JPH10122192A - Axial flow compressor moving blade - Google Patents

Axial flow compressor moving blade

Info

Publication number
JPH10122192A
JPH10122192A JP8270765A JP27076596A JPH10122192A JP H10122192 A JPH10122192 A JP H10122192A JP 8270765 A JP8270765 A JP 8270765A JP 27076596 A JP27076596 A JP 27076596A JP H10122192 A JPH10122192 A JP H10122192A
Authority
JP
Japan
Prior art keywords
blade
moving blade
flow
tip
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8270765A
Other languages
Japanese (ja)
Inventor
Susumu Teramoto
進 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP8270765A priority Critical patent/JPH10122192A/en
Publication of JPH10122192A publication Critical patent/JPH10122192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a loss by a leakage flow passing through a blade end clearance by gently inclining a blade tip part to the circumferential directional negative pressure side, and setting an inclined part to a specific moving blade height position and an inclination. SOLUTION: A blade tip part 11 (a tip part) of an axial flow compressor moving blade 10 gently inclines to the circumferential directional negative pressure side. According to an analytical result, a loss factor running along a moving blade height L becomes maximum in a position of 95% of the moving blade height L, and becomes a large value in a range not less than 85% around it. Therefore, an inclined part 12 is set not less than at least 10% of the moving blade height L, preferably, about 30%, and is gently inclined. Even it is set not less than 30%, an effect is little, and bending stress by centrifugal force becomes large, and fatigue strength of a moving blade 10 reduces. An inclination αof the inclined part 12 is preferable to be about 20 deg. to about 30 deg.. According to an analytical result, when it is not more than 20 deg., a reducing effect of a loss factor is almost eliminated, and in the case of 30 deg., the loss factor can be sharply reduced. When it exceeds 30 deg., the bending stress becomes large.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ジェットエンジン
やガスタービンを構成する軸流圧縮機の動翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blade of an axial compressor for a jet engine or a gas turbine.

【0002】[0002]

【従来の技術】図5は、ジェットエンジンやガスタービ
ンを構成する従来の軸流圧縮機の動翼を示している。こ
の図において、(A)は側面図、(B)は動翼のチップ
側からの見た図、(C)は下流側から見た図である。動
翼1は、ハブ2に周方向に間隔を隔てて取り付けられて
おり、その翼先端部1aをチップ部,翼根元部1bをル
ート部と呼ぶ。また、(B)に示すように、動翼1は圧
縮機軸心Zに対してチップ部1aでは角度θが大きく,
ルート部1bでは角度θが小さくなっている。更に、
(C)に示すように、動翼1の回転方向上流側(図で左
側)を正圧側(又は腹側)、回転方向下流側(図で右
側)を負圧側(又は背側)と呼ぶ。動翼1の回転によ
り、正圧側の静圧が高く,負圧側の静圧が低くなる。
2. Description of the Related Art FIG. 5 shows a moving blade of a conventional axial flow compressor constituting a jet engine or a gas turbine. In this figure, (A) is a side view, (B) is a view from the tip side of the rotor blade, and (C) is a view from the downstream side. The rotor blade 1 is attached to the hub 2 at a certain interval in the circumferential direction. The blade tip portion 1a is called a tip portion, and the blade root portion 1b is called a root portion. Further, as shown in (B), the blade 1 has a large angle θ at the tip portion 1a with respect to the compressor axis Z,
In the route portion 1b, the angle θ is small. Furthermore,
As shown in (C), the upstream side (left side in the figure) of the rotating blade 1 in the rotational direction is called a positive pressure side (or abdominal side), and the downstream side in the rotational direction (the right side in the figure) is called a negative pressure side (or a back side). The rotation of the moving blade 1 increases the static pressure on the positive pressure side and decreases the static pressure on the negative pressure side.

【0003】[0003]

【発明が解決しようとする課題】図6は、従来の圧縮機
動翼を上流側(図5(C)の反対側)から見た斜視図で
ある。この図に模式的に示すように、圧縮機動翼の損失
には、ルート部1bの隅部に生じる剥離流れA、翼
面に沿って半径方向に流れる半径方向流れB、及びチ
ップ部とケーシング3の隙間を流れる隙間流れCに起因
する3種がある。このうち、損失が最も大きいのは、漏
れ流れCによるものであり、従来の動翼では、翼端隙間
を通過する漏れ流れと高速の主流との干渉で発生する損
失によって効率向上が妨げられていた。
FIG. 6 is a perspective view of a conventional compressor rotor blade viewed from the upstream side (opposite side of FIG. 5C). As schematically shown in this figure, the loss of the compressor rotor blade includes the separation flow A generated at the corner of the root portion 1b, the radial flow B flowing in the radial direction along the blade surface, and the tip portion and the casing 3. There are three types due to the gap flow C flowing through the gap. Among them, the largest loss is caused by the leakage flow C. In the conventional moving blade, the efficiency improvement is hindered by the loss generated by the interference between the leakage flow passing through the blade tip clearance and the high-speed main flow. Was.

