JP3397599B2 - Axial turbine blade group - Google Patents

Axial turbine blade group

Info

Publication number
JP3397599B2
JP3397599B2 JP28535596A JP28535596A JP3397599B2 JP 3397599 B2 JP3397599 B2 JP 3397599B2 JP 28535596 A JP28535596 A JP 28535596A JP 28535596 A JP28535596 A JP 28535596A JP 3397599 B2 JP3397599 B2 JP 3397599B2
Authority
JP
Japan
Prior art keywords
blade
turbine
blades
axial
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28535596A
Other languages
Japanese (ja)
Other versions
JPH10131707A (en
Inventor
芳雄 鹿野
瀬川  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28535596A priority Critical patent/JP3397599B2/en
Publication of JPH10131707A publication Critical patent/JPH10131707A/en
Application granted granted Critical
Publication of JP3397599B2 publication Critical patent/JP3397599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は軸流型タービン翼群
の改良に係わり、特に環状翼列流路内に複数個配置され
たタービンの翼が、周方向に翼圧力面を突き出すように
湾曲形成されている三次元設計翼のタービン翼群に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of an axial flow turbine blade group, and in particular, a plurality of turbine blades arranged in an annular blade cascade flow path are curved so as to project a blade pressure surface in the circumferential direction. The present invention relates to a turbine blade group of formed three-dimensional design blades.

【0002】[0002]

【従来の技術】軸流タービンの三次元的な設計に基づく
翼構造の従来例としては、静翼を例にとれば、同一翼断
面形状を単に半径方向に直線的に積み上げたものの他
に、例えば、An Investivation of Leaned Nozzle Effe
cts on Low Pressure Steam Turbine Efficiencies, Pr
oc. of the Advances in Steam Turbine Technology fo
rPower Generation PWR-Vol.10 ASME Power division
に記載されているような静翼を動翼回転方向に単純に傾
ける構造のものがある。これは、蒸気タービン低圧段の
ような翼長の長い静翼において、根元部のはく離を抑え
ることを意図したものである。
2. Description of the Related Art As a conventional example of a blade structure based on a three-dimensional design of an axial flow turbine, taking a stationary blade as an example, in addition to a structure in which the same blade cross-sectional shape is simply stacked linearly in a radial direction, For example, An Investivation of Leaned Nozzle Effe
cts on Low Pressure Steam Turbine Efficiencies, Pr
oc. of the Advances in Steam Turbine Technology fo
rPower Generation PWR-Vol.10 ASME Power division
There is a structure in which the stationary blade is simply tilted in the rotating direction of the moving blade as described in. This is intended to suppress delamination of the root portion in a stationary blade having a long blade length such as a steam turbine low pressure stage.

【0003】また、The Influence of Blade Lean on T
urbine Losses, ASME Paper No.90-GT-55 に記載されて
いるような静翼の後縁線を軸方向からみて翼の高さ方向
に対称となる弓形形状をした構造のものもある。これ
は、静翼の翼間側壁近傍に発生する二次流れ渦の発達を
抑制することを意図するものである。
In addition, The Influence of Blade Lean on T
There is also a structure with an arched shape that is symmetrical in the height direction of the blade as seen from the axial direction of the trailing edge line of the stationary blade, as described in urbine Losses, ASME Paper No.90-GT-55. This is intended to suppress the development of secondary flow vortices generated near the inter-blade side wall of the stationary blade.

【0004】これに対し、例えば特開平3−18930
4号に記載されているような静翼の後縁線を軸方向から
みて翼の高さ方向に非対称弓形形状をした構造がある。
さらに、特開平6−81603号に記載されているよう
な静翼の後縁線を軸方向からみても子午面からみても、
翼の高さ方向に非対称となる弓形形状をした構造があ
る。
On the other hand, for example, JP-A-3-18930
As described in No. 4, there is a structure in which the trailing edge line of the stationary blade is viewed in the axial direction and has an asymmetrical arcuate shape in the height direction of the blade.
Furthermore, as seen from the axial direction and the meridian plane, the trailing edge line of the stationary blade as described in JP-A-6-81603,
There is an arched structure that is asymmetric in the height direction of the wing.

【0005】以上述べてきた従来技術のうち,同一翼断
面形状を単に半径方向に直線的に積み上げた翼形状を除
いた翼は三次元設計翼などと呼ばれ、静翼根元部のはく
離や静翼の側壁近傍に発達する境界層や二次流れ渦を効
果的に抑制する手段となる。しかし、これらの三次元設
計翼のうち周方向に翼圧力面を突き出すように湾曲させ
るバウ翼と呼ばれる三次元設計翼では、突き出し量の大
きさによってタービン段落の反動度や下流に位置する翼
への入射角が変化するため、その突き出し量に基づいた
バウ翼と呼ばれる三次元設計翼の相似パラメータを見出
し制御してやる必要がある。
Among the above-mentioned conventional techniques, a blade excluding a blade shape in which the same blade cross-sectional shape is simply piled linearly in the radial direction is called a three-dimensional design blade, and is called a three-dimensional design blade. It is a means to effectively suppress the boundary layer and secondary flow vortices that develop near the sidewall of the blade. However, among these three-dimensional design blades, three-dimensional design blades called bow blades, which are curved so as to project the blade pressure surface in the circumferential direction, are selected depending on the amount of protrusion to the recoil degree of the turbine stage or the blade located downstream. Since the incident angle of the blade changes, it is necessary to find and control the similarity parameter of the three-dimensional design blade called the bow blade based on the protrusion amount.

