficiency is improved will be described with reference to FIGS. FIG. 4 shows a distribution of the efficiency with which the moving blade 1 transfers mechanical energy to the flow when the flow passes through the rotary annular blade row composed of the moving blade 1. The broken line in FIG. 4 shows a case of a flow distribution called a free vortex shape which is widely used in the past for comparison. Since the loss generated in the middle part of the inner and outer walls is only the loss caused by the friction between the blade surface and the flow, the efficiency is high. Since the increase of the warp angle is several degrees or less compared to the case of the conventional free vortex type, the loss generated in the middle part of the inner and outer peripheral walls is almost the same as that of the free vortex type, so the efficiency is almost the same. On the other hand, near the inner and outer peripheral wall surfaces, in addition to the loss caused by the friction between the blade surface and the flow, a secondary flow occurs due to the interference with the inner and outer peripheral wall surfaces, and the loss is large, so the efficiency decreases. However, when the warp angle is set to be large in the middle of the inner and outer wall surfaces and small near the wall surface, the loss due to the secondary flow is reduced, so that the efficiency of transmitting mechanical energy to the flow is improved.

【0028】図5は動翼1で構成される回転円環翼列を
流れが通過するとき流れが受け取る仕事量と流量の積の
分布を示す。流れが受け取る仕事量は静止系から見た回
転円環翼列前後の流れの回転方向速度成分の差と動翼1
の周方向速度の積であり、周方向速度を同一にして比較
すると流れが翼面に沿って流れている限り、反り角が大
きい程大きくなる。流量も同じ傾向となるので、これら
の積も同様の傾向となる。図5中の破線は比較のため従
来広く使用されている自由渦形とよばれる流れ分布を想
定した場合の分布を示したものである。自由渦形では仕
事量、流量ともに内周から外周まで一定の分布である。
実線と破線の下側の面積が同一、即ち流れに対する入力
仕事の合計が同一として比較する。流れが動翼1から受
け取る機械的エネルギ−は図4の効率の分布に図5の仕
事量と流量の積の重を乗じて内周から外周まで積分した
ものとなる。従って効率が同一であっても実線の方が流
れが動翼1から受け取る機械的エネルギ−が大きくな
る。これに加えて図4の分布では、内外周付近では実線
の方が2次流れ損失の低減分だけ破線(自由渦形)より
効率が高いから、さらに流れが動翼1から受け取る機械
的エネルギ−が大きくなる。流れに対する入力仕事の合
計が同一として比較しているから、流れが動翼1から受
け取る機械的エネルギ−が大きい分だけ効率が高いこと
になる。
FIG. 5 shows the distribution of the product of the work amount and the flow rate received by the flow when the flow passes through the rotary annular blade row constituted by the moving blades 1. The amount of work received by the flow is the difference between the velocity component in the rotational direction of the flow before and after the rotating annular blade row seen from the stationary system and the blade 1.
Is the product of the circumferential velocities, and when the circumferential velocities are the same, the larger the warp angle, the greater the flow as long as the flow is along the blade surface. Since the flow rate has the same tendency, these products also have the same tendency. The broken line in FIG. 5 shows the distribution assuming a flow distribution called a free vortex shape which is widely used in the past for comparison. In the free vortex type, both work and flow have a constant distribution from the inner circumference to the outer circumference.
The area under the solid line and the area under the broken line are the same, that is, the total input work for the flow is the same. The mechanical energy received by the flow from the rotor blade 1 is the efficiency distribution shown in FIG. 4 multiplied by the weight of the product of the work amount and the flow rate shown in FIG. 5 and integrated from the inner circumference to the outer circumference. Therefore, even if the efficiency is the same, the solid line increases the mechanical energy received from the moving blade 1 by the flow. In addition to this, in the distribution of FIG. 4, the solid line is more efficient than the broken line (free vortex type) in the vicinity of the inner and outer circumferences due to the reduction of the secondary flow loss, and therefore the mechanical energy that the flow receives from the rotor blade 1 Grows larger. Since the total input work for the flow is the same, the efficiency is higher as the mechanical energy received from the rotor blade 1 is larger.

【0029】動翼1では外周の壁面近くの反り角が内周
の壁面近くの反り角より小さいと、以下の効果がある。
In the moving blade 1, when the warp angle near the outer peripheral wall surface is smaller than the warp angle near the inner peripheral wall surface, the following effects are obtained.

【0030】動翼1の外周端で仕事量が少ないから、圧
力面と負圧面の圧力差が少なく、動翼1の外周端と壁面
との間隙を通過する漏洩流量が減少し、漏洩流量減少に
よる効率向上も得られる。外周側の壁面近くは内周側に
比較して翼の周速が大きいので、翼形の反り角を単純に
内外周の壁面の中間で大きく、壁面近くで小さく構成す
ると、翼列出口の内周側の流れの澱み点圧力は外周側に
比較して著しく低くなり、翼列下流側の混合損失が増加
する。しかし外周側の翼形の反り角は内周側に比較して
小さく構成してあるので、淀み点圧力の著しく低い分布
を避け翼列下流側の混合損失増加が生じない。
Since the amount of work at the outer peripheral end of the moving blade 1 is small, the pressure difference between the pressure surface and the negative pressure surface is small, the leakage flow rate passing through the gap between the outer peripheral end of the moving blade 1 and the wall surface is reduced, and the leakage flow rate is reduced. The efficiency can be improved by Since the blade peripheral speed near the outer wall is higher than that at the inner wall, if the warp angle of the airfoil is simply large in the middle of the inner and outer walls and small near the wall, The stagnation pressure of the flow on the circumferential side becomes significantly lower than that on the outer circumferential side, and the mixing loss on the downstream side of the blade row increases. However, since the airfoil angle on the outer peripheral side is smaller than that on the inner peripheral side, the distribution of the pressure at the stagnation point is extremely low and the mixing loss on the downstream side of the blade row does not increase.