【0004】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、翼端
隙間を通過する漏れ流れによる損失を低減することがで
きる軸流圧縮機動翼を提供することにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide an axial-flow compressor rotor blade capable of reducing a loss due to a leakage flow passing through a blade tip clearance.

【0005】[0005]

【課題を解決するための手段】従来の軸流圧縮機動翼
は、取付部から翼端部まで曲がりが少なく、ほぼ直線状
に半径方向に伸びた翼構造が用いられてきた。しかし、
かかる従来の動翼では、翼端隙間を通過する漏れ流れが
高速の主流と干渉するために翼先端部(チップ部)での
損失が大きくなる。すなわち、従来の動翼では漏れ流れ
が周方向に広がらずに半径方向内側に広がる渦となるた
め、流路中央部の流速の大きい主流と干渉して大きな損
失が発生していたことが解析の結果明らかになった。本
発明は、かかる新規の知見に基づくものである。
Means for Solving the Problems A conventional axial-flow compressor rotor blade has a blade structure which has a small bending from the mounting portion to the blade tip and extends substantially linearly in the radial direction. But,
In such a conventional moving blade, the leakage flow passing through the blade tip gap interferes with the high-speed main flow, so that the loss at the blade tip (tip) increases. In other words, the analysis showed that the conventional rotor blades caused the leakage flow to become vortices that spread inward in the radial direction instead of spreading in the circumferential direction. The result became clear. The present invention is based on such a new finding.

【0006】すなわち、本発明によれば、翼先端部が周
方向負圧側になだらかに傾斜している、ことを特徴とす
る軸流圧縮機動翼が提供される。本発明の好ましい実施
形態によれば、前記傾斜部は、動翼高さLの10〜30
%であり、傾斜角度は約20°以上かつ約30°以下で
ある、ことが好ましい。
That is, according to the present invention, there is provided an axial compressor blade, wherein the blade tip is gently inclined toward the negative pressure side in the circumferential direction. According to a preferred embodiment of the present invention, the inclined portion has a moving blade height L of 10 to 30.
%, And the inclination angle is preferably about 20 ° or more and about 30 ° or less.

【0007】本発明は、動翼先端部を回転方向とは逆向
きに傾斜させることによって漏れ流れを周方向にスムー
スに拡散させるものである。この構成により、漏れ流れ
は、翼先端部を回転方向の逆向きに通過し、翼先端部が
それと同方向になだらかに傾斜しているのて、漏れ流れ
はよりスムースに周方向に拡散する。翼先端部(チップ
部)の漏れ流れの総量は、隙間の大きさによりほぼ決ま
り、翼先端形状によらずほぼ一定であるから、漏れ流れ
が周方向に拡散することで半径方向の拡散は抑制され
る。この結果、漏れ流れは中央部の主流より速度の遅い
ケーシング内壁付近の境界層部の流れと干渉することに
なり、流速の積に比例する損失を大幅に低減することが
できる。
According to the present invention, the leak flow is smoothly diffused in the circumferential direction by inclining the blade tip in the direction opposite to the rotation direction. With this configuration, the leakage flow passes through the tip of the blade in the direction opposite to the rotation direction, and since the tip of the blade is gently inclined in the same direction as the tip, the leakage flow is more smoothly diffused in the circumferential direction. The total amount of leakage flow at the tip of the blade (tip) is almost determined by the size of the gap, and is almost constant regardless of the shape of the blade tip. Therefore, diffusion in the circumferential direction of the leakage flow suppresses radial diffusion. Is done. As a result, the leak flow interferes with the flow in the boundary layer near the inner wall of the casing, which is slower than the main flow in the center, and the loss proportional to the product of the flow velocity can be greatly reduced.