【0006】[0006]

【発明が解決しようとする課題】軸流タービンの翼間流
路では、翼前縁部での三次元的な流れはく離や流路の曲
がりにより遠心力により一対の二次流れ渦が発生する。
また、側壁上には境界層も発達する。二次流れ渦や境界
層は翼間流れの流体損失の原因となる。
In the inter-blade flow passage of an axial turbine, a pair of secondary flow vortices are generated by centrifugal force due to three-dimensional flow separation at the blade leading edge and bending of the flow passage.
A boundary layer also develops on the side wall. Secondary flow vortices and boundary layers cause fluid loss in inter-blade flow.

【0007】これらを抑制することを目的として前述し
た三次元設計翼が考案されているわけであるが、しか
し、この三次元設計翼は側壁近傍では損失低減に効果的
ではあるものの、周方向に翼圧力面を突き出すように湾
曲させるバウ翼と呼ばれる三次元設計翼ではスパン方向
の翼負荷変化が発生するため、設計通りの流動パターン
を得ることが困難である。すなわち、タービンの反動度
や下流に位置する翼への入射角が突き出し量によって様
々に変化してしまい、機種によってはタービン効率を向
上させることができないきらいがあった。
The above-mentioned three-dimensional design blade is devised for the purpose of suppressing these. However, although this three-dimensional design blade is effective in reducing the loss in the vicinity of the side wall, it does not extend in the circumferential direction. In a three-dimensional design blade called a bow blade, which is curved so as to project the blade pressure surface, it is difficult to obtain the designed flow pattern because the blade load changes in the span direction. That is, the recoil degree of the turbine and the angle of incidence on the blade located downstream are variously changed depending on the amount of protrusion, and there is a tendency that the turbine efficiency cannot be improved depending on the model.

【0008】本発明はこれに鑑みなされたもので、その
目的とするところは、多段落で構成される軸流タービン
の各段落において翼長や翼枚数が変わっても側壁損失の
低減が図られ、かつ下流に位置する翼への流体入射角が
制御されて最適な流体フローパターンとなり、タービン
の効率を向上させることが可能な軸流型タービンの翼群
を提供することにある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to reduce the side wall loss even if the blade length and the number of blades are changed in each paragraph of an axial flow turbine composed of multiple paragraphs. The present invention is to provide an axial flow turbine blade group capable of improving the efficiency of the turbine by controlling the incident angle of the fluid on the blade located downstream and providing an optimum fluid flow pattern.

【0009】[0009]

【課題を解決するための手段】すなわち本発明は、作動
流体が流通する環状翼列流路内に、周方向および軸方向
に並設配置された複数個のタービン翼を備え、前記各タ
ービン翼が翼圧力面を周方向に突き出すように湾曲形成
されている軸流型タービン翼群において、前記タービン
翼の周方向ピッチをtとし、周方向突き出し量をδcと
したとき、翼の枚数および翼の長さの大小にかかわらず
δc/t=C(定数)の関係を保つように形成し所期の
目的を達成するようにしたものである。
That is, the present invention is provided with a plurality of turbine blades arranged in parallel in the circumferential direction and the axial direction in an annular blade row passage through which a working fluid flows, and each of the turbine blades is provided. In the axial flow type turbine blade group in which the blades are curved so as to project in the circumferential direction of the blade pressure surface, when the circumferential pitch of the turbine blades is t and the circumferential projection amount is δc, the number of blades and the number of blades It is formed so as to maintain the relationship of δc / t = C (constant) regardless of the length of the object to achieve the intended purpose.

【0010】またこの場合、前記C(定数)を、0.0
から0.5の範囲の関係を保つように形成したものであ
る。
In this case, the C (constant) is set to 0.0
It is formed so as to maintain the relationship in the range from 1 to 0.5.

【0011】すなわちこのように形成された軸流型ター
ビンの翼であると、翼の数や大きさに関係なく、タービ
ン翼の周方向ピッチ(t)と周方向突き出し量(δc)
の関係,すなわちδc/tの関係が、ある定数を保つよ
うに形成されていることから、翼長方向の流出角分布は
ほぼ同じになり、すなわちタービン段落の反動度や下流
側に位置する翼列への入射角が同一条件に制御され、三
次元設計翼の損失低減効果を十分活用でき、この結果タ
ービン段落効率を向上させることができるのである。
That is, in the case of the axial-flow turbine blade thus formed, the circumferential pitch (t) and the circumferential protrusion amount (δc) of the turbine blade are irrespective of the number and size of the blades.
The relationship of δc / t, that is, the relationship of δc / t, is formed so as to maintain a certain constant, so that the outflow angle distribution in the blade length direction is almost the same. The incident angle to the row is controlled under the same condition, the loss reduction effect of the three-dimensional design blade can be fully utilized, and as a result, the turbine stage efficiency can be improved.