【0031】図6から図8により本発明の第二の実施例
を示す。図6の実線で示す静翼3は、静止円環翼列を構
成する翼を示す。図6中の破線は比較のため従来広く使
用されている自由渦形とよばれる流れ分布を想定した場
合の静翼を示したものである。図7は静翼3の高さ方向
の翼形の反り角の分布を示す図で、翼形の反り角が内周
側の壁面付近と外周側の壁面付近の中間で最大となるよ
うにしてある。図7中の破線は比較のため広く使用され
ている自由渦形とよばれる流れ分布を想定した場合の分
布を示したものである。図8は静翼3で構成される静止
円環翼列を流れが通過するときの損失の分布を示す。図
8中の破線は比較のため広く使用されている自由渦形と
よばれる流れ分布を想定した場合の分布を示したもので
ある。内外周の壁の中間部分で発生する損失は、翼表面
と流れの摩擦により生じる損失のみであり小さい。自由
渦形の場合に対して反り角の増加は数度以下のため内外
周の壁の中間部分で発生する損失は自由渦形の場合と大
差ない。内外周の壁面近くでは、翼表面と流れの摩擦に
より生じる損失に加え、内外周の壁面との干渉による2
次流れが発生し、損失が大きいが内外周の壁面近くの反
り角が小さいので2次流れによる損失も小さく、この損
失が小さい分だけ効率が向上する。この形状の静翼3か
ら成る静止円環翼列は、図1に示した動翼1からなる回
転円環翼列の下流側に設け、動翼1の反り角が大きい半
径位置の静翼の反り角を大きく構成すると効果が大き
い。
A second embodiment of the present invention is shown in FIGS. 6 to 8. The stationary blade 3 shown by the solid line in FIG. 6 is a blade forming a stationary annular blade row. For comparison, the broken line in FIG. 6 shows a stationary blade that is widely used in the past and is assumed to have a flow distribution called a free vortex shape. FIG. 7 is a diagram showing the distribution of the warp angle of the airfoil in the height direction of the stationary blade 3, in which the warp angle of the airfoil is maximized in the middle between the wall surface on the inner peripheral side and the wall surface on the outer peripheral side. is there. The broken line in FIG. 7 shows the distribution when a flow distribution called a free vortex shape, which is widely used for comparison, is assumed. FIG. 8 shows a distribution of losses when a flow passes through a stationary annular blade row constituted by the stationary blades 3. The broken line in FIG. 8 shows the distribution when a flow distribution called a free vortex shape, which is widely used for comparison, is assumed. The loss generated in the middle portion of the inner and outer walls is only the loss caused by the friction between the blade surface and the flow, and is small. As compared with the free vortex type, the increase in the warp angle is several degrees or less, so the loss generated in the middle part of the inner and outer walls is not much different from the free vortex type. In the vicinity of the inner and outer wall surfaces, in addition to the loss caused by friction between the blade surface and the flow, there is interference due to the inner and outer wall surfaces.
The secondary flow is generated, and the loss is large, but the warpage angle near the inner and outer peripheral wall surfaces is small, so the loss due to the secondary flow is also small. The stationary annular blade row consisting of the stationary blades 3 of this shape is provided on the downstream side of the rotating annular blade row consisting of the moving blades 1 shown in FIG. If the warp angle is large, the effect is great.

【0032】図9、図10、図11は上述の第一、第二
の実施例において、翼とスタガ−角との関係を示す図で
ある。
FIGS. 9, 10 and 11 are views showing the relationship between the blade and the stagger angle in the above-mentioned first and second embodiments.

【0033】一般に翼形の反り線の翼前縁の接線は、設
計流量時に翼に流入する流れの方向におおよそ一致させ
る。従って翼高さ方向の反り角分布と翼高さ方向の翼弦
長の分布により翼の形状は、ほぼ定まる。回転円環翼
列、静止円環翼列のいずれの場合でも翼形の反り角を内
周側の壁面付近と外周側の壁面付近の中間で最大にする
場合、反り角の最大値が内周側の壁面付近あるいは外周
側の壁面付近と大差ないと効率向上の効果が得にくい。
図9のように回転円環翼列の回転軸を軸とする円筒面上
に表れる翼形を平面に展開したときの翼形の前縁と後縁
とを結ぶ直線と、円筒面上に表れる翼列の前縁を結んだ
線と直角に交わる線の成す角をスタガ−角と定義すると
き、回転円環翼列の場合は、図10に示すように内周側
(翼の根元)から外周側(先端)に向かってスタガ−角
が増加と一定値を組み合わせた変化をし、スタガ−角を
内周側から外周側に向かう距離で2回微分した値を変化
率と定義するとき、変化率が正になるように翼を構成す
る。又静止円環翼列の場合は、図11に示すように、内
周側から外周側に向かってスタガ−角が減少と一定値を
組み合わせた変化をし、変化率が正になるように翼を構
成すると反り角の最大値が過小でないように決定でき
る。
Generally, the tangent line of the blade leading edge of the airfoil warp line is approximately matched with the direction of the flow entering the blade at the design flow rate. Therefore, the blade shape is almost determined by the warp angle distribution in the blade height direction and the chord length distribution in the blade height direction. In both rotating and stationary circular blade cascades, when maximizing the warp angle of the airfoil midway between the wall surface on the inner circumference side and the wall surface on the outer circumference side, the maximum value of the warp angle is the inner circumference. It is difficult to obtain the effect of improving efficiency unless there is a large difference with the vicinity of the wall surface on the side or the vicinity of the wall surface on the outer peripheral side.
As shown in FIG. 9, a straight line connecting the leading edge and the trailing edge of the airfoil when the airfoil appearing on the cylindrical surface having the axis of rotation of the rotating annular blade row as an axis is developed on a plane, and appears on the cylindrical surface. When the angle formed by the line that intersects the line connecting the leading edges of the blade rows at a right angle is defined as the stagger angle, in the case of a rotating annular blade row, from the inner peripheral side (the root of the blade) as shown in FIG. When the stagger angle changes toward the outer peripheral side (tip) in combination with an increase and a fixed value, and the value obtained by differentiating the stagger angle twice from the inner peripheral side to the outer peripheral side is defined as the rate of change, Configure the wings so that the rate of change is positive. Further, in the case of a stationary annular blade cascade, as shown in FIG. 11, the stagger angle is changed from the inner peripheral side to the outer peripheral side by a combination of a decrease and a constant value so that the change rate becomes positive. By configuring, it is possible to determine that the maximum value of the warp angle is not too small.