【0008】[0008]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付して使用する。図1は、本発
明による軸流圧縮機動翼の構成図である。この図におい
て、(A)は本発明の軸流圧縮機動翼10、(B)は比
較のために従来の軸流圧縮機動翼を示している。この図
に示すように、本発明の軸流圧縮機動翼10の翼先端部
11(チップ部)が周方向負圧側になだらかに傾斜して
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is a configuration diagram of an axial-flow compressor rotor blade according to the present invention. In this figure, (A) shows an axial compressor moving blade 10 of the present invention, and (B) shows a conventional axial compressor moving blade for comparison. As shown in this figure, the blade tip portion 11 (tip portion) of the axial-flow compressor rotor blade 10 of the present invention is gently inclined toward the negative pressure side in the circumferential direction.

【0009】図2は、図1の翼高さLに沿った損失係数
の解析結果である。この図において実線は従来の軸流圧
縮機動翼の特性であり、破線は本発明による軸流圧縮機
動翼の特性(傾斜角30°の場合)を示している。この
図から明らかなように、損失係数は翼高さLの約95%
の位置で最大となり、その前後の85%以上の範囲で大
きな値となっている。従って、傾斜部12を動翼高さL
の少なくとも10%以上とし、好ましくは、約30%程
度にしてなだらかに傾斜させるのがよい。なお、30%
以上に大きくしても、効果が少ないばかりでなく、遠心
力による曲げ応力が大きくなり、動翼の疲労強度が低下
する問題が生じる。
FIG. 2 shows an analysis result of the loss coefficient along the blade height L in FIG. In this figure, the solid line shows the characteristics of the conventional axial-flow compressor rotor blade, and the broken line shows the characteristics of the axial-flow compressor rotor blade according to the present invention (when the inclination angle is 30 °). As is clear from this figure, the loss coefficient is about 95% of the blade height L.
, And reaches a large value in the range of 85% or more before and after the position. Therefore, the inclined portion 12 is moved to the blade height L.
Is preferably at least 10% or more, preferably about 30%, and the inclination is gentle. In addition, 30%
Even if it is larger than the above, not only the effect is small, but also the bending stress due to the centrifugal force increases, and a problem arises that the fatigue strength of the rotor blade decreases.

【0010】また、傾斜部12の傾斜角αは約20°以
上かつ約30°以下であることが好ましい。傾斜角20
°以下では、解析の結果、損失係数の低減効果はほとん
ど無いのに対して、傾斜角30°では、図2に示すよう
に翼先端部11(チップ部)の損失係数を大幅に低減で
きる。また、傾斜角αが30°を越えると遠心力により
曲げ応力が大きくなるからである。
It is preferable that the inclination angle α of the inclined portion 12 is about 20 ° or more and about 30 ° or less. Tilt angle 20
At less than 0 °, the analysis shows that there is almost no effect of reducing the loss coefficient, whereas at an inclination angle of 30 °, the loss coefficient at the blade tip 11 (tip) can be significantly reduced as shown in FIG. If the inclination angle α exceeds 30 °, the bending stress increases due to the centrifugal force.

【0011】なお、図2において、翼高さLの約5%の
位置で損失係数が別の極大値をもっているが、これば前
述したルート部の隅部に生じる剥離流れAによるもので
ある。
In FIG. 2, the loss coefficient has another maximum value at a position of about 5% of the blade height L. This is due to the separation flow A generated at the corner of the root portion described above.