【0012】[0012]

【発明の実施の形態】以下図示した実施例に基づいて本
発明を詳細に説明するが、まず初めに、翼を周方向に翼
圧力面を突き出すように湾曲させた三次元設計翼の相似
パラメータを提供するために、翼流出角が同一になる条
件について説明する。流出角は、翼を周方向に翼圧力面
を突き出すように湾曲させた三次元設計翼の効果を現す
代表的な量である。すなわち、上記三次元設計翼では、
翼負荷をスパン方向に変化させるため、それに伴って流
出角は変化する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the illustrated embodiments. First, the similarity parameters of a three-dimensional design blade in which the blade is curved so as to project the blade pressure surface in the circumferential direction. In order to provide the above, the conditions under which the blade outflow angles are the same will be described. The outflow angle is a typical amount that exhibits the effect of a three-dimensional design blade in which the blade is curved so as to project the blade pressure surface in the circumferential direction. That is, in the above three-dimensional design wing,
Since the blade load is changed in the span direction, the outflow angle changes accordingly.

【0013】したがって、流出角の変化割合を調べるこ
とで三次元設計翼の効果の度合いを知ることができる。
図1は、軸流タービンの翼を下流側から見た図で、上部
ダイヤフラム1と下部ダイヤフラム2の間に複数個の翼
がある。翼圧力面を突き出すように湾曲させた三次元設
計翼の後縁3は、図1に示すような湾曲形状となる。破
線4は、翼根元部から半径方向に放射状に伸ばした直線
で、翼長はH、最大突き出し量はδc、翼根元ピッチは
tで定義されている。
Therefore, the degree of effect of the three-dimensional design blade can be known by examining the change rate of the outflow angle.
FIG. 1 is a view of a blade of an axial flow turbine as viewed from the downstream side, and a plurality of blades are provided between an upper diaphragm 1 and a lower diaphragm 2. The trailing edge 3 of the three-dimensional design blade curved so as to project the blade pressure surface has a curved shape as shown in FIG. The broken line 4 is a straight line extending radially from the blade root portion in a radial direction, and the blade length is defined by H, the maximum protrusion amount is δc, and the blade root pitch is defined by t.

【0014】このような翼圧力面を突き出すように湾曲
させた三次元設計翼の流れを模擬するために、平行壁間
に複数の三次元設計翼を配置した翼列試験状態を三次元
乱流解析で流れをシミュレートした。なお、流入部の側
壁境界層厚さは翼長の10%として計算した。このような
流れ場を対象として種々のパラメータサーベイを行い、
流出角に関する相似パラメータを求めた結果、最大突き
出し量δcと翼ピッチの比が一定下あることが相似な流
出角分布を得るための条件であることが判明した。以下
にその計算結果を示す。
In order to simulate the flow of such a three-dimensional design blade that is curved so as to protrude from the blade pressure surface, a three-dimensional turbulent flow test is performed in a blade row test state in which a plurality of three-dimensional design blades are arranged between parallel walls. The flow was simulated by analysis. The sidewall boundary layer thickness at the inlet was calculated as 10% of the blade length. Performing various parameter surveys targeting such flow fields,
As a result of obtaining the similarity parameter regarding the outflow angle, it was found that the condition that the ratio of the maximum protrusion amount δc and the blade pitch is constant is a condition for obtaining the similar outflow angle distribution. The calculation results are shown below.

【0015】図2は、翼長Hを120mm、翼ピッチt
を36.1mmと一定にして突き出し量δcを変化させ
た場合のスパン方向の流出角分布である。なお、横軸は
スパン方向位置を翼長で無次元化して示している。以下
の図でも同様である。図2から明らかなように、突き出
し量δcを大きくするとスパン方向の翼負荷変化に伴い
流出角の変化も大きくなることがわかる。側壁近傍で流
出角が大きくなるということは、タービン段落の根元反
動度が増加することを意味している。このような流出角
変化を制御するパラメータを見出し突き出し量δcを制
御することが本発明の主眼である。
FIG. 2 shows a blade length H of 120 mm and a blade pitch t.
Is a discharge angle distribution in the span direction when the protrusion amount δc is changed while keeping the value of 36.1 mm constant. The horizontal axis represents the spanwise position in terms of blade length. The same applies to the following figures. As is apparent from FIG. 2, when the protrusion amount δc is increased, the change in the outflow angle also increases with the change in the blade load in the span direction. The larger outflow angle near the side wall means that the root recoil of the turbine stage increases. The main purpose of the present invention is to find a parameter for controlling such a change in outflow angle and control the protrusion amount δc.

