JPH0544691A - Axial flow turbomachinery blade - Google Patents

Axial flow turbomachinery blade

Info

Publication number
JPH0544691A
JPH0544691A JP22225091A JP22225091A JPH0544691A JP H0544691 A JPH0544691 A JP H0544691A JP 22225091 A JP22225091 A JP 22225091A JP 22225091 A JP22225091 A JP 22225091A JP H0544691 A JPH0544691 A JP H0544691A
Authority
JP
Japan
Prior art keywords
blade
fillet
curvature
flow
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22225091A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yamaguchi
信行 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22225091A priority Critical patent/JPH0544691A/en
Publication of JPH0544691A publication Critical patent/JPH0544691A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To improve efficiency by reducing the secondary loss due to a variety of flows in deflection from a main stream by a movable blade or static blade. CONSTITUTION:A fillet for connecting the blade back surface of a blade 1 with a platform 3 (in case of movable blade) or a casing wall surface (in case of static blade) is formed to a fillet 10 at the root part of the back surface front part having a large radius of curvature at the front half part, and formed to a fillet 11 at the root part of the back surface rear part having a small radius of curvature at the rear half part, and a sharp variation point 16 where the radius of curvature is sharply varied is formed at the boundary, and the sharp variation point 16 is formed at the experimentally proper position in the part from the max. warp point an the blade back surface of the root to the rear edge part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軸流型のファン、圧縮
機、タービン、ポンプ等の軸流ターボ機械の動翼及び静
翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving blade and a stationary blade of an axial flow turbomachine such as an axial flow type fan, compressor, turbine and pump.

【0002】[0002]

【従来の技術】従来の軸流ターボ機械の翼の例を図5及
び図6に示す。図5は翼の斜視図、図6はその側面図で
ある。本例は動翼に関する図であるが、静翼の場合も同
様であるので、動翼についてのみ説明する。これらの図
において、1は翼、2ははダブテール、3はダブテール
2のプラットフォーム、4は翼1における翼背面5は翼
1における翼腹面、6は翼1の後縁、7は翼1の前縁、
8は翼背面4とプラットフォーム3とを滑らかに接続す
るフィレット(丸み)をそれぞれ示している。これが動
翼の通常の形態であり、静翼の場合にはプラットフォー
ム3がケーシング壁面又はシュラウド環の面に相当す
る。
2. Description of the Related Art An example of a blade of a conventional axial flow turbomachine is shown in FIGS. FIG. 5 is a perspective view of the wing, and FIG. 6 is a side view thereof. Although this example is a diagram relating to a moving blade, the same applies to the case of a stationary blade, so only the moving blade will be described. In these figures, 1 is a wing, 2 is a dovetail, 3 is a platform of a dovetail 2, 4 is a wing back surface of wing 1, 5 is a wing vent surface of wing 1, 6 is a trailing edge of wing 1, and 7 is a front of wing 1. edge,
Reference numerals 8 respectively indicate fillets (roundness) that smoothly connect the wing rear surface 4 and the platform 3. This is a normal form of a moving blade, and in the case of a stationary blade, the platform 3 corresponds to the casing wall surface or the surface of the shroud ring.

【0003】ここで着目しているのはフィレット8であ
る。フィレット8の役目は、翼1を応力集中が発生せず
に保持することと、コーナ部に発生する渦流れを緩和し
て二次損失の一部を減らすことにある。
The focus here is on the fillet 8. The roles of the fillet 8 are to hold the blade 1 without stress concentration and to reduce a part of the secondary loss by relaxing the vortex flow generated at the corners.

【0004】[0004]