【0034】図12は段当りの圧力上昇が大きい高速回
転の多段の軸流送風機にてきした第三の実施例の翼弦長
の分布を示す。反り角が内周側の壁面付近と外周側の壁
面付近の中間で最大になり、かつ外周側の壁面付近の反
り角が内周側の壁面付近の反り角より小さくなるように
翼を構成することにより、翼の外周側の壁面付近の負荷
を低減している。このため軸流送風機の効率を向上させ
るために外周側では翼の弦長を長くして翼面積を増加さ
せて負荷を低減させる必要が無い。従って高い効率を維
持しながら、図12に示すように、翼の弦長を根元(内
周側)から先端(外周側)に向かって単調に減少させる
ことが可能になり、翼先端側の重量が大幅に低減可能で
あるから、チタニウムなどの特殊材料を使用する事なく
高効率で高速回転の遠心力に耐えられるように翼を構成
できる。
FIG. 12 shows the chord length distribution of the third embodiment of a high speed rotating multistage axial blower in which the pressure rise per stage is large. Configure the blade so that the warp angle is maximum between the inner wall surface and outer wall surface, and the warp angle near the outer wall surface is smaller than that near the inner wall surface. As a result, the load near the wall surface on the outer peripheral side of the blade is reduced. Therefore, in order to improve the efficiency of the axial blower, it is not necessary to increase the chord length of the blade on the outer peripheral side to increase the blade area and reduce the load. Therefore, while maintaining high efficiency, the chord length of the blade can be monotonically decreased from the root (inner peripheral side) to the tip (outer peripheral side), as shown in FIG. The blade can be configured to withstand centrifugal force of high efficiency and high speed rotation without using special materials such as titanium.

【0035】図13、図14はそれぞれ本発明の第四、
第五の実施例を示す図で、静止円環翼列の2次流れによ
る損失をさら低減させて軸流ファンの効率を向上させる
例である。図13は回転円環翼列の下流側に設置される
静止円環翼列を構成する静翼3の前縁、後縁あるいは円
筒断面内の静翼3の重心を結んだ線のいずれか、あるい
はこれらの組合せが、内周側の壁面付近では回転円環翼
列の回転軸に対して直角方向であり、外周側の壁面付近
では回転方向に傾斜するようにして、内周側の壁面付近
では回転円環翼列の回転軸に対して放射方向状であり、
外周側では回転方向に傾斜するようにしてある。このた
め外周側の翼端では負圧面側が側壁と鈍角をなすように
構成され2次流れによる損失が減少する。図15の実線
は、図13の実線で示す静翼3の先端側を傾斜させた本
発明の実施例の損失分布を示し、図15の破線は、図1
3の破線で示す静翼を傾斜させない場合の損失分布を示
す。静翼3を傾斜させた効果による2次流れによる損失
の減少により、外周側の損失が減少している。また静翼
3が、内周側の壁面付近では回転円環翼列の回転軸に対
して直角(放射状)であるので、内周側の壁面を組立て
時の基準に利用できるので、特殊な治具を必要とせず静
翼3を壁面に固定することが可能になる。特に中空翼を
溶接により固定する際の効果が大きい。
FIG. 13 and FIG. 14 are respectively the fourth and fifth aspects of the present invention.
FIG. 11 is a diagram showing a fifth embodiment, which is an example of further improving the efficiency of the axial fan by further reducing the loss due to the secondary flow of the stationary annular blade row. FIG. 13 shows either the leading edge, the trailing edge or the line connecting the centers of gravity of the stationary blades 3 in the cylindrical cross section, the leading edge or the trailing edge of the stationary blades 3 constituting the stationary annular blade row installed on the downstream side of the rotating annular blade row. Alternatively, the combination of these is such that near the inner wall surface, the direction is perpendicular to the rotation axis of the rotating annular blade row, and near the outer wall surface, the direction of rotation is inclined so that the inner wall surface In the radial direction with respect to the rotation axis of the rotating annular blade row,
The outer peripheral side is inclined in the rotation direction. Therefore, at the blade tip on the outer peripheral side, the suction surface side forms an obtuse angle with the side wall, and the loss due to the secondary flow is reduced. The solid line in FIG. 15 shows the loss distribution of the embodiment of the present invention in which the tip side of the stationary blade 3 shown by the solid line in FIG. 13 is inclined, and the broken line in FIG.
The loss distribution when the stationary blade shown by the broken line 3 is not inclined is shown. The loss due to the secondary flow due to the effect of inclining the stationary blade 3 is reduced, and thus the loss on the outer peripheral side is reduced. In addition, since the stationary blade 3 is perpendicular (radial) to the rotation axis of the rotating annular blade row in the vicinity of the wall surface on the inner peripheral side, the wall surface on the inner peripheral side can be used as a reference at the time of assembly, so that a special treatment is required. It becomes possible to fix the stationary blade 3 to the wall surface without using any tool. In particular, the effect of fixing the hollow blade by welding is great.

【0036】図14は静翼3の外周側の壁面付近では回
転円環翼列の回転軸に対して直角であり、内周側の壁面
付近では回転方向に傾斜している。この場合内周側の壁
面付近の2次流れによる損失が減少し、外周側を利用す
る静翼3を固定する際の組立ての容易化効果が大きい。
図16の実線は、図14の実線で示す静翼3の内周側を
傾斜させた本発明の実施例の損失分布を示し、図16の
破線は、図14の破線で示す静翼を傾斜させない場合の
損失分布を示す。静翼3を傾斜させた効果による2次流
れによる損失の減少により、内周側の損失が減少してい
る。
In FIG. 14, the outer peripheral side wall surface of the stationary blade 3 is perpendicular to the rotation axis of the rotary annular blade row, and the inner peripheral side wall surface is inclined in the rotation direction. In this case, the loss due to the secondary flow near the wall surface on the inner peripheral side is reduced, and the effect of facilitating the assembly when fixing the stationary blade 3 utilizing the outer peripheral side is large.
The solid line in FIG. 16 shows the loss distribution of the embodiment of the present invention in which the inner peripheral side of the stationary blade 3 shown by the solid line in FIG. 14 is inclined, and the broken line in FIG. 16 is the stationary blade shown in broken line in FIG. The loss distribution in the case of not performing is shown. The loss due to the secondary flow due to the effect of inclining the stationary blade 3 is reduced, so that the loss on the inner peripheral side is reduced.