【0016】図3は、翼ピッチを一定にして、翼長Hと
突き出し量δcの比を一定にした場合のスパン方向流出
角分布である。翼長Hと突き出し量δcの比を一定にし
ても流出角は異なることがわかり、δc/Hは相似パラ
メータとしては採用できないことがわかる。
FIG. 3 shows the outflow angle distribution in the span direction when the blade pitch is constant and the ratio of the blade length H to the protrusion amount δc is constant. It can be seen that the outflow angles are different even if the ratio between the blade length H and the protrusion amount δc is constant, and δc / H cannot be adopted as a similarity parameter.

【0017】以上に述べたようなパラメータサーベイを
種々行い、タービン段落性能に関する重要なパラメータ
である流出角分布の相似性を見出した結果を以下に示
す。
The results of finding the similarity of the outflow angle distribution, which is an important parameter related to turbine stage performance, by performing various parameter surveys as described above are shown below.

【0018】図4は、突き出し量δcと翼ピッチtの比
を一定に保ち、翼長を変化させた場合のスパン方向流出
角分布である。図4から明らかなように、翼長が変化し
ても突き出し量δcと翼ピッチtの比を一定に保てば、
翼長方向の流出角分布はほぼ同じになることがわかる。
FIG. 4 shows the outflow angle distribution in the span direction when the blade length is changed while keeping the ratio of the protrusion amount δc and the blade pitch t constant. As is clear from FIG. 4, even if the blade length changes, if the ratio between the protrusion amount δc and the blade pitch t is kept constant,
It can be seen that the outflow angle distribution in the blade length direction is almost the same.

【0019】次の計算例は翼長Hを一定に保ちつつ、翼
を相似拡大することで翼ピッチも拡大し、その翼ピッチ
tと突き出し量δcの比を一定にした例である。したが
って、翼ピッチtの拡大とともに突き出し量δcも大き
くなる。その結果を図5に示す。この図から明らかなよ
うに、翼を相似拡大することで翼ピッチを拡大しても、
突き出し量δcと翼ピッチtの比を一定に保てば、流出
角分布は同じになる。
The following calculation example is an example in which the blade length is kept constant and the blade pitch is also enlarged by enlarging the blade so that the ratio between the blade pitch t and the protrusion amount δc is kept constant. Therefore, the protrusion amount δc increases as the blade pitch t increases. The result is shown in FIG. As is clear from this figure, even if the blade pitch is expanded by expanding the blades in a similar manner,
If the ratio between the protrusion amount δc and the blade pitch t is kept constant, the outflow angle distribution becomes the same.

【0020】最後の相似性確認は突き出し量δcを3m
mと小さくし、翼ピッチは36.1mm、翼長を変化さ
せた場合の計算である。したがって、突き出し量δcは
前述した図4に比べて半分である。その結果を図6に示
す。突き出し量δcを小さくしても翼ピッチとの比が一
定であれば、翼長を変えても図6に示すように流出角は
ほぼ同じになることがわかる。
In the final confirmation of similarity, the protrusion amount δc is set to 3 m.
It is a calculation when the blade pitch is changed to 36.1 mm and the blade length is changed to m. Therefore, the protrusion amount δc is half that in FIG. 4 described above. The result is shown in FIG. Even if the protrusion amount δc is reduced, if the ratio with the blade pitch is constant, the outflow angle becomes almost the same as shown in FIG. 6 even if the blade length is changed.

【0021】以上の三次元乱流解析によるパラメータサ
ーベイの結果から、翼を周方向に翼圧力面を突き出すよ
うに湾曲させた三次元設計翼の相似パラメータとして
は、突き出し量δcと翼ピッチtの比δc/tが適切で
あることを新たに明らかにした。これが、本発明の基盤
となっている。
From the results of the parameter survey by the above three-dimensional turbulence analysis, as the similar parameters of the three-dimensional design blade in which the blade is curved so as to project the blade pressure surface in the circumferential direction, the protrusion amount δc and the blade pitch t are set. It was newly revealed that the ratio δc / t is appropriate. This is the basis of the present invention.

【0022】以下、本発明の第1の実施例を図1により
説明する。図1は本発明を軸流タービンの静翼に適用し
たものであり、本発明の静翼を下流側から見た図であ
る。翼長をH、突き出し量をδc、翼ピッチの代表とし
て翼根元ピッチを選びそれをtとする。一般に、タービ
ンは多段落で構成されており、各段落で翼長や翼枚数、
すなわち翼ピッチが異なるが、そのようなタービン段落
に翼を周方向に翼圧力面を突き出すように湾曲させた三
次元設計翼を適用する場合の翼列構成条件として、翼長
や翼枚数が異なっても突き出し量δcと翼根元ピッチt
の比δc/tを一定、すなわち、δc/t=C(定数)
の関係を有することが本発明の第1の実施例である。
The first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a diagram in which the present invention is applied to a stator blade of an axial turbine, and is a view of the stator blade of the present invention as viewed from the downstream side. The blade length is H, the protrusion amount is δc, and the blade root pitch is selected as a representative of the blade pitch, which is designated as t. Generally, a turbine is composed of multiple paragraphs, and in each paragraph the blade length, number of blades,
That is, although the blade pitch is different, the blade length and the number of blades are different as a blade row configuration condition when applying a three-dimensional design blade in which the blade is curved so as to project the blade pressure surface in the circumferential direction in such a turbine stage. Even if the protrusion amount δc and the blade root pitch t
The ratio of δc / t is constant, that is, δc / t = C (constant)
It is the first embodiment of the present invention to have the relationship of

