JPH07103877B2 - Axial compressor - Google Patents

Axial compressor

Info

Publication number
JPH07103877B2
JPH07103877B2 JP61034479A JP3447986A JPH07103877B2 JP H07103877 B2 JPH07103877 B2 JP H07103877B2 JP 61034479 A JP61034479 A JP 61034479A JP 3447986 A JP3447986 A JP 3447986A JP H07103877 B2 JPH07103877 B2 JP H07103877B2
Authority
JP
Japan
Prior art keywords
blade
axial flow
wall
moving
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61034479A
Other languages
Japanese (ja)
Other versions
JPS62195495A (en
Inventor
正 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61034479A priority Critical patent/JPH07103877B2/en
Publication of JPS62195495A publication Critical patent/JPS62195495A/en
Publication of JPH07103877B2 publication Critical patent/JPH07103877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は軸流圧縮機に係り、特にその動翼および静翼の
形状に特徴を有する軸流圧縮機に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an axial flow compressor, and more particularly to an axial flow compressor characterized by the shape of its moving blades and stationary blades.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に軸流圧縮機においては、第6図に示したように、
ロータ1に植設された動翼2とケーシング3に固定され
た静翼4とにより一段落が形成され、この段落を軸方向
に複数個組合わせることにより軸流圧縮機が構成され、
この軸流圧縮機のロータ側内壁(以下内壁という)5と
ケーシング側外壁(以下外壁という)6との間には作動
流体が流れる環状通路7が形成されている。このような
軸流圧縮機において、吸込管8より入口案内翼9を経て
初段動翼2aに流入する作動流体は、ロータ1と共に回転
する初段動翼2aによって旋回力が与えられ、加速された
後初段静翼4aで減速されることによってその圧力が上昇
する。さらに、次の段落に流入する作動流体は同様の動
作を繰り返すので、環状通路7を軸方向に向かって流れ
る間にその圧力は順次高められ、最終的に作動流体は出
口案内翼10を経て吐出管11へと排出される。
Generally, in an axial compressor, as shown in FIG.
One section is formed by the moving blades 2 planted in the rotor 1 and the stationary blades 4 fixed to the casing 3, and an axial flow compressor is configured by combining a plurality of these sections in the axial direction.
An annular passage 7 through which a working fluid flows is formed between a rotor-side inner wall (hereinafter referred to as an inner wall) 5 and a casing-side outer wall (hereinafter referred to as an outer wall) 6 of this axial flow compressor. In such an axial flow compressor, the working fluid flowing from the suction pipe 8 through the inlet guide vane 9 into the first stage moving blade 2a is given a swirling force by the first stage moving blade 2a rotating with the rotor 1 and is accelerated. The pressure increases due to the deceleration by the first stage stationary blade 4a. Further, since the working fluid flowing into the next paragraph repeats the same operation, its pressure is gradually increased while flowing in the annular passage 7 in the axial direction, and finally the working fluid is discharged through the outlet guide vanes 10. Discharged to pipe 11.

ところが、作動流体が環状通路7を通過する際には作動
流体のもつ粘性のために内壁と外壁の表面に速度の遅い
環境層が発生し、この環境層は下流に行くにつれて成長
する。第7図は作動流体の軸流速度成分の内壁から外壁
までの高さ方向分布を示したもので、内壁と外壁の近傍
に減速部δがみられる。この減速部δが境界層であり、
初段入口部の速度成分CXAと最終段出口部の速度成分C
XBとを比較すると、境界層δは出口部のδHB、δCBが入
口部のδHA、δCAより大きくなっており、また第8図に
示したように初段入口部から最終段出口部に向けて次第
に成長することが実測された。そして、この境界層の成
長により作動流体の動翼2または静翼4への流入角は設
計値より大きくずれ、この流入角のずれは段落性能低下
の要因となっている。
However, when the working fluid passes through the annular passage 7, due to the viscosity of the working fluid, a low-velocity environment layer is generated on the surfaces of the inner wall and the outer wall, and this environment layer grows as it goes downstream. FIG. 7 shows the distribution in the height direction of the axial flow velocity component of the working fluid from the inner wall to the outer wall. A speed reduction part δ is seen near the inner wall and the outer wall. This deceleration part δ is the boundary layer,
Velocity component CXA at the first stage inlet and velocity component C at the final stage outlet
Comparing with XB, the boundary layer δ is such that δHB and δCB at the outlet are larger than δHA and δCA at the inlet, and as shown in Fig. 8, gradually increase from the first stage inlet to the last stage outlet. It was measured to grow. Then, due to the growth of the boundary layer, the inflow angle of the working fluid into the moving blades 2 or the stationary blades 4 deviates from the design value, and the deviation of the inflow angle causes the deterioration of the paragraph performance.