【発明が解決しようとする課題】圧縮機において動翼や
静翼によりなされる仕事のうち、ある部分は損失として
消費される。その例を、段効率における割合として図7
に示す。その損失の内訳は、大まかには、プロファイル
損失、アニュラス損失、及びそれ以外の損失に分けられ
る。プロファイル損失とは、主要部分の流線に沿う翼断
面で生ずる摩擦損失等、二次元的な損失である。また、
アニュラス損失は、ケーシングとハブとの各面の摩擦損
失に相当する。一方、それ以外の損失をまとめて二次損
失と呼んでいる。これは翼端すきまからの漏れ流れやコ
ーナ部で発生する渦、流路の曲りにより発生する流路渦
等、主として渦となってその運動エネルギを回収できな
い流れ損失である。この図から分かるように、二次損失
は全損失の1/2〜1/3程度の大きな割合を占めてい
る。
A part of the work performed by the moving blades and the stationary blades in the compressor is consumed as a loss. An example of this is shown in FIG.
Shown in. The breakdown of the loss is roughly divided into profile loss, annulus loss, and other loss. The profile loss is a two-dimensional loss such as a friction loss generated in a blade section along the streamline of the main part. Also,
The annulus loss corresponds to the friction loss on each surface of the casing and the hub. On the other hand, the other losses are collectively called the secondary loss. This is a flow loss in which kinetic energy cannot be recovered mainly as vortices such as leakage flow from the blade tip clearance, vortices generated at the corners, and flow channel vortices generated by bending of the flow channel. As can be seen from this figure, the secondary loss occupies a large proportion of about 1/2 to 1/3 of the total loss.

【0005】軸流圧縮機の動翼における翼間あるいは翼
と壁間との間の流れの特徴を図8に示す。ここに示され
た流れの細部には各々それなりの名称がつけられている
が、設計流れからの逸脱を示す点で、ここではそれらを
まとめて二次流れと呼んでいる。
FIG. 8 shows the characteristics of the flow between the blades or between the blades and the walls in the moving blades of the axial compressor. Each of the details of the flow shown here is given a proper name, but they are collectively referred to as a secondary flow here because they show deviations from the design flow.

【0006】最近では、翼の断面プロファイルの性態は
ほぼ計画どおりに達成されているが、これら二次流れは
まだ制御し難い点が多い。ターボ機械の効率を更に向上
させるには、この二次損失の低減を図ることが必要にな
りつつある。
Recently, the characteristics of the blade cross-sectional profile have been achieved almost as planned, but these secondary flows are still difficult to control. In order to further improve the efficiency of turbomachines, it is becoming necessary to reduce this secondary loss.

【0007】一方、最近では、流れの測定や可視化の技
術が向上し、二次流れに関するデータが蓄積され、その
イメージが把握されてきている。また、数値計算流体力
学等、理論計算法の高度化などにより、詳しい検討も可
能になりつつある。これらにより、二次流れを制御し、
その損失を低減する試みが始められつつある。
On the other hand, recently, techniques for flow measurement and visualization have been improved, and data concerning secondary flows have been accumulated and the image thereof has been grasped. Further, due to the sophistication of theoretical calculation methods such as computational fluid dynamics, detailed examination is becoming possible. These control the secondary flow,
Attempts are being made to reduce that loss.

【0008】現在行われている二次損失低減の手法は、
軸流タービンの例で見ると、翼断面の積重ね方を工夫
し、翼高さ方向の静圧分布を制御して二次流れを減らす
かアニュラス壁面の絞り方を工夫して翼面の間のコーナ
の渦を抑制するもので、主として静翼に適用されること
が多い。
[0008] The currently used secondary loss reduction method is as follows.
Looking at an example of an axial flow turbine, the blade stacking method is devised to control the static pressure distribution in the blade height direction to reduce the secondary flow, or the annulus wall surface is throttled to improve the It suppresses corner vortices and is often applied mainly to vanes.

【0009】図8に示される各種の二次的な流れの低減
のため、様々なアプローチを行っている。ここで、特
に、ハブコーナ渦について着目してみると、ハブコーナ
渦の発生の原因は、図9に示す如く、翼腹面5の上側で
の高い圧力と、翼背面4の上側での低い圧力のため、プ
ラットフォーム3の上を通る流れがプラットフォーム3
を経て、破線9で示す如く、翼背面4の上に巻き上がっ
て行くことによる。この流れ9は翼背面4上の境界層と
干渉して流れを劣化させ、大きな圧力損失をハブ付近に
発生させるのである。
Various approaches have been taken to reduce the various secondary flows shown in FIG. Here, paying particular attention to the hub corner vortex, the cause of the hub corner vortex is that the high pressure on the upper side of the blade surface 5 and the low pressure on the upper side of the blade rear surface 4 as shown in FIG. , The flow passing over the platform 3 is the platform 3
And by rolling up over the blade back surface 4 as indicated by the broken line 9. This flow 9 interferes with the boundary layer on the blade back surface 4 to deteriorate the flow and causes a large pressure loss near the hub.