【0023】このような翼列構成を実施することで、タ
ービン段落の反動度や下流側に位置する翼列への入射角
を同一条件に制御することが可能となり、三次元設計翼
の損失低減効果を十分活用できる。この結果、タービン
段落効率も向上する。
By implementing such a blade row configuration, it becomes possible to control the recoil degree of the turbine stage and the incident angle to the blade row located on the downstream side under the same conditions, and reduce the loss of the three-dimensional design blade. The effect can be fully utilized. As a result, turbine stage efficiency is also improved.

【0024】次に、本発明の第2の実施例を図7により
説明する。この図は、横軸にδc/tをとり、縦軸は上
記三次元設計翼を使用しない場合のタービン効率からの
段落効率向上量△η(%)を示したものである。なお、
この図7は静翼と動翼の三次元翼間流れを同時に乱流解
析する計算手法に基づいている。この図に示されている
ように、δc/tを増加させていくと段落効率は上昇す
るが、δc/tが0.5を越えると逆に段落効率は低下
する傾向を示す。
Next, a second embodiment of the present invention will be described with reference to FIG. In this figure, the horizontal axis represents δc / t, and the vertical axis represents the paragraph efficiency improvement Δη (%) from the turbine efficiency when the three-dimensional design blade is not used. In addition,
This FIG. 7 is based on a calculation method for simultaneously turbulently analyzing the flow between the three-dimensional blades of the stationary blade and the moving blade. As shown in this figure, as δc / t is increased, the paragraph efficiency increases, but when δc / t exceeds 0.5, the paragraph efficiency tends to decrease.

【0025】段落効率の低下は、三次元設計翼の損失低
減効果よりも下流側に位置する動翼の入射角損失が増大
するためである。したがって、タービン効率を向上させ
るためには、δc/t=C(定数)の定数Cを、多段落
で構成される軸流タービンの各段落において翼長や翼枚
数が変わっても0.0<C≦0.5の範囲から選択する
ことが必要となるため、本発明の第2の実施例として
は、0.0<δc/t≦0.5とし、タービン効率を向
上させるものである。
The lowering of the paragraph efficiency is because the incident angle loss of the moving blade located on the downstream side is larger than the loss reducing effect of the three-dimensional design blade. Therefore, in order to improve the turbine efficiency, the constant C of δc / t = C (constant) is set to 0.0 <even if the blade length and the number of blades are changed in each paragraph of the axial flow turbine composed of multiple paragraphs. Since it is necessary to select from the range of C ≦ 0.5, in the second embodiment of the present invention, 0.0 <δc / t ≦ 0.5 is set to improve turbine efficiency.

【0026】最後に、本発明の第3の実施例を図7によ
り説明する。この図から明らかなように、δc/tの値
を0.1≦δc/t≦0.4とすれば、最も効果的に翼
を周方向に翼圧力面を突き出すように湾曲させた三次元
設計翼を使用することができ、その範囲の値を用いてタ
ービン効率を向上させることが可能となる。
Finally, a third embodiment of the present invention will be described with reference to FIG. As is clear from this figure, when the value of δc / t is set to 0.1 ≦ δc / t ≦ 0.4, the three-dimensional shape of the blade is curved most effectively so as to project the blade pressure surface in the circumferential direction. Design blades can be used and values in that range can be used to improve turbine efficiency.

【0027】なお以上の説明では、翼が放射状に配置さ
れ、かつ根元と先端の翼後縁が同一半径方向の放射線上
にある形状の翼について説明してきたが、常にこのよう
な形状の翼でなければならないわけではなく、例えば図
8に示されているように、翼先端側が周方向に傾斜した
形状の翼であっても同様な作用および効果を達成するこ
とは勿論である。なおこの場合の突出し量δcは放射線
からの隔たりになる。
In the above description, the blades are arranged radially, and the blades of the root and the tip have trailing edges on the same radial direction, but the blades having such a shape are always used. It does not have to be provided, and it is needless to say that the same action and effect can be achieved even if the blade tip side is a blade inclined in the circumferential direction as shown in FIG. In this case, the protrusion amount δc becomes the distance from the radiation.

