JPH0474560B2 - - Google Patents

Info

Publication number
JPH0474560B2
JPH0474560B2 JP11032282A JP11032282A JPH0474560B2 JP H0474560 B2 JPH0474560 B2 JP H0474560B2 JP 11032282 A JP11032282 A JP 11032282A JP 11032282 A JP11032282 A JP 11032282A JP H0474560 B2 JPH0474560 B2 JP H0474560B2
Authority
JP
Japan
Prior art keywords
blade
hub
curved surface
guide
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11032282A
Other languages
Japanese (ja)
Other versions
JPS59593A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11032282A priority Critical patent/JPS59593A/en
Publication of JPS59593A publication Critical patent/JPS59593A/en
Publication of JPH0474560B2 publication Critical patent/JPH0474560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/025Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal comprising axial flow and radial flow stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明は、流体を外周方向から求心的に吸い込
み、中心部から吐出するようにした送風機に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blower that sucks in fluid centripetally from the outer circumference and discharges it from the center.

第1図および第2図には、従来の求心型送風機
の1例(特公昭55−20078号公報参照)が示され
ている。この求心型送風機においては、羽根車
1′の羽根として作用する動翼2′の前縁2a′の外
周側に、流入空気に予施回を与えるための前置静
翼3′、動翼2′の後縁2b′の内周側に、動圧の静
圧転換を行なわしめるための後置静翼4′がそれ
ぞれ取付けられている。
1 and 2 show an example of a conventional centripetal blower (see Japanese Patent Publication No. 55-20078). In this centripetal blower, a front stator vane 3' for giving pre-stress to incoming air, and a rotor blade 2a on the outer peripheral side of the leading edge 2a' of the rotor blade 2' which acts as a blade of the impeller 1'. Rear stator vanes 4' for converting dynamic pressure to static pressure are respectively attached to the inner peripheral side of the trailing edge 2b'.

ここで、一般の求心型送風機の作動について説
明する。第3図には、第1図の求心型送風機にお
いて、前置静翼3′および後置静翼4′がない状態
で動翼2′を作動させた場合の羽根入口(前縁2
a′)および出口(後縁2b′)における速度三角形
が示されている。第3図において、符号Uは周速
度(m/s)、Cは絶対速度(m/s)、wは相対
速度(m/s)をそれぞれ示し、且つ各符号にお
ける添字1は入口、2は出口、uは周方向成分、
mは径方向成分をそれぞれ示している。
Here, the operation of a general centripetal blower will be explained. FIG. 3 shows the blade inlet (leading edge 2) when the moving blade 2' is operated in the centripetal blower shown in FIG.
a') and the velocity triangle at the exit (trailing edge 2b') are shown. In Fig. 3, the symbol U indicates the circumferential velocity (m/s), C indicates the absolute velocity (m/s), and w indicates the relative velocity (m/s), and the subscript 1 in each symbol indicates the entrance, and 2 indicates the entrance. exit, u is the circumferential component,
m indicates a radial component.

さて、動翼2′の運転によつて生じる理論全圧
上昇P0(mmAq)は次式で与えられる。
Now, the theoretical total pressure increase P 0 (mmAq) caused by the operation of the rotor blade 2' is given by the following equation.

P0=γ/g(U2Cu2−U1Cu1) …(1) ここに γ:流体の比重量(Kg/m2) g:重力の加速度(m/s2) 式(1)において、第3図の場合、前置静翼3′が
ないので流体はほぼ径方向流入となりCu1≒0で
ある。
P 0 = γ/g (U 2 Cu 2 − U 1 Cu 1 ) …(1) where γ: Specific weight of fluid (Kg/m 2 ) g: Acceleration of gravity (m/s 2 ) Equation (1) In the case of FIG. 3, since there is no front stator vane 3', the fluid flows in approximately in the radial direction, and Cu 1 ≈0.

故に、 P0=γ/g(U2Cu2) …(2) 従つて、前記従来の求心型送風機はこれと同一
外径の遠心フアンを同一回転数で運転させた場合
に比べて、U2<U1であり、得られる理論全圧上
昇P0が小さくなる。又、動翼2′の運転によつて
生じる理論静圧上昇Ps0は次式で与えられる。
Therefore, P 0 = γ/g (U 2 Cu 2 )...(2) Therefore, the conventional centripetal blower has a lower U 2 < U 1 , and the resulting theoretical total pressure increase P 0 becomes small. Further, the theoretical static pressure increase Ps 0 caused by the operation of the rotor blade 2' is given by the following equation.