【0037】図17、図18はそれぞれ第六、第七の実
施例で、上述した図13、図14に示す実施例の反り角
が内周側の壁面付近と外周側の壁面付近の中間で最大と
なるように構成したものである。図17、図18中の破
線は比較のため図13、図14の実施例を示したもので
ある。静翼3を傾斜させた効果と内外周の壁面付近の翼
負荷低減による効果によりさらに2次流れによる損失が
減少する。
FIGS. 17 and 18 are sixth and seventh embodiments, respectively, in which the warp angle of the embodiment shown in FIGS. 13 and 14 is between the inner wall surface and the outer wall surface. It is configured to be maximum. The broken lines in FIGS. 17 and 18 indicate the examples of FIGS. 13 and 14 for comparison. Due to the effect of inclining the stationary blades 3 and the effect of reducing the blade load near the inner and outer peripheral wall surfaces, the loss due to the secondary flow is further reduced.

【0038】[0038]

【発明の効果】本発明によれば翼列の2次流れ損失が低
減可能であり高効率の軸流送風機が得られる。
According to the present invention, a secondary flow loss in a blade row can be reduced and a highly efficient axial blower can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の軸流送風機に係る実施例の縦断面図。FIG. 1 is a vertical cross-sectional view of an embodiment of an axial flow fan according to the present invention.

【図2】図1に示す軸流送風機における動翼の第一の実
施例の外観形状図。
FIG. 2 is an external shape diagram of a first embodiment of a moving blade in the axial blower shown in FIG.

【図3】図2の動翼の高さ方向の翼形の反り角の分布を
示す図。
3 is a diagram showing the distribution of the warp angle of the airfoil in the height direction of the moving blade in FIG.

【図4】図2に示す動翼の回転円環翼列を気体の流れが
通過するときの機械的エネルギ−伝達効率の分布を示す
図。
FIG. 4 is a diagram showing a distribution of mechanical energy transfer efficiency when a gas flow passes through a rotary annular blade row of the rotor blade shown in FIG.

【図5】図2に示す動翼の回転円環翼列を流れが通過す
るとき流れが受け取る仕事量と流量の積の分布を示す
図。
5 is a diagram showing a distribution of a product of a work amount and a flow amount received by the flow when the flow passes through the rotary annular blade row of the moving blade shown in FIG.

【図6】本発明の第二の実施例の静止円環翼列を構成す
る翼を示す図。
FIG. 6 is a view showing blades that form a stationary annular blade row according to a second embodiment of the present invention.

【図7】図6に示す実施例の静翼の高さ方向の翼形の反
り角の分布を示す図。
FIG. 7 is a diagram showing the distribution of the warp angle of the airfoil in the height direction of the stationary blade of the embodiment shown in FIG.

【図8】図6に示す実施例の静止円環翼列を流れが通過
するときの損失の分布を示す図。
8 is a diagram showing a distribution of loss when a flow passes through the stationary annular blade row of the embodiment shown in FIG.

【図9】翼のスタガ−角の定義を示す図。FIG. 9 is a diagram showing the definition of a stagger angle of a wing.

【図10】回転円環翼列の動翼のスタガ−角分布を示す
図。
FIG. 10 is a diagram showing a stagger angle distribution of rotor blades of a rotary annular blade row.

【図11】静止円環翼列の静翼のスタガ−角分布を示す
図。
FIG. 11 is a diagram showing a stagger angle distribution of a stationary blade of a stationary annular blade row.

【図12】翼の高さ方向の翼弦長の分布を示す図。FIG. 12 is a diagram showing a distribution of chord length in the height direction of the blade.

【図13】本発明の第四の実施例の静止円環翼列を構成
する翼を示す図。
FIG. 13 is a view showing blades that constitute a stationary annular blade row according to a fourth embodiment of the present invention.

【図14】本発明の第五の実施例の静止円環翼列を構成
する翼を示す図。
FIG. 14 is a view showing blades constituting a stationary annular blade row according to a fifth embodiment of the present invention.

【図15】図13に示す実施例の静止円環翼列を流れが
通過するときの損失の分布を示す図。
15 is a diagram showing a distribution of loss when a flow passes through the stationary annular blade row of the embodiment shown in FIG.

【図16】図14に示す実施例の静止円環翼列を流れが
通過するときの損失の分布を示す図。
16 is a diagram showing a distribution of loss when a flow passes through the stationary annular blade row of the embodiment shown in FIG.

【図17】本発明の第六の実施例の静止円環翼列を構成
する翼を示す図。
FIG. 17 is a view showing a blade that constitutes a stationary annular blade row according to a sixth embodiment of the present invention.

【図18】本発明の第六の実施例の静止円環翼列を構成
する翼を示す図。
FIG. 18 is a view showing a blade that constitutes a stationary annular blade row according to a sixth embodiment of the present invention.

【図19】内外ケ−シング間における軸方向流速と動翼
相対流入速度との関係を示す図。
FIG. 19 is a diagram showing a relationship between an axial flow velocity and a relative moving velocity of a moving blade between inner and outer casings.

【図20】軸方向流速と動翼相対流入速度との関係を示
す図。
FIG. 20 is a diagram showing a relationship between an axial flow velocity and a moving blade relative inflow velocity.

【図21】翼における流入流れ角度と反り角とを示す
図。
FIG. 21 is a diagram showing an inflow flow angle and a warp angle in a blade.

【図22】翼における流れ損失を説明するための図。FIG. 22 is a diagram for explaining a flow loss in a blade.