【0028】また、根元と先端の翼後縁が同一半径方向
の放射線上にある形状の翼であっても、例えば図9ある
いは図10に示されているように湾曲突出し位置が、翼
根元側あるいは翼先端側にずれた形状の翼の場合であっ
ても同様な効果を奏することは勿論である。
Even if the blade has a shape in which the trailing edge of the root and the trailing edge of the tip are on the same radial direction of radiation, for example, as shown in FIG. 9 or FIG. Alternatively, it is needless to say that the same effect can be obtained even in the case of a blade whose shape is shifted toward the blade tip side.

【0029】以上説明してきたように、このように形成
された翼群であると、タービン段落に翼を周方向に翼圧
力面を突き出すように湾曲させた三次元設計翼を適用す
る場合の翼列構成条件として、多段落で構成される軸流
タービンの各段落において翼長や翼枚数が異なっても突
き出し量δcと翼根元ピッチtの比δc/tを一定、す
なわち、δc/t=C(定数)の関係を保たせることで
上記三次元設計翼の効果を同一に制御することができ、
また、定数Cの値を0.0<C≦0.5の範囲から選択
することでタービン効率を向上させることができる。さ
らに効果的に三次元設計翼を使用するために、定数Cの
値を0.1≦C≦0.4の範囲から選択すれば、よりター
ビン効率を向上させることができる。
As described above, with the blade group formed in this manner, the blade in the case of applying the three-dimensional design blade in which the blade is curved so as to project the blade pressure surface in the circumferential direction in the turbine stage As a row configuration condition, the ratio δc / t between the protrusion amount δc and the blade root pitch t is constant, that is, δc / t = C, even if the blade length and the number of blades are different in each paragraph of an axial flow turbine that is composed of multiple paragraphs. By maintaining the relationship of (constant), it is possible to control the effects of the above three-dimensional design blades in the same way,
Moreover, turbine efficiency can be improved by selecting the value of the constant C from the range of 0.0 <C ≦ 0.5. In order to use the three-dimensional design blade more effectively, if the value of the constant C is selected from the range of 0.1 ≦ C ≦ 0.4, the turbine efficiency can be further improved.

【0030】なお本発明の場合、特に蒸気タービンの低
圧最終段およびその前2段を除いては、側壁損失の低減
が目的となるため、その見出された相似パラメータに基
づいて湾曲させれば、翼枚数や翼長が変化しても同等の
側壁損失低減効果が得られることになる。また、蒸気タ
ービンの低圧最終段およびその前2段では、側壁損失低
減を目的とするよりは、根元反動度の制御に重点がおか
れるために、その湾曲のさせ方は異なってくる。勿論そ
の場合でも、根元反動度を所定の値に設定するために本
発明の相似パラメータに基づいて湾曲させることも可能
である。
In the case of the present invention, except for the low pressure last stage of the steam turbine and the two stages before it, the purpose is to reduce the side wall loss. Therefore, if the curve is made based on the found similarity parameter. Even if the number of blades or the blade length changes, the same side wall loss reduction effect can be obtained. Further, in the low-pressure final stage and the preceding two stages of the steam turbine, since the emphasis is placed on the control of the root reaction degree rather than the purpose of reducing the side wall loss, the bending method is different. Even in that case, of course, it is also possible to bend the root recoil degree based on the similarity parameter of the present invention in order to set it to a predetermined value.

【0031】[0031]

【発明の効果】以上説明してきたように本発明によれ
ば、多段落で構成される軸流タービンの各段落において
翼長や翼枚数が変わっても側壁損失の低減が図られ、か
つ下流に位置する翼への流体入射角が制御され、最適な
流体フローパターンとなり、タービンの効率を向上させ
ることが可能なこの種の軸流型タービンの翼群を得るこ
とができる。
As described above, according to the present invention, even if the blade length and the number of blades change in each paragraph of the axial flow turbine composed of multiple paragraphs, the side wall loss can be reduced and the downstream can be reduced. It is possible to obtain a blade group of an axial-flow turbine of this type capable of controlling an incident angle of a fluid on a blade located, an optimum fluid flow pattern, and improving turbine efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の軸流型タービン翼群の一実施例の要部
を示すもので、翼群を下流側から見た正面図である。
FIG. 1 is a front view showing a main part of an embodiment of an axial flow turbine blade group of the present invention, as viewed from the downstream side of the blade group.

【図2】三次元設計翼の突き出し量δcに対するスパン
方向の流出角の変化を示す図である。
FIG. 2 is a diagram showing changes in the outflow angle in the span direction with respect to the protrusion amount δc of the three-dimensional design blade.

【図3】δc/Hを一定にし、翼長を変化させた場合の
スパン方向の流出角の変化を示す図である。
FIG. 3 is a diagram showing changes in the outflow angle in the span direction when δc / H is kept constant and the blade length is changed.

【図4】δc/tを一定にし、翼長を変化させた場合の
スパン方向の流出角の変化を示す図である。
FIG. 4 is a diagram showing changes in the outflow angle in the span direction when δc / t is kept constant and the blade length is changed.

【図5】δc/tを一定にし、翼の大きさと翼ピッチを
変化させた場合のスパン方向の流出角の変化を示す図で
ある。
FIG. 5 is a diagram showing changes in the outflow angle in the span direction when δc / t is kept constant and the blade size and blade pitch are changed.