【0010】本発明は二次流れのうち、ハブコーナ渦の
抑制と、それに起因する損失の低減を図った翼を提供す
ることを目的とする。
It is an object of the present invention to provide a blade that suppresses hub corner vortex in the secondary flow and reduces loss caused by it.

【0011】[0011]

【課題を解決するための手段】上記目的に対し、本発明
によれば、翼とプラットフォーム又はケーシング壁面と
の接合部にてこれらを翼背面で滑らかに接続するフィレ
ットを、翼の前縁から背面最大反り点を越したある点ま
では曲率半径が大きく、そのある点から翼の後縁までは
曲率半径が小さく、かつそのある点における曲率半径は
急激に変化させてなる軸流ターボ機械翼が提供される。
For the above object, according to the present invention, a fillet that smoothly connects the blade and the platform or the casing wall surface at the joint between the blade and the blade is provided from the leading edge to the back of the blade. The radius of curvature is large up to a certain point beyond the maximum warp point, the radius of curvature is small from that point to the trailing edge of the blade, and the radius of curvature at that point is abruptly changed. Provided.

【0012】[0012]

【作用】上記手段によれば、曲率半径の急変更点は下流
向きのステップであるため、ここで流れは剥離し、急変
更点より後縁までのフィレットに局部的な負圧が発生す
る。ハブコーナ渦に伴う壁面沿いの流れはその負圧部分
に取り込まれて吸収されることになる。
According to the above-mentioned means, since the point of sudden change of the radius of curvature is the step in the downstream direction, the flow is separated at this point, and a local negative pressure is generated in the fillet from the point of sudden change to the trailing edge. The flow along the wall surface due to the hub corner vortex is taken in by the negative pressure portion and absorbed.

【0013】[0013]

【実施例】以下、図1ないし図4を参照し、本発明の好
適な実施例について詳述する。図1は本発明による翼の
斜視図、図2はその平面図、図3はその側面図、図4は
流れの説明図であり、これらの図において、図5及び図
6に示したものと同一の要素については同一の符号を付
してある。なお、符号10は背面前部付根フィレット、
11は背面後部付根フィレット、12は背面前部付根フ
ィレット10の丸み上端、13はその丸み下端、14は
背面後部付根フィレット11の丸み上端、15はその丸
み下端、16は背面前部付根フィレット10と背面後部
付根フィレット11との境界の急変更点、17は負圧
面、18及び19は流れを示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a perspective view of a wing according to the present invention, FIG. 2 is a plan view thereof, FIG. 3 is a side view thereof, and FIG. 4 is an explanatory view of a flow. The same elements are designated by the same reference numerals. In addition, reference numeral 10 is a fillet having a root on the back side,
Reference numeral 11 is a back rear root fillet, 12 is a rounded upper end of the back front root fillet 10, 13 is a rounded lower end thereof, 14 is a rounded upper end of the back rear root fillet 11, 15 is a rounded lower end thereof, 16 is a back front root fillet 10. Shows a sudden change in the boundary between the rear root joint fillet 11 and the rear part, 17 is a suction surface, and 18 and 19 are flows.

【0014】翼背面プロファイルのフィレットの前半部
分である背面前部付根フィレット10は曲率半径r1
大きくとり、後半部分の背面後部付根フィレット11は
曲率半径r2を小さくとり、かつ急変更点16にてr1
らr2への変化を急に行っている。
The back front root fillet 10, which is the front half of the fillet of the blade back profile, has a large radius of curvature r 1, and the back rear root fillet 11 of the latter half has a small radius of curvature r 2 and has a sudden change point 16. The change from r 1 to r 2 is suddenly made.

【0015】急変更点16は、応力集中のため剥離を起
こす可能性のある背面最大反り点のごく近くを避けてそ
の最大反り点と後縁6との間で決定され、最も適切な位
置は実験的に最適化される。また、曲率半径r1及びr2
の大きさも実験的に最適に設定される。
The abrupt change point 16 is determined between the maximum warp point and the trailing edge 6 avoiding the vicinity of the maximum warp point of the back surface which may cause separation due to stress concentration, and the most suitable position is Optimized experimentally. Also, the radii of curvature r 1 and r 2
The size of is also experimentally set optimally.