Ps0=P0−γC2 2/2g(1−η) …(3) ここに η:デイフユーザ効率 式(3)において、後置静翼4′がなければ、η≒
0である。遠心フアンの場合は、渦室あるいは渦
形室が設置されており、デイフユーザ効率ηの向
上によつて動圧γC2 2/2gの静圧回復が良好に行
なわれ、高い静圧が得られるようになつている。
Ps 0 = P 0 −γC 2 2 /2g (1−η) …(3) where η: differential user efficiency In equation (3), if there is no trailing stationary vane 4′, η≒
It is 0. In the case of a centrifugal fan, a vortex chamber or a vortex-shaped chamber is installed, and by improving the differential user efficiency η, the static pressure recovery of the dynamic pressure γC 2 2 /2g is performed well, and a high static pressure can be obtained. It's getting old.

そのため、従来は第1図および第2図図示の如
く、動翼2′の前縁2a′外周側に、回転方向と逆
方向の絶対速度Cの周方向成分(−Cu1)を与え
得るように前置静翼3′を設置して、前記式(1)で
与えられる理論全圧上昇P0を大きくし、且つ動
翼2′の後縁2b′内周側に後置静翼4′を設置し
て、前記式(3)における動圧γC2 2/2gが少しでも
静圧回復に供せられるようにしている。
Therefore, conventionally, as shown in FIGS. 1 and 2, a circumferential component (-Cu 1 ) of the absolute velocity C in the direction opposite to the rotation direction can be applied to the outer peripheral side of the leading edge 2a' of the rotor blade 2 '. The front stator vane 3' is installed on the inner peripheral side of the trailing edge 2b' of the rotor blade 2' to increase the theoretical total pressure rise P 0 given by the above formula (1). is installed so that the dynamic pressure γC 2 2 /2g in the above equation (3) can be used to recover the static pressure.

第1図および第2図に示す求心型送風機におい
て、動翼2′を作動させた場合に動翼前縁2a′お
よび動翼後縁2b′における速度三角形が第4図に
示されている。
In the centripetal blower shown in FIGS. 1 and 2, when the rotor blade 2' is operated, the velocity triangle at the rotor blade leading edge 2a' and the rotor blade trailing edge 2b' is shown in FIG.

従つて、この求心型送風機にて得られる静圧上
昇Psは次式で与えられる。
Therefore, the static pressure increase Ps obtained by this centripetal blower is given by the following equation.

Ps=γ/g(U2Cu2−U1Cu1) −γC2 2/2g(1−η)−ΔPs …(4) ここに ΔPs:フアン内部損失 このフアン内部損失ΔPsは、前置静翼内損失、
動翼内損失、後置静翼内損失、出口部の直角曲が
り損失およびその他の損失の和として表わされる
が、従来例の求心型送風機においては、 (a) 前置静翼3′および後置静翼4′を有している
ため、動翼2′との間のポテンシヤル干渉およ
び静翼自体の表面摩擦損失が存在することによ
る損失、 (b) 比較的短い翼弦長ι′の動翼2′で所定の仕事
をしなければならないため、翼面負荷分布が急
激に変化するための形状損失、 (c) 後置静翼4′を設置して、施回速度成分Cu2
をもつ出口絶対速度C2を径方向へ向かわしめ
てC3=Cm3としても、後置静翼4′の内径r3′が
動翼内径r2′よりも小さくなるので、C2−C3
小さくなり、動圧の静圧回復はほとんど見込め
ない、 (d) 動翼2′および静翼3′,4′の組合せによる
ポテンシヤル干渉に伴う騒音増大、 等に加えて、 (e) 一般に吸入空気の流線は動翼の前縁に対して
直交叉状に流入しようとする性質を有するた
め、軸心方向に延びる羽根前縁へ流入する流線
は羽根車1′の半径方向で軸心に対し直角に流
入することとなり、そのためこの流入空気の流
入半径は前縁2a′全域に亘り等しく、且つ大き
くなるため、大きな遠心ヘツドに抗して導入さ
れることとなり、流入抵抗が大きくなる点、お
よび、全周より流入した吸込空気は、吐出口に
向つてその流線方向を変更するが、軸心部で対
向する流れが合流衝突するため、圧力損失を生
ずる点 が問題となり、このため、前記式(4)において、フ
アン内部損失ΔPsが大きくなり、得られる静圧上
昇Psが小さくなる。
Ps=γ/g(U 2 Cu 2 −U 1 Cu 1 ) −γC 2 2 /2g(1−η)−ΔPs …(4) where ΔPs: Fan internal loss This fan internal loss ΔPs is In-wing losses,
It is expressed as the sum of the loss in the rotor blade, the loss in the rear stator blade, the right angle bending loss at the outlet, and other losses, but in a conventional centripetal blower, (a) the front stator blade 3' and the rear (b) A rotor blade with a relatively short chord length ι′ (c) By installing the trailing stator vane 4', the pulsing speed component Cu 2
Even if the exit absolute velocity C 2 with radial direction is made C 3 =Cm 3 , the inner diameter r 3 ′ of the trailing stationary blade 4′ is smaller than the rotor blade inner diameter r 2 ′, so C 2 −C 3 (d) Noise increases due to potential interference caused by the combination of rotor blades 2' and stationary blades 3' and 4', etc. (e) In general, suction Streamlines of air tend to flow perpendicularly to the leading edge of the rotor blade, so the streamlines flowing into the leading edge of the blade extending in the axial direction are aligned with the axial center in the radial direction of the impeller 1'. As a result, the inflow radius of this incoming air is equal and large over the entire leading edge 2a', so it is introduced against the large centrifugal head, and the inflow resistance becomes large. , and the suction air flowing in from the entire circumference changes its streamline direction toward the discharge port, but the opposing flows merge and collide at the axial center, causing a problem of pressure loss. , in the above equation (4), the fan internal loss ΔPs becomes large and the resulting static pressure increase Ps becomes small.