【図6】δc/tを一定にし、翼長を変化させた場合の
スパン方向の流出角の変化を示す図である。
FIG. 6 is a diagram showing changes in the outflow angle in the span direction when δc / t is kept constant and the blade length is changed.

【図7】δc/tの大きさと段落効率向上量の関係示す
図である。
FIG. 7 is a diagram showing the relationship between the magnitude of δc / t and the paragraph efficiency improvement amount.

【図8】根元と先端の翼後縁が同一半径方向の放射線上
にない場合のδcを示す図である。
FIG. 8 is a diagram showing δc when the blade trailing edges of the root and the tip are not on the radial line in the same radial direction.

【図9】翼先端近傍に最大突出し量がある場合のδcを
示す図である。
FIG. 9 is a diagram showing δc when the maximum protrusion amount is near the blade tip.

【図10】翼根元近傍に最大突出し量がある場合のδc
を示す図である。
FIG. 10 δc when the maximum protrusion amount is near the blade root
FIG.

【符号の説明】[Explanation of symbols]

1…上部ダイヤフラム、2…下部ダイヤフラム、3…翼
後縁、4…翼根元部から半径方向に伸びる放射状の直
線。
DESCRIPTION OF SYMBOLS 1 ... Upper diaphragm, 2 ... Lower diaphragm, 3 ... Blade trailing edge, 4 ... Radial straight line extending from a blade root part in a radial direction.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−81603(JP,A) 特開 平3−189303(JP,A) 特開 平5−312003(JP,A) 特開 平6−193402(JP,A) 特開 平5−26004(JP,A) 特開 平7−253001(JP,A) 特開 平2−49902(JP,A) 特開 平3−189304(JP,A) 特開 平8−74502(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01D 1/00 - 11/10 ─────────────────────────────────────────────────── --- Continuation of front page (56) References JP-A-6-81603 (JP, A) JP-A-3-189303 (JP, A) JP-A-5-312003 (JP, A) JP-A-6- 193402 (JP, A) JP 5-26004 (JP, A) JP 7-253001 (JP, A) JP 2-49902 (JP, A) JP 3-189304 (JP, A) JP-A-8-74502 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F01D 1 / 00-11 / 10

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 環状翼列流路内に、周方向および軸方向
に並設配置された複数個のタービン翼を備え、前記各タ
ービン翼が翼圧力面を周方向に突き出すように湾曲形成
されている軸流型タービン翼郡において、 前記タービン翼の周方向翼根元ピッチをt,周方向突き
出し量をδcとしたとき、翼の枚数および翼の長さの大
小にかかわらずδc/t=C(定数)の関係を保つよう
に形成したことを特徴とする軸流型タービン翼郡。
1. A plurality of turbine blades arranged side by side in a circumferential direction and an axial direction are provided in an annular blade row flow path, and each turbine blade is curvedly formed so as to project a blade pressure surface in a circumferential direction. In the axial flow type turbine blade group, when the circumferential blade root pitch of the turbine blade is t and the circumferential protrusion amount is δc, δc / t = C regardless of the number of blades and the length of the blade. An axial flow turbine blade group characterized by being formed so as to maintain a (constant) relationship.
【請求項2】 環状翼列流路内に、周方向および軸方向
に並設配置された複数個のタービン翼を備え、前記各タ
ービン翼が、翼圧力面を周方向に突き出すように湾曲形
成されている軸流型タービン翼郡において、 前記タービン翼の周方向翼根元ピッチをt,翼根元後縁
部から半径方向に放射状に伸ばした直線と翼圧力面を突
き出した時の周方向変位との最大差をδcとしたとき、
翼の枚数および翼の長さの大小にかかわらずδc/t=
C(定数)の関係を保つように形成したことを特徴とす
る軸流型タービン翼郡。
2. A plurality of turbine blades arranged in parallel in the circumferential direction and the axial direction are provided in the annular blade cascade flow path, and each of the turbine blades is curved so as to project a blade pressure surface in the circumferential direction. In the axial flow type turbine blade group, the circumferential blade root pitch of the turbine blade is t, the straight line radially extended from the blade root trailing edge and the circumferential displacement when the blade pressure surface is projected. When the maximum difference of is δc,
Δc / t = regardless of the number of blades and the length of the blades
An axial-flow turbine blade group formed so as to maintain a C (constant) relationship.
【請求項3】 環状翼列流路内に、周方向および軸方向
に並設配置された複数個のタービン翼を備え、前記各タ
ービン翼が、翼圧力面を周方向に突き出すように湾曲形
成された三次元設計翼の軸流型タービン翼郡において、 前記タービン翼の周方向翼根元ピッチをt,翼根元後縁
部から半径方向に放射状に伸ばした直線と翼圧力面を突
き出した時の周方向変位との最大差をδcとして,多段
落で構成される軸流タービンの各段落において翼長や翼
枚数が変わってもδc/t=C(定数)の関係を保つよ
うに形成したことを特徴とする軸流型タービン翼郡。
3. A plurality of turbine blades arranged side by side in the circumferential direction and the axial direction are provided in the annular blade cascade flow path, and each turbine blade is curved so as to project a blade pressure surface in the circumferential direction. In the axial flow type turbine blade group of the three-dimensional designed blades, when the circumferential blade root pitch of the turbine blade is t, a straight line radially extended from the blade root trailing edge and a blade pressure surface are projected. The maximum difference from the circumferential displacement is set to δc, and it is formed so that the relation of δc / t = C (constant) is maintained even if the blade length and the number of blades change in each paragraph of the axial turbine composed of multiple paragraphs. Axial-flow turbine blade group characterized by.
【請求項4】 前記δc/tが、0.0から0.5の範
囲の関係を保つように形成されていることを特徴とする
請求項1,2又は3記載の軸流型タービン翼郡。
4. The δc / t is formed so as to maintain a relationship in the range of 0.0 to 0.5.
The axial flow turbine blade group according to claim 1, 2, or 3 .
【請求項5】 前記δc/tが、0.1から0.4の範
囲の関係を保つように形成されていることを特徴とする
請求項1,2又は3記載の軸流型タービン翼郡。
5. The δc / t is formed so as to maintain the relationship in the range of 0.1 to 0.4.
The axial flow turbine blade group according to claim 1, 2, or 3 .
JP28535596A 1996-10-28 1996-10-28 Axial turbine blade group Expired - Lifetime JP3397599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28535596A JP3397599B2 (en) 1996-10-28 1996-10-28 Axial turbine blade group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28535596A JP3397599B2 (en) 1996-10-28 1996-10-28 Axial turbine blade group