【0016】作用について説明すると、図1〜3に示す
背面前部付根フィレット10及び背面後部付根フィレッ
ト11の急変更点16は下流向きのステップであるた
め、ここでは流れは剥離され、急変更点16の面に接し
て、逆流を伴なう強く乱れた流れが発生し、大きな負圧
が局部的に発生する。
The operation will be described. Since the abrupt change point 16 of the back front root fillet 10 and the back rear root fillet 11 shown in FIGS. 1 to 3 is a downstream step, the flow is separated here and the abrupt change point is shown. A strongly turbulent flow accompanied by backflow is generated in contact with the surface 16 and a large negative pressure is locally generated.

【0017】この負圧は周囲の圧力より低いため、図8
に示すハブコーナ渦に伴う壁面沿いの流れはこの急変更
点16の下流の負圧面17に取り込まれ、吸収されて、
翼背面4上によじ登って行き難くなる。即ち、図4にお
ける流れ18,19の如く、プラットフォーム3の面と
翼面に沿って負圧面25に引込まれる。
Since this negative pressure is lower than the ambient pressure, FIG.
The flow along the wall surface due to the hub corner vortex shown in is taken in by the suction surface 17 downstream of the sudden change point 16 and absorbed,
It becomes difficult to climb on the back surface 4 of the wing. That is, like the flows 18 and 19 in FIG. 4, the suction surface 25 is drawn along the surface of the platform 3 and the blade surface.

【0018】したがって、翼背面付根には、細い負圧部
分が発生するが、これが障壁となって本来のハブコーナ
渦はくい止められ(図9の流れ9と図4の流れ19とは
翼背面4上では逆方向となっている)、それと翼背面4
上の境界層との干渉によって生ずる翼面流れの劣化と、
それに起因する大きな圧力損失は抑止される。すなわ
ち、二次損失の幾許かは低減される。この作用はある点
でボルテックスゼネレータの作用に似ている。
Therefore, a thin negative pressure portion is generated at the root of the blade rear surface, and this serves as a barrier to block the original hub corner vortex (the flow 9 in FIG. 9 and the flow 19 in FIG. 4 are on the blade rear surface 4). In the opposite direction), and the wing back 4
Deterioration of airfoil flow caused by interference with the upper boundary layer,
The large pressure loss resulting from this is suppressed. That is, some of the secondary loss is reduced. This action is similar in some respects to that of a vortex generator.

【0019】[0019]

【発明の効果】本発明によれば、ハブコーナ渦の発生が
抑制されたことにより、これに起因した二次損失が低減
され、効率向上を図ることができる。
According to the present invention, since the generation of hub corner vortices is suppressed, the secondary loss resulting from this is reduced, and the efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る動翼の斜視図である。FIG. 1 is a perspective view of a moving blade according to an embodiment of the present invention.

【図2】図1の動翼の平面図である。2 is a plan view of the moving blade of FIG. 1. FIG.

【図3】図1の動翼の側面図である。3 is a side view of the rotor blade of FIG. 1. FIG.

【図4】本発明の原理説明図である。FIG. 4 is a diagram illustrating the principle of the present invention.

【図5】従来の動翼の斜視図である。FIG. 5 is a perspective view of a conventional moving blade.

【図6】図5の動翼の側面図である。6 is a side view of the rotor blade of FIG.

【図7】圧縮機における段効率−流量係数を示す図であ
る。
FIG. 7 is a diagram showing a stage efficiency-flow coefficient in a compressor.

【図8】圧縮機における二次的な流れを示す説明図であ
る。
FIG. 8 is an explanatory diagram showing a secondary flow in the compressor.

【図9】ハブコーナ渦の発生を説明するための図であ
る。
FIG. 9 is a diagram for explaining generation of a hub corner vortex.

【符号の説明】[Explanation of symbols]

1 翼 3 プラットフォーム 4 翼背面 10 背面前部付根フィレット 11 背面後部付根フィレット 16 急変更点 1 wing 3 platform 4 wing back surface 10 back front root fillet 11 back rear root fillet 16 sudden changes