【0012】図3は、本発明の軸流圧縮機動翼における
翼間の全圧分布図であり、図4は、従来の軸流圧縮機動
翼における図3と同様の図である。図3及び図4は、動
翼を下流側から見た図であり、動翼1,10は、前縁か
ら後縁の中間部分を肉厚のない曲線で示している。ま
た、各図における閉じた曲線は等圧線を示している。図
3と図4の比較から図1(A)に模式的に示すように、
本発明の軸流圧縮機動翼では、漏れ流れ4が、翼先端部
11aを回転方向の逆向きに通過し、翼先端部11aが
それと同方向(周方向負圧側)になだらかに傾斜してい
るので、漏れ流れ4はよりスムースに周方向に拡散する
ことがわかる。翼先端部11a(チップ部)の漏れ流れ
の総量は、隙間の大きさによりほぼ決まり、翼先端形状
によらずほぼ一定であるから、漏れ流れ4が周方向に拡
散することで半径方向の拡散は抑制される。この結果、
漏れ流れ4は中央部の主流より速度の遅いケーシング3
の内壁付近の境界層部の流れと干渉することになり、流
速の積に比例する損失を大幅に低減することができ、こ
の結果、図2に示したように、翼先端部11a(チップ
部)の損失係数を大幅に低減することができる。
FIG. 3 is a total pressure distribution diagram between the blades of the axial compressor rotor blade of the present invention, and FIG. 4 is a diagram similar to FIG. 3 of the conventional axial compressor rotor blade. FIGS. 3 and 4 are views of the moving blades viewed from the downstream side. In the moving blades 1 and 10, an intermediate portion from the leading edge to the trailing edge is indicated by a curve without thickness. The closed curves in each figure show isobars. From the comparison between FIG. 3 and FIG. 4, as schematically shown in FIG.
In the axial-flow compressor rotor blade of the present invention, the leakage flow 4 passes through the blade tip 11a in the direction opposite to the rotation direction, and the blade tip 11a is gently inclined in the same direction (circumferential negative pressure side). Therefore, it can be seen that the leak flow 4 diffuses more smoothly in the circumferential direction. The total amount of leakage flow at the blade tip portion 11a (tip portion) is substantially determined by the size of the gap, and is substantially constant regardless of the blade tip shape. Is suppressed. As a result,
Leakage flow 4 is the casing 3 whose speed is slower than the main flow at the center.
As a result, the interference with the flow of the boundary layer near the inner wall of the blade can be reduced, and the loss proportional to the product of the flow velocity can be greatly reduced. As a result, as shown in FIG. ) Can be greatly reduced.

【0013】これに対して図1(B)に示すように、従
来の軸流圧縮機動翼1は、取付部1bから翼端部1aま
で曲がりが少なく、ほぼ直線状に半径方向に伸びた翼構
造が用いられてきた。しかし、かかる従来の動翼1で
は、翼端隙間を通過する漏れ流れ4が高速の主流と干渉
するために翼先端部1a(チップ部)での損失が大きく
なる。すなわち、従来の動翼1では漏れ流れ4が周方向
に広がらずに半径方向内側に広がる渦となるため、流路
中央部の流速の大きい主流と干渉して大きな損失が発生
していたことが解析の結果明らかになった。
On the other hand, as shown in FIG. 1B, the conventional axial-flow compressor rotor blade 1 has a small curvature from the mounting portion 1b to the blade tip portion 1a, and extends substantially linearly in the radial direction. Structures have been used. However, in such a conventional moving blade 1, the leakage flow 4 passing through the blade tip gap interferes with the high-speed main flow, so that the loss at the blade tip 1a (tip portion) increases. That is, in the conventional rotor blade 1, since the leakage flow 4 becomes a vortex which spreads inward in the radial direction without spreading in the circumferential direction, a large loss occurs due to interference with the main flow having a large flow velocity in the central portion of the flow path. As a result of analysis, it became clear.

【0014】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various changes can be made without departing from the spirit of the present invention.

【0015】[0015]

【発明の効果】上述したように、本発明の軸流圧縮機動
翼は、翼端隙間を通過する漏れ流れによる損失を低減す
ることができる優れた効果を有する。
As described above, the axial compressor blade of the present invention has an excellent effect of reducing the loss due to the leakage flow passing through the blade tip clearance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による軸流圧縮機動翼の構成図である。FIG. 1 is a configuration diagram of an axial compressor moving blade according to the present invention.

【図2】翼高さに沿った損失係数の解析結果である。FIG. 2 is an analysis result of a loss coefficient along a blade height.

【図3】本発明の軸流圧縮機動翼における翼間の全圧分
布図である。
FIG. 3 is a total pressure distribution diagram between blades in the axial compressor rotor blade of the present invention.

【図4】従来の軸流圧縮機動翼における図3と同様の図
である。
FIG. 4 is a view similar to FIG. 3 of a conventional axial-flow compressor rotor blade.

【図5】従来の軸流圧縮機動翼の模式図である。FIG. 5 is a schematic view of a conventional axial-flow compressor rotor blade.

【図6】従来の圧縮機動翼を上流側から見た斜視図であ
る。
FIG. 6 is a perspective view of a conventional compressor rotor blade viewed from an upstream side.