Publications (2)

Publication Number Publication Date
JPH10131707A JPH10131707A (en) 1998-05-19
JP3397599B2 true JP3397599B2 (en) 2003-04-14

Family

ID=17690494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28535596A Expired - Lifetime JP3397599B2 (en) 1996-10-28 1996-10-28 Axial turbine blade group

Country Status (1)

Country Link
JP (1) JP3397599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056824A (en) * 2005-08-26 2007-03-08 Toshiba Corp Stationary blade and moving blade for axial flow turbine, and axial flow turbine provided with same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491493B1 (en) 1998-06-12 2002-12-10 Ebara Corporation Turbine nozzle vane
JP4269723B2 (en) * 2003-03-12 2009-05-27 株式会社Ihi Turbine nozzle
JP2006207554A (en) * 2005-01-31 2006-08-10 Toshiba Corp Turbine nozzle and axial-flow turbine using the same
JP2007009761A (en) * 2005-06-29 2007-01-18 Toshiba Corp Axial flow turbine
CH698109B1 (en) * 2005-07-01 2009-05-29 Alstom Technology Ltd Turbomachinery blade.
JP2011074804A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Nozzle of steam turbine
US9011084B2 (en) 2010-09-28 2015-04-21 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine stator vane and steam turbine using the same
JP7032708B2 (en) 2019-03-26 2022-03-09 株式会社Ihi Axial turbine vane segment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056824A (en) * 2005-08-26 2007-03-08 Toshiba Corp Stationary blade and moving blade for axial flow turbine, and axial flow turbine provided with same

Also Published As

Publication number Publication date
JPH10131707A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
EP0985801B1 (en) Blade configuration for steam turbine
US10519980B2 (en) Turbomachine component or collection of components and associated turbomachine
US6709233B2 (en) Aerofoil for an axial flow turbomachine
EP2492440B1 (en) Turbine nozzle blade and steam turbine equipment using same
US8167548B2 (en) Steam turbine
JP6514644B2 (en) Structure and method for forcibly coupling the flow fields of adjacent wing elements of a turbomachine, and turbomachine incorporating the same
JPH0610604A (en) Steam turbine, moving blade row of steam turbine and method of expanding steam flow
JP2008138678A (en) Advanced booster rotor vane
JP2003201802A (en) Impeller for radial turbine
JP2008138677A (en) Advanced booster stator vane
EP1260674B1 (en) Turbine blade and turbine
US9334745B2 (en) Gas turbine stator vane
JP3397599B2 (en) Axial turbine blade group
US6431829B1 (en) Turbine device
JPH0681603A (en) Stationary blade structure of axial flow type turbo machine
JPH0544691A (en) Axial flow turbomachinery blade
JP2003020904A (en) Axial flow turbine blade and axial flow turbine stage
JP2000204903A (en) Axial turbine
JP2007056824A (en) Stationary blade and moving blade for axial flow turbine, and axial flow turbine provided with same
JPS5941024B2 (en) Francis type runner
JPH01247798A (en) High speed centrifugal compressor
JPH11173104A (en) Turbine rotor blade
JP3423850B2 (en) Axial turbine
JP2001221005A (en) Three-dimensional axial flow turbine stage
JPH1061405A (en) Stationary blade of axial flow turbo machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term