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】翼とプラットフォーム又はケーシング壁面
との接合部にてこれらを翼背面で滑らかに接続するフィ
レットを、翼の前縁から背面最大反り点を越したある点
までは曲率半径が大きく、そのある点から翼の後縁まで
は曲率半径が小さく、かつそのある点における曲率半径
は急激に変化させてなる軸流ターボ機械翼。
1. A fillet that smoothly connects a blade and a platform or a casing wall surface at a joint between the blade and the back surface of the blade has a large radius of curvature from a front edge of the blade to a point beyond the maximum back warpage point, An axial-flow turbomachine blade with a small radius of curvature from that point to the trailing edge of the blade, and with a sudden change in the radius of curvature at that point.
JP22225091A 1991-08-07 1991-08-07 Axial flow turbomachinery blade Withdrawn JPH0544691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22225091A JPH0544691A (en) 1991-08-07 1991-08-07 Axial flow turbomachinery blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22225091A JPH0544691A (en) 1991-08-07 1991-08-07 Axial flow turbomachinery blade

Publications (1)

Publication Number Publication Date
JPH0544691A true JPH0544691A (en) 1993-02-23

Family

ID=16779452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22225091A Withdrawn JPH0544691A (en) 1991-08-07 1991-08-07 Axial flow turbomachinery blade

Country Status (1)

Country Link
JP (1) JPH0544691A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122192A (en) * 1996-10-14 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Axial flow compressor moving blade
US5947683A (en) * 1995-07-11 1999-09-07 Mitsubishi Heavy Industries, Ltd. Axial compresssor stationary blade
JP2001090691A (en) * 1999-09-23 2001-04-03 General Electric Co <Ge> Flow passage for pre-scroll of stress-reduced compressor
WO2005042925A1 (en) * 2003-10-31 2005-05-12 Kabushiki Kaisha Toshiba Turbine cascade structure
JP2010196625A (en) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd Turbine blade and gas turbine
WO2011085721A3 (en) * 2010-01-16 2011-10-20 Mtu Aero Engines Gmbh Rotor blade for a turbomachine and turbomachine
JP2013144986A (en) * 2013-03-13 2013-07-25 Mitsubishi Heavy Ind Ltd Turbine blade, and gas turbine
WO2014160215A1 (en) * 2013-03-13 2014-10-02 United Technologies Corporation Rotor blade with a conic spline fillet at an intersection between a platform and a neck
JP2016527431A (en) * 2013-07-15 2016-09-08 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Turbine vane with variable fillet
US9915206B2 (en) 2013-03-15 2018-03-13 United Technologies Corporation Compact aero-thermo model real time linearization based state estimator
WO2018147162A1 (en) * 2017-02-07 2018-08-16 株式会社Ihi Blade of axial flow machine
EP3711945A1 (en) * 2017-10-23 2020-09-23 MTU Aero Engines GmbH Blade and rotor for a turbomachine and turbomachine
JP2020153320A (en) * 2019-03-20 2020-09-24 三菱日立パワーシステムズ株式会社 Turbine blade and gas turbine
JP2021116739A (en) * 2020-01-27 2021-08-10 三菱パワー株式会社 Turbine blade