上記せる如く、従来の求心型送風機には、静圧
効率が低く、又騒音が大きいという問題点があつ
た。更に、前置静翼および後置静翼が必要なこと
により、構造が複雑化するという問題点もあつ
た。
As mentioned above, conventional centripetal blowers have had the problems of low static pressure efficiency and large noise. Furthermore, there is a problem in that the structure becomes complicated due to the necessity of front stator vanes and rear stator vanes.

本発明は、上記問題点に鑑み、羽根車を構成す
る略単葉双曲面状のハブの外周面形状を内方への
求心加速および外方への斜流加速を生ぜしめ得る
ような新規な曲面で構成するとともに、羽根の前
半部において求心加速を生ぜしめ、後半部で斜流
加速を生ぜしめ得るような形状にすることによつ
て、送風機の静圧効率を向上せしめることを目的
とするものであり、かかる目的達成のため、略単
葉双曲面状のハブおよびこれに植設された複数枚
の羽根を有する羽根車と該羽根車の外周を被包す
る案内ガイドと該ハブ前面と該案内ガイド前面と
に設けた流入案内板とからなる送風機において、
径方向から上記羽根の前縁部へ向かう吸込流路を
軸方向に垂直で互いに平行な上記流入案内板で構
成し、前記ハブの外周面を、斜め内方への求心加
速を生ぜしめる前部曲面と、斜め外方への斜流加
速を生ぜしめる後部曲面とで構成するとともに、
前記各羽根を、前記前部曲面と後部曲面とに跨つ
て連続的に一体形成し且つ該各羽根における前縁
部のチツプ側がハブ側よりも軸方向に見て吐出側
でかつ半径方向外側に存在するよう各羽根の前縁
部を傾斜させて、羽根の前半部において求心加速
を生ぜしめ、後半部で斜流加速を生ぜしめ得る形
状にしたことを特徴とする。
In view of the above-mentioned problems, the present invention provides a novel curved surface that can cause inward centripetal acceleration and outward diagonal flow acceleration in the outer peripheral surface shape of the substantially monoplane hyperboloid hub constituting the impeller. The purpose is to improve the static pressure efficiency of the blower by creating a shape that can produce centripetal acceleration in the front half of the blade and diagonal flow acceleration in the rear half. In order to achieve this purpose, an impeller having a substantially monoplane hyperboloid-shaped hub, a plurality of blades implanted therein, a guide that covers the outer periphery of the impeller, a front surface of the hub, and the guide are provided. In a blower consisting of a guide front and an inflow guide plate provided on the front side,
A front section is configured such that a suction flow path extending from the radial direction toward the front edge of the blade is formed of the inflow guide plates that are perpendicular to the axial direction and parallel to each other, and that causes centripetal acceleration diagonally inward on the outer circumferential surface of the hub. It consists of a curved surface and a rear curved surface that causes diagonal flow acceleration diagonally outward.
The blades are integrally formed continuously over the front curved surface and the rear curved surface, and the tip side of the front edge of each blade is located on the discharge side and radially outward of the hub side when viewed in the axial direction. The leading edge of each blade is inclined so that centripetal acceleration can be generated in the front half of the blade, and diagonal flow acceleration can be generated in the rear half of the blade.