【符号の説明】[Explanation of symbols]

1…動翼 2…回転体 3…静翼 4…内周側のケ−シング 5…外周側のケ−シング 6…流れ 7…吸込みケ−シング 8…ディフュ−ザ 1 ... Moving blade 2 ... Rotating body 3 ... Shizuka 4 ... Inner peripheral casing 5 ... Outer casing 6 ... Flow 7 ... Suction casing 8 ... Diffuser

フロントページの続き (56)参考文献 特開 昭62−195495(JP,A) (58)調査した分野(Int.Cl.7,DB名) F04D 29/38 Continuation of the front page (56) Reference JP-A-62-195495 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F04D 29/38

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回転円環翼列を構成する翼と、この翼を固
定する内周側の壁と、静止円環翼列と、この翼を固定す
る外周側の壁と、前記回転円環翼列を支承回転せしめる
手段と、これら回転円環翼列、静止円環翼列及び回転円
環翼列を支承回転せしめる手段を収容するケ−シングと
を備える軸流送風機において、前記回転円環翼列の回転
軸を軸とする円筒面上に表れる翼形を平面に展開したと
きの翼形の反り線の前縁における接線と後縁における接
線との成す角を反り角と定義するとき、前記回転円環翼
列もしくは静止円環翼列を、反り角が内周側の壁面付近
と外周側の壁面付近の中間で最大となる翼により構成す
ることを特徴とする軸流送風機。
1. A blade forming a rotating annular blade row, an inner peripheral wall fixing the blade, a stationary annular blade row, an outer peripheral wall fixing the blade, and the rotating annular ring. An axial-flow blower comprising: a means for supporting and rotating the blade row; and a casing for accommodating the rotating annular blade row, the stationary annular blade row, and the means for supporting and rotating the rotating annular blade row. When defining the angle formed by the tangent line at the leading edge and the tangent line at the trailing edge of the warp line of the airfoil when the airfoil appearing on the cylindrical surface whose axis is the rotation axis of the cascade is expanded to a plane, An axial-flow blower, characterized in that the rotating annular blade row or the stationary annular blade row is constituted by blades having a maximum warp angle between an inner peripheral wall surface and an outer peripheral wall surface.
【請求項2】請求項1記載の軸流送風機において、回転
円環翼列及び静止円環翼列を、反り角が内周側の壁面付
近と外周側の壁面付近の中間で最大となる翼により構成
することを特徴とする軸流送風機。
2. The axial flow fan according to claim 1, wherein the rotary annular blade row and the stationary annular blade row have maximum warpage angles in the middle between the inner peripheral wall surface and the outer peripheral wall surface. An axial-flow blower characterized by being configured by.
【請求項3】回転円環翼列を構成する翼と、この翼を固
定する内周側の壁と、静止円環翼列と、この翼を固定す
る外周側の壁と、前記回転円環翼列を支承回転せしめる
手段と、これら回転円環翼列、静止円環翼列及び回転円
環翼列を支承回転せしめる手段を収容するケ−シングと
を備える軸流送風機において、前記回転円環翼列の回転
軸を軸とする円筒面上に表れる翼形を平面に展開したと
きの翼形の反り線の前縁における接線と後縁における接
線との成す角を反り角と定義するとき、前記回転円環翼
列の翼の反り角を内周側の壁面付近と外周側の壁面付近
の中間で最大となる翼により構成し、この回転円環翼列
の回転軸を軸とする円筒面上に表れる翼形を平面に展開
したときの翼形の前縁と後縁とを結ぶ直線と、円筒面上
に表れる翼列の前縁を結んだ線と直角に交わる線との成
す角をスタガ−角と定義するとき、前記翼のスタガ−角
を内周側から外周側に向かってスタガ−角が増加する部
分と一定である部分とで形成し、前記スタガ−角を内周
側から外周側に向かう距離で2回微分した値を変化率と
定義するとき、変化率が正であることを特徴とする軸流
送風機。
3. A blade forming a rotating annular blade row, an inner peripheral wall fixing the blade, a stationary annular blade row, an outer peripheral wall fixing the blade, and the rotating annular ring. An axial-flow blower comprising: a means for supporting and rotating the blade row; and a casing for accommodating the rotating annular blade row, the stationary annular blade row, and the means for supporting and rotating the rotating annular blade row. When defining the angle formed by the tangent line at the leading edge and the tangent line at the trailing edge of the warp line of the airfoil when the airfoil appearing on the cylindrical surface whose axis is the rotation axis of the cascade is expanded to a plane, A blade having the largest warp angle in the vicinity of the wall surface on the inner peripheral side and the wall surface on the outer peripheral side of the rotating annular blade row, and a cylindrical surface having the axis of rotation of the rotating annular blade row as an axis. A straight line connecting the leading edge and the trailing edge of the airfoil when the airfoil appearing above is expanded to a plane and the front of the blade row appearing on the cylindrical surface. When defining the angle formed by the line connecting the lines and the line intersecting at right angles as the stagger angle, the stagger angle of the blade is a part where the stagger angle increases from the inner peripheral side toward the outer peripheral side and the part that is constant. The axial flow blower is characterized in that the change rate is positive when a value obtained by differentiating the stagger angle from the inner circumference side to the outer circumference side twice is defined as the change rate.
【請求項4】回転円環翼列を構成する翼と、この翼を固
定する内周側の壁と、静止円環翼列と、この翼を固定す
る外周側の壁と、前記回転円環翼列を支承回転せしめる
手段と、これら回転円環翼列、静止円環翼列及び回転円
環翼列を支承回転せしめる手段を収容するケ−シングと
を備える軸流送風機において、前記回転円環翼列の回転
軸を軸とする円筒面上に表れる翼形を平面に展開したと
きの翼形の反り線の前縁における接線と後縁における接
線との成す角を反り角と定義するとき、前記回転円環翼
列の翼の反り角を内周側の壁面付近と外周側の壁面付近
の中間で最大となりかつ内周側の壁面付近の反り角が外
周側の壁面付近の反り角より大きい翼により構成し、こ
の回転円環翼列の回転軸を軸とする円筒面上に表れる翼
形を平面に展開したときの翼形の前縁と後縁とを結ぶ直
線と、円筒面上に表れる翼列の前縁を結んだ線と直角に
交わる線との成す角をスタガ−角と定義するとき、前記
翼のスタガ−角を内周側から外周側に向かってスタガ−
角が増加する部分と一定である部分とで形成し、前記ス
タガ−角を内周側から外周側に向かう距離で2回微分し
た値を変化率と定義するとき、変化率が正であることを
特徴とする軸流送風機。