第9図は、作動流体の前段静翼4′からの流出角α1と
当該段動翼2への流入角β1および当該段動翼2からの
流出角β2と当該段静翼4への流入角α2との関係を示
したものである。図中点線で示したように、前段静翼
4′から速度C1A、角度α1Aで流出する作動流体は、当
該段動翼2が速度Uで回転しているので相対速度W1A、
相対流入角β1Aで動翼2へ最適流入するように設計され
ている。しかしながら、壁面近傍の境界層内では軸流速
度成分がCXからCX′に減速するので、静翼流出速度は図
中実線で示したようにC1AからC1Bへ減速され、実際に
動翼2へ流入する作動流体は相対速度W1B、相対流入角
β1Bとなり、設計値から離れた方向より動翼2へ流入す
ることになる。また、当該段静翼4についても同様であ
り、当該段動翼2から速度W2A、角度β2Aで流出する作
動流体は、相対速度C2A、相対流入角α2Aで当該段静翼
4へ最適流入するように設計されているが、境界層内で
は相対速度C2B、相対流入角α2Bで静翼4へ流入するこ
とになり、設計値からのずれが生じている。
FIG. 9 shows the outflow angle α1 of the working fluid from the preceding stage vane 4 ′, the inflow angle β1 into the stage moving blade 2, the outflow angle β2 from the stage moving blade 2 and the inflow angle α2 into the stage stationary blade 4. It shows the relationship of. As shown by the dotted line in the figure, the working fluid flowing out from the preceding stationary vane 4'at the speed C1A and the angle α1A has a relative speed W1A because the corresponding stage moving blade 2 is rotating at the speed U.
It is designed to optimally flow into the blade 2 with a relative inflow angle β1A. However, since the axial velocity component decelerates from CX to CX 'in the boundary layer near the wall surface, the vane outflow velocity is decelerated from C1A to C1B as shown by the solid line in the figure, and actually flows into the blade 2. The working fluid has a relative velocity W1B and a relative inflow angle β1B, and flows into the blade 2 from a direction away from the design value. The same applies to the stage vane 4, and the working fluid flowing out from the stage vane 2 at the speed W2A and the angle β2A is designed to optimally flow into the stage vane 4 at the relative velocity C2A and the relative inflow angle α2A. However, in the boundary layer, the relative velocity C2B and the relative inflow angle α2B flow into the stationary blade 4, causing a deviation from the design value.

このように作動流体の流入角が最適流入角からずれる
と、動翼2および静翼4の背面で流れが剥離し大きな翼
列損失が生ずる。この境界層に基づく損失は圧縮機内部
損失のうちでも特に大きな割合を占めており、エネルギ
の有効利用という観点からその効果的対策が要望されて
いた。また、剥離流れは不安定な流れなので圧縮機全体
がサージに入る危険性があり、圧縮機を安全に運転する
観点からも剥離流れを防止する要望があった。
When the inflow angle of the working fluid deviates from the optimum inflow angle in this way, the flows are separated at the back surfaces of the moving blades 2 and the stationary blades 4, causing a large blade row loss. The loss due to this boundary layer occupies a particularly large proportion of the internal loss of the compressor, and an effective measure for it has been demanded from the viewpoint of effective use of energy. Further, since the separated flow is an unstable flow, there is a risk that the entire compressor enters a surge, and there is a demand to prevent the separated flow from the viewpoint of operating the compressor safely.