以下、第5図ないし第7図を参照して本発明の
実施例にかかる送風機を説明する。
Hereinafter, a blower according to an embodiment of the present invention will be described with reference to FIGS. 5 to 7.

第5図には、本発明の実施例が示されており、
この送風機は略単葉双曲面状のハブ2およびその
外周面に植設された複数の羽根3,3…を有する
羽根車1と、該羽根車1の外周を被包する案内ガ
イド4と、前記羽根車1の吸込領域において軸方
向に垂直で互いに平行な流入案内板5,5とによ
つて構成されている。
An embodiment of the invention is shown in FIG.
This blower includes an impeller 1 having a substantially monoplane hyperboloid hub 2, a plurality of blades 3, 3, etc. implanted on the outer peripheral surface of the hub 2, a guide 4 surrounding the outer periphery of the impeller 1, and a guide 4 that covers the outer periphery of the impeller 1. In the suction region of the impeller 1, it is composed of inflow guide plates 5, 5 that are perpendicular to the axial direction and parallel to each other.

前記ハブ2の外周面形状は、前縁半径r1に比べ
て、中間部半径r2が小さく後縁半径r3が大きくな
るような凹面状とされている。即ち、前縁から中
間部までの前部曲面6aは漸次径が縮小される一
方、中間部から後縁までの後部曲面6bは漸次径
が拡大され、r3>r1>r2となる如く形成されてい
る。なお、ハブ2内面の略中央部には、駆動軸を
結合すべき主板部7が設けられており、合成樹脂
による一体成形が可能なようにされている。
The shape of the outer peripheral surface of the hub 2 is a concave shape such that the intermediate radius r 2 is smaller and the trailing edge radius r 3 is larger than the leading edge radius r 1 . That is, the diameter of the front curved surface 6a from the front edge to the middle part is gradually reduced, while the diameter of the rear curved surface 6b from the middle part to the rear edge is gradually expanded, so that r 3 > r 1 > r 2 . It is formed. A main plate part 7 to which a drive shaft is to be coupled is provided approximately at the center of the inner surface of the hub 2, and can be integrally molded with synthetic resin.

又、前記各羽根3は、前記前部曲面6aと後部
曲面6bとに跨つて連続的に一体形成されてお
り、該各羽根3における前縁部3aのチツプ側3
a1がハブ側3a2よりも軸方向に見て吐出側でかつ
半径方向外側に存在するよう各羽根3の前縁部3
aを傾斜させて、大きい略円錘状の環状面積を形
成せしめている。符号3bは羽根後縁部である。
Each of the blades 3 is continuously formed integrally with the front curved surface 6a and the rear curved surface 6b, and the tip side 3 of the front edge 3a of each blade 3 is
The front edge 3 of each blade 3 is arranged so that a 1 is located on the discharge side in the axial direction and on the outside in the radial direction than the hub side 3a 2.
a is inclined to form a large, substantially conical annular area. Reference numeral 3b indicates the trailing edge of the blade.

更に、各羽根3のチツプ側端面3cは、ハブ2
の外周面と略同形状の凹面状に形成されている。
Furthermore, the tip side end surface 3c of each blade 3 is connected to the hub 2.
It is formed into a concave shape that is approximately the same shape as the outer peripheral surface of.

前記案内ガイド4は、その内半径r4が羽根後縁
部3bのチツプ側半径r5よりも大きくなるように
形成されており、羽根車1の組立てを容易ならし
めている。
The guide 4 is formed such that its inner radius r 4 is larger than the tip side radius r 5 of the blade trailing edge 3b, making assembly of the impeller 1 easy.