4. A blade forming a rotating annular blade row, an inner peripheral wall fixing the blade, a stationary annular blade row, an outer peripheral wall fixing the blade, and the rotating annular ring. An axial-flow blower comprising: a means for supporting and rotating the blade row; and a casing for accommodating the rotating annular blade row, the stationary annular blade row, and the means for supporting and rotating the rotating annular blade row. When defining the angle formed by the tangent line at the leading edge and the tangent line at the trailing edge of the warp line of the airfoil when the airfoil appearing on the cylindrical surface whose axis is the rotation axis of the cascade is expanded to a plane, The warp angle of the blades of the rotating annular blade row is maximized in the middle between the vicinity of the inner wall surface and the outer wall surface, and the warp angle near the inner wall surface is larger than the warp angle near the outer wall surface. It is composed of blades, and the airfoil that appears on the cylindrical surface whose axis is the axis of rotation of this rotating annular blade row is expanded to a plane. When defining the angle formed by a straight line connecting the leading edge and the trailing edge of the airfoil and a line intersecting at right angles with the line connecting the leading edges of the blade rows appearing on the cylindrical surface, the blade is defined as The stagger angle is staggered from the inner side to the outer side.
When the rate of change is defined as the rate of change, which is formed by a portion where the angle increases and a portion where the angle is constant, and the stagger angle is differentiated twice by the distance from the inner circumference side to the outer circumference side, the change rate is positive. Axial blower.
【請求項5】回転円環翼列を構成する翼と、この翼を固
定する内周側の壁と、静止円環翼列と、この翼を固定す
る外周側の壁と、前記回転円環翼列を支承回転せしめる
手段と、これら回転円環翼列、静止円環翼列及び回転円
環翼列を支承回転せしめる手段を収容するケ−シングと
を備える軸流送風機において、前記回転円環翼列の回転
軸を軸とする円筒面上に表れる翼形を平面に展開したと
きの翼形の反り線の前縁における接線と後縁における接
線との成す角を反り角と定義するとき、前記静止円環翼
列の翼の反り角を内周側の壁面付近と外周側の壁面付近
の中間で最大となる翼により構成し、この回転円環翼列
の回転軸を軸とする円筒面上に表れる翼形を平面に展開
したときの翼形の前縁と後縁を結ぶ直線と、円筒面上に
表れる翼列の前縁を結んだ線と直角に交わる線との成す
角をスタガ−角と定義するとき、前記翼のスタガ−角を
内周側から外周側に向かってスタガ−角が減少する部分
と一定である部分とで形成し、前記スタガ−角を内周側
から外周側に向かう距離で2回微分した値を変化率と定
義するとき、変化率が正であることを特徴とする軸流送
風機。
5. A blade forming a rotating annular blade row, an inner peripheral wall fixing the blade, a stationary annular blade row, an outer peripheral wall fixing the blade, and the rotating annular ring. An axial-flow blower comprising: a means for supporting and rotating the blade row; and a casing for accommodating the rotating annular blade row, the stationary annular blade row, and the means for supporting and rotating the rotating annular blade row. When defining the angle formed by the tangent line at the leading edge and the tangent line at the trailing edge of the warp line of the airfoil when the airfoil appearing on the cylindrical surface whose axis is the rotation axis of the cascade is expanded to a plane, A cylindrical surface whose axis of rotation is the axis of rotation of the stationary annular ring blade row, which is formed by a blade having a maximum warp angle in the vicinity of a wall surface on the inner peripheral side and a wall surface on the outer peripheral side. A straight line connecting the leading edge and the trailing edge of the airfoil when the airfoil appearing above is expanded to a plane, and the leading edge of the blade cascade appearing on the cylindrical surface When the angle formed by the line that intersects with the line that intersects at a right angle is defined as the stagger angle, the stagger angle of the blade is a portion where the stagger angle decreases from the inner peripheral side toward the outer peripheral side and a constant portion. The axial flow blower is characterized in that the change rate is positive when a value obtained by differentiating the stagger angle twice from the inner circumference side to the outer circumference side is defined as the change rate.
【請求項6】請求項4もしくは請求項5記載の軸流送風
機において、回転円環翼列を構成する翼の弦長が内周側
から外周側に向かって単調に減少することを特徴とする
軸流送風機。
6. The axial blower according to claim 4 or 5, characterized in that the chord length of the blades forming the rotating annular blade row monotonically decreases from the inner peripheral side to the outer peripheral side. Axial blower.
【請求項7】回転円環翼列を構成する翼と、この翼を固
定する内周側の壁と、静止円環翼列と、この翼を固定す
る外周側の壁と、前記回転円環翼列を支承回転せしめる
手段と、これら回転円環翼列、静止円環翼列及び回転円
環翼列を支承回転せしめる手段を収容するケ−シングと
を備える軸流送風機において、前記回転円環翼列の下流
に設置される静止円環翼列を構成する翼の前縁、後縁も
しくは円筒断面内の翼形の重心のそれぞれを結んだ線の
いずれかが、内周側の壁面付近では前記回転円環翼列の
回転軸に対して直角であり、外周側の壁面付近では回転
方向に傾斜していることを特徴とする軸流送風機。
7. A blade forming a rotating annular blade row, an inner peripheral wall fixing the blade, a stationary annular blade row, an outer peripheral wall fixing the blade, and the rotating ring. An axial-flow blower comprising: a means for supporting and rotating the blade row; and a casing for accommodating the rotating annular blade row, the stationary annular blade row, and the means for supporting and rotating the rotating annular blade row. In the vicinity of the wall surface on the inner peripheral side, either the leading edge, the trailing edge of the blades forming the stationary annular blade row installed downstream of the blade row or the line connecting the center of gravity of the airfoil in the cylindrical cross section An axial blower, which is perpendicular to a rotation axis of the rotating annular blade row and is inclined in a rotation direction near a wall surface on an outer peripheral side.
【請求項8】請求項7記載の軸流送風機において、回転
円環翼列の下流に設置される静止円環翼列を構成する翼
の前縁、後縁もしくは円筒断面内の翼形の重心のそれぞ
れを結んだ線の全てが、内周側の壁面付近では前記回転
円環翼列の回転軸に対して直角であり、外周側の壁面付