従来、上述のような要望を解決する手段として境界層内
で作動する動翼または静翼の翼端部を高さ方向に一定の
仕事を行なうように変形する技術が提案されている(特
開昭59−99096号公報参照)。この技術によれば、該当
する段落については動翼または静翼への作動流体の流入
角を適正化できるが段落の圧力上昇が翼の高さ方向に一
定とならず、境界層の影響を受ける翼端部の圧力上昇が
他の翼部分と比較して大きくなり、翼端部を通過する作
動流体の容積流量が減少するという問題があった。この
ため、圧縮機の内壁または外壁近傍では境界層による流
れの減速に加えて容積流量の減少による減速が加わり、
次段落への作動流体の流れが著しく変形し大きな損失を
生ずるという問題があり、特に他段圧縮機の場合には累
積効果により下流の段落を適正に設計することが困難に
なるという問題があった。
Conventionally, as a means for solving the above-mentioned demands, there has been proposed a technique of deforming a blade end portion of a moving blade or a stationary blade operating in a boundary layer so as to perform a constant work in a height direction (Japanese Patent Laid-Open No. 2000-242242). (See Japanese Patent Publication No. 59-99096). According to this technology, the inflow angle of the working fluid to the moving blade or the stationary blade can be optimized for the relevant paragraph, but the pressure rise in the paragraph is not constant in the height direction of the blade and is affected by the boundary layer. There is a problem that the pressure rise at the blade tip becomes larger than that of other blade portions, and the volumetric flow rate of the working fluid passing through the blade tip decreases. Therefore, in the vicinity of the inner wall or outer wall of the compressor, in addition to the deceleration of the flow due to the boundary layer, the deceleration due to the decrease of the volumetric flow rate is added,
There is a problem that the flow of the working fluid to the next paragraph is remarkably deformed and causes a large loss.In particular, in the case of the other stage compressor, there is a problem that it is difficult to properly design the downstream paragraph due to the cumulative effect. It was

〔発明の目的〕[Object of the Invention]

そこで本発明の目的は、上記従来技術が有する問題点を
解消し、軸流圧縮機の環状通路に形成される境界層に起
因する翼列損失を低減し優れた段落性能を発揮する動翼
および静翼の形状を提供するものである。
Therefore, an object of the present invention is to solve the problems of the above-mentioned conventional technology, reduce blade row loss due to the boundary layer formed in the annular passage of the axial compressor, and a rotor blade that exhibits excellent paragraph performance. It provides the shape of a vane.

〔発明の概要〕[Outline of Invention]

上記目的を達成するために、本発明は動翼および静翼を
備えた軸流圧縮機において、粘性境界層内で作動する上
記動翼および静翼の翼根元部および翼先端部を、上記動
翼及び静翼からなる段落の圧力上昇が通路高さ方向に一
定となるように形成したもので、動翼および静翼背面で
の剥離流れを防止することにより、軸流圧縮機の性能向
上を達成したものである。
In order to achieve the above object, the present invention provides, in an axial flow compressor including a moving blade and a stationary blade, a blade root portion and a blade tip portion of the moving blade and the stationary blade operating in a viscous boundary layer, It is formed so that the pressure rise in the paragraph consisting of blades and stators is constant in the passage height direction.By preventing separation flow at the back of the rotor blades and stator blades, the performance of the axial compressor is improved. It has been achieved.

〔発明の実施例〕Example of Invention

以下、本発明による軸流圧縮機の実施例を第1図乃至第
5図を参照して説明する。なお、軸流圧縮機の全体構成
は第6図に示した従来のそれと同様なので、その説明を
省略する。
An embodiment of an axial compressor according to the present invention will be described below with reference to FIGS. 1 to 5. Since the overall structure of the axial compressor is the same as that of the conventional compressor shown in FIG. 6, its explanation is omitted.