上記構成の羽根車1を駆動させると、流入案内
板5,5間の通路を通つて径方向から吸引された
空気流Wは、各羽根3の前半部でスムーズな斜め
内方への求心加速を受け且つ後半部で斜め外方へ
の斜流加速を受けつつ斜め外方へ向つて吐出され
る。即ち、空気流Wは、吸込み側から吐出側に向
つて大きな曲率のカーブを描きつつ流れることと
なるのである。この時、各羽根3の前縁3aが前
記の如く吐出側へ傾斜させた形態を有するため、
吸込空気流はこの前縁3aのハブ側部分まで回り
込むことができ、しかもこの前縁部における吸込
空気の平均流入半径が小さく、遠心ヘツドによる
流入抵抗値が従来に較べかなり小さく抑えること
ができるためスムーズな吸込空気流れが実現でき
ると同時に、前縁のハブ側程、流入しようとする
空気流の流速が小さいのに対し、対応する前縁3
aの遠心ヘツドも小さいため、結果、この前縁の
全域に亘つてうまく流入速度が調整され、前縁3
a全域においてほぼ等しい流入速度分布が得ら
れ、羽根3内部における流速もほぼ等しくなり、
スムーズな流れ形態が実現でき、しかも、従来の
ものと異なり、軸心部での空気の合流衝突による
圧力損失という問題も発生せず、形状損失等の圧
力損失が可及的に小さく抑えられる。
When the impeller 1 having the above configuration is driven, the air flow W sucked in from the radial direction through the passage between the inflow guide plates 5, 5 is smoothly centripetally accelerated diagonally inward at the front half of each blade 3. The liquid is then discharged diagonally outward while being subjected to oblique flow acceleration diagonally outward in the rear half. That is, the air flow W flows from the suction side toward the discharge side while drawing a curve with a large curvature. At this time, since the leading edge 3a of each blade 3 is inclined toward the discharge side as described above,
The suction air flow can go around to the hub side portion of the leading edge 3a, and the average inflow radius of the suction air at this leading edge is small, and the inflow resistance value due to the centrifugal head can be kept much smaller than in the past. At the same time, a smooth intake air flow can be achieved, and at the same time, the flow velocity of the air that is about to flow in is lower toward the hub of the leading edge, whereas
Since the centrifugal head of a is also small, as a result, the inflow velocity is well adjusted over the entire area of this leading edge, and the leading edge 3
A substantially equal inflow velocity distribution is obtained over the entire region a, and the flow velocity inside the blade 3 is also substantially equal,
A smooth flow pattern can be realized, and unlike conventional ones, there is no problem of pressure loss due to air merging and collision at the shaft center, and pressure loss such as shape loss can be suppressed as small as possible.

第6図には、第5図図示の送風機における羽根
入口(前縁3a)および出口(後縁3b)の速度
三角形が示されている。この場合の静圧上昇Ps
は静翼がないので次式で与えられる。
FIG. 6 shows a velocity triangle at the inlet (leading edge 3a) and outlet (trailing edge 3b) of the blade in the blower shown in FIG. Static pressure rise Ps in this case
Since there is no stationary blade, it is given by the following equation.

Ps=γ/g(U2Cu2)−γC2 2/2g−ΔPs …(5) 本実施例においては、羽根前縁部3aでの平均
流面の半径rm1と第1図図示の従来例における動
翼外径r1′とが等しいものと仮定すると、羽根後
縁部3bでの平均流面の半径rm2は、第1図図示
の従来例における動翼内径r2′よりも大きくなる。
なんとなれば、rm2>rm1であるに対してr2′<r1
である。従つて、出口周速度U2は、従来例に比
べて大きくなり、出口縁対速度の周方向成分Cu2
を同じとすると、前記式(2)で与えられる理論全圧
上昇P0は従来例よりも大となる。
Ps=γ/g(U 2 Cu 2 )−γC 2 2 /2g−ΔPs (5) In this example, the radius rm 1 of the average flow surface at the blade leading edge 3a and the conventional Assuming that the rotor blade outer diameter r 1 ′ in the example is equal, the radius rm 2 of the average flow surface at the blade trailing edge 3b is larger than the rotor blade inner diameter r 2 ′ in the conventional example shown in FIG. Become.
This means that rm 2 > rm 1 and r 2 ′ < r 1
It is. Therefore, the exit circumferential velocity U 2 is larger than that of the conventional example, and the circumferential component Cu 2 of the exit edge velocity
Assuming that is the same, the theoretical total pressure increase P 0 given by the above equation (2) is larger than that of the conventional example.

又、本実施例の羽根3は、比較的大きな翼弦長
ιを有し且つ羽根通路内の流速がほぼ等速である
ことから、翼面負荷分布がスムーズであり、更に
空気流Wがハブ2の外周面に沿つて斜め内向きの
求心方向から斜め外方への斜流加速方向へと大き
な曲率の流線をなすから、式(5)におけるフアン内
部損失ΔPsが小さくなる。一方、出口動圧γC2 2
2gの回収は従来例の場合もあまり期待できなか
つたので、同等と考えると、本実施例における静
圧上昇Psは、従来例のものに比べて増大するこ
ととなる。
In addition, since the blade 3 of this embodiment has a relatively large chord length ι and the flow velocity in the blade passage is approximately constant, the load distribution on the blade surface is smooth, and furthermore, the air flow W is Since a streamline with a large curvature is formed along the outer peripheral surface of the fan from the diagonally inward centripetal direction to the diagonally outward diagonal flow acceleration direction, the fan internal loss ΔPs in equation (5) becomes small. On the other hand, outlet dynamic pressure γC 2 2 /
Recovery of 2g could not be expected much in the case of the conventional example, so assuming that they are equivalent, the static pressure increase Ps in this example will be greater than that in the conventional example.