近では回転方向に傾斜していることを特徴とする軸流送
風機。
8. The axial flow fan according to claim 7, wherein the center of gravity of the leading edge, trailing edge or airfoil shape of a blade forming a stationary annular blade row installed downstream of the rotating annular blade row. All of the lines connecting each of them are at right angles to the rotation axis of the rotary annular blade row near the wall surface on the inner peripheral side, and are inclined in the rotation direction near the wall surface on the outer peripheral side. Axial blower.
【請求項9】回転円環翼列を構成する翼と、この翼を固
定する内周側の壁と、静止円環翼列と、この翼を固定す
る外周側の壁と、前記回転円環翼列を支承回転せしめる
手段と、これら回転円環翼列、静止円環翼列及び回転円
環翼列を支承回転せしめる手段を収容するケ−シングと
を備える軸流送風機において、前記回転円環翼列の下流
に設置される静止円環翼列を構成する翼の前縁、後縁も
しくは円筒断面内の翼形の重心のそれぞれを結んだ線の
いずれかが、内周側の壁面付近では前記回転円環翼列の
回転軸に対して直角であり、外周側の壁面付近では回転
方向に傾斜し、この回転円環翼列の回転軸を軸とする円
筒面上に表れる翼形を平面に展開したときの翼形の前縁
と後縁を結ぶ直線と、円筒面上に表れる翼列の前縁を結
んだ線と直角に交わる線との成す角をスタガ−角と定義
するとき、前記翼のスタガ−角を内周側から外周側に向
かってスタガ−角が減少する部分と一定である部分とで
形成し、前記スタガ−角を内周側から外周側に向かう距
離で2回微分した値を変化率と定義するとき、変化率が
正であることを特徴とする軸流送風機。
9. A blade forming a rotating annular blade row, an inner peripheral wall fixing the blade, a stationary annular blade row, an outer peripheral wall fixing the blade, and the rotating annular ring. An axial-flow blower comprising: a means for supporting and rotating the blade row; and a casing for accommodating the rotating annular blade row, the stationary annular blade row, and the means for supporting and rotating the rotating annular blade row. In the vicinity of the wall surface on the inner peripheral side, either the leading edge, the trailing edge of the blades forming the stationary annular blade row installed downstream of the blade row or the line connecting the center of gravity of the airfoil in the cylindrical cross section It is perpendicular to the rotation axis of the rotating annular blade row, is inclined in the rotation direction in the vicinity of the wall surface on the outer peripheral side, and has a plane shape that appears on a cylindrical surface whose axis is the rotation axis of this rotating annular blade row. The straight line connecting the leading edge and the trailing edge of the airfoil when it is deployed at a right angle to the line connecting the leading edges of the blade rows appearing on the cylindrical surface. When defining the angle formed by the vertical line as the stagger angle, the stagger angle of the blade is formed by a portion where the stagger angle decreases from the inner peripheral side to the outer peripheral side and a portion where the stagger angle is constant. An axial-flow blower characterized in that the rate of change is positive, when the value is defined as a value obtained by differentiating the angle twice from the distance from the inner peripheral side to the outer peripheral side.
【請求項10】回転円環翼列を構成する翼と、この翼を
固定する内周側の壁と、静止円環翼列と、この翼を固定
する外周側の壁と、前記回転円環翼列を支承回転せしめ
る手段と、これら回転円環翼列、静止円環翼列及び回転
円環翼列を支承回転せしめる手段を収容するケ−シング
とを備える軸流送風機において、前記回転円環翼列の下
流に設置される静止円環翼列を構成する翼の前縁、後縁
もしくは円筒断面内の翼形の重心のそれぞれを結んだ線
の全てが、翼の根元の壁面付近では前記回転円環翼列の
回転軸に対して直角であり、先端の壁面付近では回転方
向に傾斜し、この回転円環翼列の回転軸を軸とする円筒
面上に表れる翼形を平面に展開したときの翼形の前縁と
後縁を結ぶ直線と、円筒面上に表れる翼列の前縁を結ん
だ線と直角に交わる線との成す角をスタガ−角と定義す
るとき、前記翼のスタガ−角を翼の根元から先端に向か
ってスタガ−角が減少する部分と一定である部分とで形
成し、前記スタガ−角を翼の根元から先端に向かう距離
で2回微分した値を変化率と定義するとき、減少する変
化率が正であることを特徴とする軸流送風機。
10. A blade forming a rotary annular blade row, an inner peripheral wall fixing the blade, a stationary annular blade row, an outer peripheral wall fixing the blade, and the rotary annular ring. An axial-flow blower comprising: a means for supporting and rotating the blade row; and a casing for accommodating the rotating annular blade row, the stationary annular blade row, and the means for supporting and rotating the rotating annular blade row. All of the lines connecting the leading edge, the trailing edge, or the center of gravity of the airfoil in the cylindrical cross section, which forms the stationary annular blade row installed downstream of the blade row, are located near the wall surface at the root of the blade. It is perpendicular to the axis of rotation of the rotating annular blade row, tilts in the direction of rotation near the tip wall surface, and develops the airfoil that appears on the cylindrical surface with the axis of rotation of this rotating annular blade row as a plane. At a right angle to the line connecting the leading and trailing edges of the airfoil and the line connecting the leading edges of the blade rows appearing on the cylindrical surface. When the angle formed by a line is defined as a stagger angle, the stagger angle of the blade is formed by a portion where the stagger angle decreases from the root of the blade toward the tip and a portion where the stagger angle is constant, and the stagger angle is defined as follows. An axial-flow blower characterized in that the changing rate is positive when a value obtained by differentiating twice the distance from the root of the blade to the tip is defined as the changing rate.
JP31022894A 1994-12-14 1994-12-14 Axial blower Expired - Lifetime JP3528285B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31022894A JP3528285B2 (en) 1994-12-14 1994-12-14 Axial blower
CN95121881A CN1058774C (en) 1994-12-14 1995-12-13 Axial-flow blower with guiding in channel
KR1019950049110A KR0161107B1 (en) 1994-12-14 1995-12-13 Axial blower mounted inducer fluid road