第1図は軸流圧縮機の動翼の形状を示すスタガーλRの
内壁から外壁までの高さ方向分布図で、本発明による動
翼のスタガー分布λRBを実線で、従来の動翼のスタガー
分布λRAを破線で示している。ここでスタガーとは、圧
縮機の軸流速度方向と翼の弦線との間の角度をいう。従
来の動翼のスタガーλRAは、半径増加による回転周速の
増大に対応して内壁から外壁に向けて徐々に増大し、翼
は根元部から先端部に向かって捩りが大きくなるように
形成されている。これに対して本発明による動翼のスタ
ガーλRBは、内壁側および外壁側において翼の中央部か
ら端部に向かうに従って増大し、翼は根元部より所定高
さδH上方の位置から根元部に向かうに従って連続的に
捩りが大きくなると共に先端部より所定高さδC下った
位置から先端部に向かうに従って連続的に捩りが大きく
なるように形成されている。さらに中央部は従来と同じ
ように根元部から先端部に向かって捩りが大きくなるよ
うに形成されている。ここで、上記所定高さδH、δC
は内壁および外壁での境界層厚さで、第7図または第8
図に示したように実測値または論理計算値で確定するこ
とができるものである。
FIG. 1 is a height direction distribution diagram from the inner wall to the outer wall of a stagger λR showing the shape of a moving blade of an axial flow compressor. The stagger distribution λRB of the moving blade according to the present invention is shown by a solid line, and the stagger distribution of the conventional moving blade is shown. λRA is shown by a broken line. Here, stagger refers to the angle between the axial velocity direction of the compressor and the chord line of the blade. The conventional blade stagger λRA gradually increases from the inner wall to the outer wall in response to the increase in the rotating peripheral speed due to the increase in radius, and the blade is formed so that the torsion increases from the root to the tip. ing. On the other hand, the stagger λ RB of the moving blade according to the present invention increases from the central portion of the blade toward the end portion on the inner wall side and the outer wall side, and the blade heads toward the root portion from a position above the root portion by a predetermined height δH. The twist is continuously increased in accordance with the above, and the twist is continuously increased from a position lower than the tip portion by a predetermined height δC toward the tip portion. Further, as in the conventional case, the central portion is formed so that the torsion increases from the root portion toward the tip portion. Here, the predetermined heights δH and δC
Is the boundary layer thickness at the inner and outer walls, and is shown in FIG.
As shown in the figure, it can be determined by an actually measured value or a logically calculated value.

第2図は軸流圧縮機の静翼の形状を示すスタガーλSの
高さ方向分布図で、本発明によるスタガー分布λSBを実
線で、従来のスタガー分布λSAを破線で示している。従
来の静翼のスタガーλSAは、翼の高さ方向にほぼ一定と
なり、翼の捩りは高さ方向に関しほぼ一定となってい
る。これに対して本発明による静翼のスタガーλSBは、
動翼の場合と同じように、内壁側および外壁側において
翼の中心部から端部に向かうに従って増大し、翼は根元
部および先端部において連続的に捩りが大きくなるよう
に形成されている。ここで、図中δH、δCは内壁およ
び外壁での境界層厚さを示し、動翼の場合と同じように
して確定する。
FIG. 2 is a height direction distribution diagram of the stagger λS showing the shape of the vane of the axial compressor, in which the stagger distribution λSB according to the present invention is shown by a solid line and the conventional stagger distribution λSA is shown by a broken line. The stagger λSA of the conventional vane is almost constant in the height direction of the blade, and the twist of the blade is almost constant in the height direction. On the other hand, the vane stagger λ SB according to the present invention is
Similar to the case of the moving blade, the blades are formed so that the inner wall side and the outer wall side increase from the central portion of the blade toward the end portion, and the blade is formed so that the torsion increases continuously at the root portion and the tip portion. Here, δH and δC in the figure indicate boundary layer thicknesses on the inner wall and the outer wall, and are determined in the same manner as in the case of the moving blade.