第7図には、本実施例の送風機における性能
(実線図示)を従来例のもの(点線図示)と無次
元の流量係数φおよび静圧圧力係数ψsで比較し
たグラフが示されている。これによれば、本実施
例における静圧圧力係数ψsは、従来例の約2倍
となつている。
FIG. 7 shows a graph comparing the performance of the blower of this embodiment (shown by solid line) with that of the conventional example (shown by dotted line) in terms of dimensionless flow coefficient φ and static pressure coefficient ψs. According to this, the static pressure coefficient ψs in this example is approximately twice that of the conventional example.

続いて本発明の送風機の効果を以下に列記す
る。
Next, the effects of the blower of the present invention will be listed below.

(1) 略単葉双曲面状のハブ2の外周面を、斜め内
方への求心加速を生ぜしめる前部曲面6aと、
斜め外方への斜流加速を生ぜしめる後部曲面6
bとで構成するとともに、前記ハブ2の外周面
上に植設される各羽根3を、前記前部曲面6a
と後部曲面6bとに跨つて連続的に一体形成し
且つ該各羽根3における前縁部3aのチツプ側
3a1がハブ側3a2よりも軸方向に見て吐出側で
かつ半径方向外側に存在するよう各羽根3の前
縁部3aを傾斜させて、各羽根3の前半部で求
心加速を、各羽根3の後半部で斜流加速を生ぜ
しめ得るようにしたため、翼弦長を大きく且つ
羽根通路内流速を略等速とできることにより、
スムーズな翼面負荷分布が得られることおよび
大きな曲率の流線パターンが得られることか
ら、フアン内部損失を小さくすることができる
こととなり、より高性能、高静圧効率の送風機
が得られる。
(1) A front curved surface 6a that causes centripetal acceleration diagonally inward on the outer peripheral surface of the substantially monoplane hyperboloid hub 2;
Rear curved surface 6 that causes diagonal outward acceleration
b, and each blade 3 implanted on the outer peripheral surface of the hub 2 is connected to the front curved surface 6a.
and the rear curved surface 6b, and the tip side 3a1 of the front edge portion 3a of each blade 3 is located on the discharge side and radially outward from the hub side 3a2 when viewed in the axial direction. The leading edge 3a of each blade 3 is inclined so that centripetal acceleration can be generated in the front half of each blade 3, and diagonal flow acceleration can be generated in the rear half of each blade 3, so that the chord length can be increased and By making the flow velocity in the vane passage nearly constant,
Since a smooth blade surface load distribution and a streamline pattern with a large curvature can be obtained, the internal loss of the fan can be reduced, and a blower with higher performance and high static pressure efficiency can be obtained.

(2) 送風機の性能および静圧効率が向上する結
果、同一能力を低い回転数でだせることとな
り、また、従来のような静翼が存在することに
よるポテンシヤル干渉に基づく発生音がないの
で騒音低下を計ることができる。
(2) As a result of improving the performance and static pressure efficiency of the blower, the same capacity can be produced at a lower rotation speed, and noise is reduced because there is no noise caused by potential interference caused by the presence of conventional stator blades. can be measured.

(3) 各羽根3の前縁部3aを、該各羽根3におけ
る前縁部3aのチツプ側3a1がハブ側3a2より
も軸方向に見て吐出側でかつ半径方向外側に存
在するように傾斜させたことにより、傾斜させ
た前縁部3aの直上流部まで流入空気流が回り
込むことができることとなつているため、従来
と同様前縁部3aと略直交叉状に斜流空気流W
が羽根3内に流入しながら、軸心に対する空気
流Wの平均流入半径を従来に較べ小さくするこ
とができ、周速が小さい状態で羽根3内に流入
され、遠心ヘツドによる流入抵抗が小さい状態
での吸引が可能となつて、流入のスムーズ化を
図ることができる。また、各羽根3前縁3aに
おいて、ハブ側3a2よりチツプ側3a1に亘つ
て、流入しようとする空気流速と遠心ヘツドと
が均衡する結果、前縁3a全域に亘り流入空気
の流速がほぼ等しくなり、前記(1)の羽根通路内
流速の略等速化が効果的に実現できる。
(3) The leading edge 3a of each vane 3 is arranged so that the tip side 3a1 of the leading edge 3a of each vane 3 is located on the discharge side and radially outward from the hub side 3a2 when viewed in the axial direction. By slanting the front edge 3a, the incoming airflow can go around to the right upstream part of the slanted leading edge 3a, so that a diagonal airflow is generated in a substantially orthogonal orthogonal shape to the front edge 3a, as in the conventional case. W
While flowing into the blade 3, the average inflow radius of the air flow W relative to the axis can be made smaller than in the past, and the air flow W flows into the blade 3 at a low circumferential speed, resulting in a state where the inflow resistance by the centrifugal head is small. This allows for smoother inflow. Furthermore, at the leading edge 3a of each blade 3, the flow velocity of the incoming air is balanced with the centrifugal head from the hub side 3a 2 to the tip side 3a 1 , so that the flow velocity of the incoming air is almost constant over the entire area of the leading edge 3a. Therefore, it is possible to effectively achieve the above-mentioned (1) substantially constant flow velocity in the vane passage.