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947683A (en) * 1995-07-11 1999-09-07 Mitsubishi Heavy Industries, Ltd. Axial compresssor stationary blade
JPH10122192A (en) * 1996-10-14 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Axial flow compressor moving blade
JP2001090691A (en) * 1999-09-23 2001-04-03 General Electric Co <Ge> Flow passage for pre-scroll of stress-reduced compressor
WO2005042925A1 (en) * 2003-10-31 2005-05-12 Kabushiki Kaisha Toshiba Turbine cascade structure
US7625181B2 (en) 2003-10-31 2009-12-01 Kabushiki Kaisha Toshiba Turbine cascade structure
JP2010196625A (en) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd Turbine blade and gas turbine
WO2011085721A3 (en) * 2010-01-16 2011-10-20 Mtu Aero Engines Gmbh Rotor blade for a turbomachine and turbomachine
US9482099B2 (en) 2010-01-16 2016-11-01 Mtu Aero Engines Gmbh Rotor blade for a turbomachine and turbomachine
US9932834B2 (en) 2013-03-13 2018-04-03 United Technologies Corporation Rotor blade with a conic spline fillet at an intersection between a platform and a neck
JP2013144986A (en) * 2013-03-13 2013-07-25 Mitsubishi Heavy Ind Ltd Turbine blade, and gas turbine
WO2014160215A1 (en) * 2013-03-13 2014-10-02 United Technologies Corporation Rotor blade with a conic spline fillet at an intersection between a platform and a neck
US10107203B2 (en) 2013-03-15 2018-10-23 United Technologies Corporation Compact aero-thermo model based engine power control
US10480416B2 (en) 2013-03-15 2019-11-19 United Technologies Corporation Compact aero-thermo model based control system estimator starting algorithm
US9915206B2 (en) 2013-03-15 2018-03-13 United Technologies Corporation Compact aero-thermo model real time linearization based state estimator
US10087846B2 (en) 2013-03-15 2018-10-02 United Technologies Corporation Compact aero-thermo model stabilization with compressible flow function transform
US10107204B2 (en) 2013-03-15 2018-10-23 United Technologies Corporation Compact aero-thermo model base point linear system based state estimator
US10196985B2 (en) 2013-03-15 2019-02-05 United Technologies Corporation Compact aero-thermo model based degraded mode control
US10145307B2 (en) 2013-03-15 2018-12-04 United Technologies Corporation Compact aero-thermo model based control system
US10161313B2 (en) 2013-03-15 2018-12-25 United Technologies Corporation Compact aero-thermo model based engine material temperature control
US10190503B2 (en) 2013-03-15 2019-01-29 United Technologies Corporation Compact aero-thermo model based tip clearance management
JP2016527431A (en) * 2013-07-15 2016-09-08 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Turbine vane with variable fillet
US11230934B2 (en) 2017-02-07 2022-01-25 Ihi Corporation Airfoil of axial flow machine
JPWO2018147162A1 (en) * 2017-02-07 2019-11-07 株式会社Ihi Axial flow machine wing
WO2018147162A1 (en) * 2017-02-07 2018-08-16 株式会社Ihi Blade of axial flow machine
EP3711945A1 (en) * 2017-10-23 2020-09-23 MTU Aero Engines GmbH Blade and rotor for a turbomachine and turbomachine
US10844726B2 (en) 2017-10-23 2020-11-24 MTU Aero Engines AG Blade and rotor for a turbomachine and turbomachine
KR20210124423A (en) * 2019-03-20 2021-10-14 미츠비시 파워 가부시키가이샤 turbine blades and gas turbines
CN113574247A (en) * 2019-03-20 2021-10-29 三菱动力株式会社 Turbine blade and gas turbine
JP2020153320A (en) * 2019-03-20 2020-09-24 三菱日立パワーシステムズ株式会社 Turbine blade and gas turbine
US20220154581A1 (en) * 2019-03-20 2022-05-19 Mitsubishi Power Ltd. Turbine blade and gas turbine
US11788417B2 (en) 2019-03-20 2023-10-17 Mitsubishi Heavy Industries, Ltd. Turbine blade and gas turbine
JP2021116739A (en) * 2020-01-27 2021-08-10 三菱パワー株式会社 Turbine blade
US11959394B2 (en) 2020-01-27 2024-04-16 Mitsubishi Heavy Industries, Ltd. Turbine rotor blade

Similar Documents

Publication Publication Date Title
US6709233B2 (en) Aerofoil for an axial flow turbomachine
US6969232B2 (en) Flow directing device
US8702398B2 (en) High camber compressor rotor blade
JP4923073B2 (en) Transonic wing
EP2492440B1 (en) Turbine nozzle blade and steam turbine equipment using same
US10519980B2 (en) Turbomachine component or collection of components and associated turbomachine
JPH0544691A (en) Axial flow turbomachinery blade
US20080044273A1 (en) Turbomachine with reduced leakage penalties in pressure change and efficiency
US9885371B2 (en) Row of aerofoil members
JP3927886B2 (en) Axial flow compressor
JP5502695B2 (en) Axial flow compressor
US6638021B2 (en) Turbine blade airfoil, turbine blade and turbine blade cascade for axial-flow turbine
JPS63212704A (en) Aerofoil for turbo fluid machine
US7052237B2 (en) Turbine blade and turbine
WO2005040559A1 (en) High lift rotor or stator blades with multiple adjacent airfoils cross-section
JP2002540334A (en) Turbine blade
JP5813807B2 (en) Axial flow compressor
EP3392459A1 (en) Compressor blades
US20070071606A1 (en) Turbine blade
JP3988723B2 (en) Turbine blade
US10704392B2 (en) Tip shroud fillets for turbine rotor blades
JP2004324646A (en) Method and device for supporting tip of airfoil structurally
EP3805574A1 (en) Ducted fan with fan casing defining an over-rotor cavity
JP2009209745A (en) Turbine stage of axial flow type turbo machine, and gas turbine
JP3397599B2 (en) Axial turbine blade group

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112