上述のように、本発明による動翼および静翼は、内壁お
よび外壁の境界層領域に位置する翼のスタガーが翼中央
部のスタガーより大きく形成されている。以下、このス
タガーの増加量を確定する方法を第3図により説明す
る。第3図は、本発明による動翼の入口部および出口部
における作動流体の速度三角形を示し、実線は流れの減
速がある境界層内の実際の速度三角形を、また点線は境
界層による流れの減速が無い場合の速度三角形を示して
いる。境界層による流れの減速が無い場合、相対速度W
1Aで前段静翼より当該段動翼に流入する作動流体は、動
翼が周速Uで回転しているので相対速度W2Aで当該段動
翼より当該段静翼に流出する。ここで、この時の相対速
度W1AおよびW2Aの周方向成分をそれぞれW1yAおよびW2
yAとすれば、その差は ΔWA=(W1yA−W2yA)と表わせる。
As described above, in the moving blade and the stationary blade according to the present invention, the stagger of the blade located in the boundary layer region of the inner wall and the outer wall is formed larger than the stagger of the central portion of the blade. Hereinafter, a method for determining the increase amount of the stagger will be described with reference to FIG. FIG. 3 shows velocity triangles of the working fluid at the inlet and outlet of the blade according to the present invention, the solid line is the actual velocity triangle in the boundary layer with flow deceleration, and the dotted line is the flow velocity due to the boundary layer. The speed triangle is shown without deceleration. When there is no flow deceleration due to the boundary layer, the relative velocity W
The working fluid flowing from the preceding stage stationary blade into the relevant stage stationary blade at 1A flows out from the relevant stage stationary blade to the relevant stage stationary blade at a relative speed W2A because the moving blade rotates at the peripheral speed U. Here, the circumferential direction components of the relative velocities W1A and W2A at this time are respectively W1yA and W2.
If yA, the difference can be expressed as ΔWA = (W1yA−W2yA).

ところが、実際の境界層内部においては軸流速度成分が
CXからCX′に減速するので、これに応じて速度三角形を
変形しなければならない。そこで本発明による動翼は、
当該段動翼への実際の相対流入速度W1Bおよび当該段動
翼からの実際の相対流出速度W2Bの周方向成分をそれぞ
れW1yB、W2yBとし、その差βΔWB=(W1yB−W2yB)が上
記設計値ΔWAと同一になるように速度三角形を変形し、
境界層領域の動翼のスタガーλRBを決定する。ここで、
境界層領域の動翼のスタガーλRBは、相対流入角β1Bと
相対流出角β2Bの平均値にほぼ等しく、近似的に λRB=0.5(β1B+β2B)で求められる。また、境界層
流域における段落の単位高さ当りの圧力上昇ΔPBは、Δ
PB=ρUΔWB(ρ:平均密度)で求められるので、上述
のようにΔWB=ΔWAとなるようにスタガーλRBを決定す
れば段落の圧力上昇を動翼の高さ方向に一定することが
できる。
However, in the actual boundary layer, the axial velocity component is
Since we slow down from CX to CX ', we must transform the velocity triangle accordingly. Therefore, the rotor blade according to the present invention is
The circumferential components of the actual relative inflow velocity W1B to the stage rotor blade and the actual relative outflow velocity W2B from the stage rotor blade are W1yB and W2yB, respectively, and the difference βΔWB = (W1yB−W2yB) is the design value ΔWA. Transform the velocity triangle to be the same as
Determine the blade stagger λ RB in the boundary layer region. here,
The blade stagger λRB in the boundary layer region is almost equal to the average value of the relative inflow angle β1B and the relative outflow angle β2B, and can be approximately calculated by λRB = 0.5 (β1B + β2B). In addition, the pressure rise ΔPB per unit height in the boundary layer basin is
Since PB = ρUΔWB (ρ: average density), the pressure increase in the paragraph can be made constant in the height direction of the moving blade by determining the stagger λRB so that ΔWB = ΔWA as described above.

一方、静翼についても動翼と同様のことがいえ、上述の
速度三角形により静翼のスタガーλSBが決定され、近似
的にλSB=0.5(α2B+α3B)で求められる。
On the other hand, the same applies to the stationary blade as that of the moving blade. The stagger λSB of the stationary blade is determined by the velocity triangle described above, and is approximately calculated by λSB = 0.5 (α2B + α3B).