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31022894A JP3528285B2 (en) 1994-12-14 1994-12-14 Axial blower

Publications (2)

Publication Number Publication Date
JPH08165999A JPH08165999A (en) 1996-06-25
JP3528285B2 true JP3528285B2 (en) 2004-05-17

Family

ID=18002737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31022894A Expired - Lifetime JP3528285B2 (en) 1994-12-14 1994-12-14 Axial blower

Country Status (3)

Country Link
JP (1) JP3528285B2 (en)
KR (1) KR0161107B1 (en)
CN (1) CN1058774C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3108116A4 (en) * 2014-02-19 2018-02-28 United Technologies Corporation Gas turbine engine airfoil

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122192A (en) * 1996-10-14 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Axial flow compressor moving blade
JP4697501B2 (en) * 2000-07-25 2011-06-08 ミネベア株式会社 Rectifier blade
US7896612B2 (en) * 2006-08-10 2011-03-01 Andreas Stihl Ag & Co. Kg Blower unit and portable blower
JP5454083B2 (en) * 2009-10-27 2014-03-26 株式会社Ihi Compressor for jet engine and jet engine
JP5211027B2 (en) * 2009-12-14 2013-06-12 国立大学法人 東京大学 Counter-rotating axial fan
EP4279706A3 (en) 2014-02-19 2024-02-28 RTX Corporation Turbofan engine with geared architecture and lpc blade airfoils
WO2015126715A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015175073A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
US10570916B2 (en) 2014-02-19 2020-02-25 United Technologies Corporation Gas turbine engine airfoil
EP3114321B1 (en) 2014-02-19 2019-04-17 United Technologies Corporation Gas turbine engine airfoil
US10385866B2 (en) 2014-02-19 2019-08-20 United Technologies Corporation Gas turbine engine airfoil
EP3108120B1 (en) 2014-02-19 2021-03-31 Raytheon Technologies Corporation Gas turbine engine having a geared architecture and a specific fixed airfoil structure
EP3108100B1 (en) 2014-02-19 2021-04-14 Raytheon Technologies Corporation Gas turbine engine fan blade
WO2015127032A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
US10495106B2 (en) 2014-02-19 2019-12-03 United Technologies Corporation Gas turbine engine airfoil
US10557477B2 (en) 2014-02-19 2020-02-11 United Technologies Corporation Gas turbine engine airfoil
US10590775B2 (en) 2014-02-19 2020-03-17 United Technologies Corporation Gas turbine engine airfoil
EP3108113A4 (en) 2014-02-19 2017-03-15 United Technologies Corporation Gas turbine engine airfoil
US9347323B2 (en) 2014-02-19 2016-05-24 United Technologies Corporation Gas turbine engine airfoil total chord relative to span
WO2015126449A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
EP3108105B1 (en) 2014-02-19 2021-05-12 Raytheon Technologies Corporation Gas turbine engine airfoil
EP3108104B1 (en) 2014-02-19 2019-06-12 United Technologies Corporation Gas turbine engine airfoil
EP3108122B1 (en) 2014-02-19 2023-09-20 Raytheon Technologies Corporation Turbofan engine with geared architecture and lpc airfoils
US10519971B2 (en) 2014-02-19 2019-12-31 United Technologies Corporation Gas turbine engine airfoil
EP3108109B1 (en) 2014-02-19 2023-09-13 Raytheon Technologies Corporation Gas turbine engine fan blade
JP2020165379A (en) * 2019-03-29 2020-10-08 株式会社酉島製作所 Turbo pump
EP4209682A4 (en) 2020-09-02 2023-10-18 Mitsubishi Electric Corporation Axial flow fan, and indoor unit for air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775023A (en) * 1971-02-17 1973-11-27 Teledyne Ind Multistage axial flow compressor
JPS5262712A (en) * 1975-11-20 1977-05-24 Agency Of Ind Science & Technol Axial flow blower
JPH07103877B2 (en) * 1986-02-19 1995-11-08 株式会社東芝 Axial compressor
JP2712800B2 (en) * 1990-07-18 1998-02-16 富士電機株式会社 Forward / reverse bi-directional axial blower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3108116A4 (en) * 2014-02-19 2018-02-28 United Technologies Corporation Gas turbine engine airfoil

Also Published As

Publication number Publication date
KR960023835A (en) 1996-07-20
JPH08165999A (en) 1996-06-25
KR0161107B1 (en) 1999-01-15
CN1133403A (en) 1996-10-16
CN1058774C (en) 2000-11-22

Similar Documents

Publication Publication Date Title
JP3528285B2 (en) Axial blower
EP1478857B1 (en) Compressor with an anti-stall tip treatment
JP5235253B2 (en) Convex compressor casing
US7186072B2 (en) Recirculation structure for a turbocompressor
US6203275B1 (en) Centrifugal compressor and diffuser for centrifugal compressor
EP1979623B1 (en) Improved impeller and fan
CA2495186C (en) Recirculation structure for turbocompressors
JP5608062B2 (en) Centrifugal turbomachine
EP0151169B1 (en) Axial-flow fan
WO2006011333A1 (en) Blower
WO2008127611A1 (en) High efficiency fan blades with airflow-directing baffle elements
WO2008075467A1 (en) Cascade of axial compressor
JPH01121599A (en) Radial discharge centrifugal compressor
WO2014142225A1 (en) Impeller and axial blower in which same is used
JP3578692B2 (en) Turbo compressor
JPH10141290A (en) Multiple stage centrifugal compressor
JP2573292B2 (en) High speed centrifugal compressor
JP5232721B2 (en) Centrifugal compressor
WO2018101021A1 (en) Diffuser, discharge flow path, and centrifugal turbo machine
JPH0474560B2 (en)
JPH0615878B2 (en) High-speed centrifugal compressor diffuser
JPH06299994A (en) Multiblade fan
WO2022064751A1 (en) Centrifugal compressor
JP3124188B2 (en) Mixed flow turbine nozzle
JP3104395B2 (en) Axial compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9