(4) ハブ2の外周面上に植設される各羽根3を、
ハブ2の前部曲面6aと後部曲面6bとに跨つ
て連続的に一体形成して、各羽根3の前半部で
求心加速を、各羽根3の後半部で斜流加速を生
ぜしめるようにしているので、例えば、求心加
速を生ぜしめる羽根部分と斜流加速を生ぜしめ
る羽根部分とを別体構成とした場合に比べて、
上流側(即ち、求心加速を生ぜしめる羽根部
分)の後流の乱れを下流側(即ち、斜流加速を
生ぜしめる羽根部分)の前縁が横切ることがな
くなり、空力騒音の低減が図れるとともに、大
きな翼弦長の羽根となつているため、羽根面が
スムーズな圧力上昇が得られることとなる結
果、内部圧力損失が低下し、発生音も低減す
る。
(4) Each blade 3 planted on the outer peripheral surface of the hub 2,
It is continuously formed integrally over the front curved surface 6a and rear curved surface 6b of the hub 2, so that centripetal acceleration is generated in the front half of each blade 3, and diagonal flow acceleration is generated in the rear half of each blade 3. For example, compared to a case where the blade part that produces centripetal acceleration and the blade part that produces diagonal flow acceleration are constructed separately,
The leading edge of the downstream side (i.e., the blade part that causes diagonal flow acceleration) does not cross the turbulence of the wake of the upstream side (i.e., the blade part that causes centripetal acceleration), and aerodynamic noise can be reduced. Since the blades have a large chord length, the pressure rises smoothly on the blade surface, reducing internal pressure loss and reducing noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の求心型送風機の縦断面図、第2
図は第1図の−半断面図、第3図は静翼がな
い場合における求心型送風機の羽根入口および出
口における速度三角形、第4図は第1図の求心型
送風機の羽根入口および出口における速度三角
形、第5図は本発明の実施例にかかる送風機の縦
断面図、第6図は第5図の送風機における羽根入
口および出口の速度三角形、第7図は第5図の送
風機における性能(実線図示)を従来例のもの
(点線図示)と無次元の流量係数φおよび静圧圧
力係数ψsで比較したグラフである。 1……羽根車、2……ハブ、3……羽根、3a
……羽根前縁部、4……案内ガイド、6a……前
部曲面、6b……後部曲面。
Figure 1 is a vertical cross-sectional view of a conventional centripetal blower;
The figure is a half-sectional view of Figure 1, Figure 3 is the velocity triangle at the blade inlet and outlet of the centripetal blower without stationary blades, and Figure 4 is the blade inlet and outlet of the centripetal blower in Figure 1. 5 is a vertical cross-sectional view of a blower according to an embodiment of the present invention, FIG. 6 is a velocity triangle of the blade inlet and outlet in the blower of FIG. 5, and FIG. 7 is a performance diagram of the blower of FIG. This is a graph comparing the conventional example (shown with a dotted line) in terms of dimensionless flow coefficient φ and static pressure coefficient ψs. 1... Impeller, 2... Hub, 3... Vane, 3a
. . . Blade leading edge, 4 . . . Guide, 6a . . . Front curved surface, 6b . . . Rear curved surface.