【符号の説明】[Explanation of symbols]

1 動翼 1a 翼先端部(チップ部) 1b 翼根元部(ルート部) 2 ハブ 3 ケーシング 4 漏れ流れ 10 軸流圧縮機動翼 11 翼先端部(チップ部) 12 傾斜部 DESCRIPTION OF SYMBOLS 1 Moving blade 1a Blade tip (tip part) 1b Blade root part (root part) 2 Hub 3 Casing 4 Leakage flow 10 Axial-flow compressor rotor blade 11 Blade tip part (tip part) 12 Slope

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 翼先端部が周方向負圧側になだらかに傾
斜している、ことを特徴とする軸流圧縮機動翼。
1. An axial compressor blade according to claim 1, wherein the blade tip is gently inclined toward the negative pressure side in the circumferential direction.
【請求項2】 前記傾斜部は、動翼高さLの10〜30
%であり、傾斜角度は約20°以上かつ約30°以下で
ある、ことを特徴とする請求項1に記載の軸流圧縮機動
翼。
2. The inclined portion has a moving blade height L of 10 to 30.
The axial compressor blade according to claim 1, wherein the inclination angle is about 20 ° or more and about 30 ° or less.
JP8270765A 1996-10-14 1996-10-14 Axial flow compressor moving blade Pending JPH10122192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8270765A JPH10122192A (en) 1996-10-14 1996-10-14 Axial flow compressor moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8270765A JPH10122192A (en) 1996-10-14 1996-10-14 Axial flow compressor moving blade

Publications (1)

Publication Number Publication Date
JPH10122192A true JPH10122192A (en) 1998-05-12

Family

ID=17490690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8270765A Pending JPH10122192A (en) 1996-10-14 1996-10-14 Axial flow compressor moving blade

Country Status (1)

Country Link
JP (1) JPH10122192A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262712A (en) * 1975-11-20 1977-05-24 Agency Of Ind Science & Technol Axial flow blower
JPH0452505U (en) * 1990-09-06 1992-05-06
JPH0544691A (en) * 1991-08-07 1993-02-23 Mitsubishi Heavy Ind Ltd Axial flow turbomachinery blade
JPH08121391A (en) * 1994-10-31 1996-05-14 Mitsubishi Electric Corp Axial flow blower
JPH08135597A (en) * 1994-11-11 1996-05-28 Ishikawajima Harima Heavy Ind Co Ltd Reduction of secondary flow in blade cascade/and blade profile therefor
JPH08165999A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Axial flow blower

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262712A (en) * 1975-11-20 1977-05-24 Agency Of Ind Science & Technol Axial flow blower
JPH0452505U (en) * 1990-09-06 1992-05-06
JPH0544691A (en) * 1991-08-07 1993-02-23 Mitsubishi Heavy Ind Ltd Axial flow turbomachinery blade
JPH08121391A (en) * 1994-10-31 1996-05-14 Mitsubishi Electric Corp Axial flow blower
JPH08135597A (en) * 1994-11-11 1996-05-28 Ishikawajima Harima Heavy Ind Co Ltd Reduction of secondary flow in blade cascade/and blade profile therefor
JPH08165999A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Axial flow blower

Similar Documents

Publication Publication Date Title
KR100571465B1 (en) Apparatus for Minimizing Inlet Airflow Turbulence in a Gas Turbine Engine
RU2220329C2 (en) Curved blade of compressor
JP2753217B2 (en) Wings for gas turbine engines
JPH10502150A (en) Flow orientation assembly for the compression region of rotating machinery
JP2007120494A (en) Variable geometry inlet guide vane
US7794202B2 (en) Turbine blade
JPH0222239B2 (en)
WO2008075467A1 (en) Cascade of axial compressor
JP2004068770A (en) Axial flow compressor
JPH08177792A (en) Axial fan
JPS6133968B2 (en)
JPH0681603A (en) Stationary blade structure of axial flow type turbo machine
US11572890B2 (en) Blade and axial flow impeller using same
JP3697296B2 (en) Turbine blade
WO2000061918A2 (en) Airfoil leading edge vortex elimination device
WO2019102231A1 (en) A flow assembly for an axial turbomachine
JPH09112203A (en) Turbine nozzle
JP3040601B2 (en) Radial turbine blade
JPH10122192A (en) Axial flow compressor moving blade
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JPH0738641Y2 (en) Multi-stage axial turbine
JPH07332007A (en) Turbine stationary blade
JPH01318790A (en) Flashing vane of multistage pump
JP3570438B2 (en) Method of reducing secondary flow in cascade and its airfoil
JPH068319Y2 (en) Centrifugal compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070502