Claims (1)

【特許請求の範囲】[Claims] 1 略単葉双曲面状のハブ2およびその外周面上
に植設された複数枚の羽根3,3…を有する羽根
車1と該羽根車1の外周を被包する案内ガイド4
と前記ハブ2前面と前記案内ガイド4前面とに設
けた流入案内板5,5とからなる送風機におい
て、外方向から上記羽根3の前縁部3aへ向かう
吸込流路を軸方向に垂直で互いに平行な上記流入
案内板5,5で構成し、前記ハブ2の外周面を、
斜め内方への求心加速を生ぜしめる前部曲面6a
と、斜め外方への斜流加速を生ぜしめる後部曲面
6bとで構成するとともに、前記各羽根3を、前
記前部曲面6aと後部曲面6bとに跨つて連続的
に一体形成し且つ該各羽根3における前縁部3a
のチツプ側3a1がハブ側3a2よりも軸方向に見て
吐出側でかつ半径方向外側に存在するよう各羽根
3の前縁部3aを傾斜させ、各羽根3の前半部で
求心加速を、各羽根3の後半部で斜流加速を生ぜ
しめるようにしたことを特徴とする送風機。
1 An impeller 1 having a substantially monoplane hyperboloid hub 2 and a plurality of blades 3, 3, etc. implanted on its outer circumferential surface, and a guide guide 4 enclosing the outer circumference of the impeller 1.
and inflow guide plates 5, 5 provided on the front surface of the hub 2 and the front surface of the guide guide 4, the suction passages extending from the outside toward the front edges 3a of the blades 3 are axially perpendicular to each other. It is composed of the parallel inflow guide plates 5, 5, and the outer peripheral surface of the hub 2 is
Front curved surface 6a that causes diagonally inward centripetal acceleration
and a rear curved surface 6b that causes diagonal flow acceleration diagonally outward, and each of the blades 3 is integrally formed continuously over the front curved surface 6a and the rear curved surface 6b. Front edge 3a of blade 3
The front edge 3a of each blade 3 is inclined so that the tip side 3a 1 is located on the discharge side in the axial direction and on the outside in the radial direction than the hub side 3a 2 , and centripetal acceleration is achieved in the front half of each blade 3. , a blower characterized in that diagonal flow acceleration is generated in the rear half of each blade 3.
JP11032282A 1982-06-25 1982-06-25 Fan Granted JPS59593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11032282A JPS59593A (en) 1982-06-25 1982-06-25 Fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11032282A JPS59593A (en) 1982-06-25 1982-06-25 Fan

Publications (2)

Publication Number Publication Date
JPS59593A JPS59593A (en) 1984-01-05
JPH0474560B2 true JPH0474560B2 (en) 1992-11-26

Family

ID=14532784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11032282A Granted JPS59593A (en) 1982-06-25 1982-06-25 Fan

Country Status (1)

Country Link
JP (1) JPS59593A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556210B2 (en) 2006-05-11 2009-07-07 S. C. Johnson & Son, Inc. Self-contained multi-sprayer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194097A (en) * 1983-04-19 1984-11-02 Daikin Ind Ltd Fan
JPS60190700A (en) * 1984-03-12 1985-09-28 Daikin Ind Ltd Blower
WO1997009572A1 (en) * 1995-09-07 1997-03-13 Daikin Industries, Ltd. Outlet unit for underfloor air conditioning and underfloor air conditioning system using same
BE1018767A5 (en) 2009-06-02 2011-08-02 Devriese Peter DIAGONAL FAN.
KR20220152329A (en) * 2020-03-26 2022-11-15 엔볼라 게엠베하 heat exchanger unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556210B2 (en) 2006-05-11 2009-07-07 S. C. Johnson & Son, Inc. Self-contained multi-sprayer

Also Published As

Publication number Publication date
JPS59593A (en) 1984-01-05

Similar Documents

Publication Publication Date Title
US4531890A (en) Centrifugal fan impeller
JP3528285B2 (en) Axial blower
CN103314218B (en) Centrifugal turbomachine
US5743710A (en) Streamlined annular volute for centrifugal blower
US20100189557A1 (en) Impeller and fan
WO1990009525A1 (en) Centrifugal fan with variably cambered blades
EP0151169B1 (en) Axial-flow fan
JPH11125196A (en) Fan and shroud assembly employing the fan
JP6621194B2 (en) Turbofan and blower using the turbofan
JP4115180B2 (en) Impeller and centrifugal compressor
TWI747758B (en) Multi-blade centrifugal blower
WO2002012729A1 (en) Centrifugal fan
JPH0474560B2 (en)
CN107339241B (en) Multi-wing centrifugal fan
JP3350934B2 (en) Centrifugal fluid machine
JP2573292B2 (en) High speed centrifugal compressor
JPH10331794A (en) Centrifugal compressor
WO1990009526A1 (en) Centrifugal fan with airfoil vanes in annular volute envelope
JPH05340395A (en) Axial flow rotary machine
JP4174693B2 (en) Centrifugal compressor diffuser
JP2000303992A (en) Mixed flow blower
JPS6327109Y2 (en)
JPH11257290A (en) Centrifugal compressor diffuser
JP3380897B2 (en) Compressor
JPS6330519B2 (en)