なお、内壁面および外壁面上では軸流速度成分CX′が零
となるため上述の方法を厳密に適用すると得られるスタ
ガーが90゜となり、動翼および静翼の翼端部の捩れは著
しく大きいものになる。ところが、このような翼は現実
問題として製造が困難なので、第1図および第2図に示
したように内壁面および外壁面のごく近傍の範囲εH、
εCにおいては、上述の方法によりスタガーを決定せず
にその内側の翼部分のスタガーの値から外挿法により求
める。ここで上記範囲εH、εCはそれぞれ境界層厚さ
δH、δCの10〜20%程度とする。
Since the axial flow velocity component CX 'is zero on the inner wall surface and outer wall surface, the stagger obtained by applying the above method strictly becomes 90 °, and the twisting of the blade tips of the rotor blade and the stator blade is significantly large. It becomes a thing. However, since such a blade is difficult to manufacture as a practical matter, as shown in FIGS. 1 and 2, a range εH in the immediate vicinity of the inner wall surface and the outer wall surface,
εC is determined by extrapolation from the value of the stagger of the inner blade portion without determining the stagger by the above method. Here, the above ranges εH and εC are about 10 to 20% of the boundary layer thicknesses δH and δC, respectively.

このように動翼および静翼のスタガーを内壁および外壁
に向かうにつれて次第に増加するように確定すれば、境
界層内のどの位置でも作動流体が適正な方向から動翼お
よび静翼に流入することになり、剥離流れが生じなくな
る。このため剥離流れによる翼列損失を低減することが
でき、優れた段落性能を保持することができる。また、
段落の圧力上昇が翼の高さ方向に一定となるので、作動
流体の容積流量が高さ方向に一定となり、次段落へ悪影
響を及ぼすこともない。
By defining the stagger of the blades and vanes to increase gradually toward the inner and outer walls, the working fluid can flow into the blades and vanes from the proper direction at any position in the boundary layer. And no separation flow occurs. Therefore, blade loss due to separated flow can be reduced, and excellent paragraph performance can be maintained. Also,
Since the pressure rise in the paragraph becomes constant in the height direction of the blade, the volumetric flow rate of the working fluid becomes constant in the height direction, and there is no adverse effect on the next paragraph.

第4図は、本発明による軸流圧縮機の他の実施例を示し
たもので、本実施例による動翼は、図中実線で示したよ
うに内壁側および外壁側において翼の中央部から端部に
向かうにつれてキャンバーθRBが増大するように形成さ
れている。ここでキャンバーとは、翼断面の内接円の中
心を結んだキャンバー曲線の翼入口端における接線と翼
出口端における接線のなす外角をいう。図から明らかな
ように本実施例による動翼は、前記実施例と同じよう
に、根元部より所定高さδH上方の位置から根元部に向
かうに従って連続的にキャンバーが大きくなると共に先
端部より所定高さδC下った位置から先端部に向かうに
従って連続的にキャンバーが大きくなるように形成され
ている。なお、図中点線は従来の動翼のキャンバー分布
θRAを示している。
FIG. 4 shows another embodiment of the axial flow compressor according to the present invention. The rotor blade according to this embodiment has inner and outer wall sides from the central portion of the blade as shown by the solid line in the figure. The camber θ RB is formed so as to increase toward the end. Here, the camber means the external angle formed by the tangent line at the blade inlet end and the tangent line at the blade outlet end of the camber curve connecting the centers of the inscribed circles of the blade cross section. As is apparent from the figure, in the rotor blade according to the present embodiment, the camber increases continuously from the position above the predetermined height δH above the root toward the root, and the predetermined value from the tip as in the above embodiments. The camber is formed such that the camber increases continuously from the position where the height is δC lower to the tip. The dotted line in the figure indicates the camber distribution θRA of the conventional moving blade.

第5図は上記キャンバーの増加量を確定する速度三角形
を示し、実線は流れの減速がある境界層内の実際の速度
三角形を、また点線は境界層による流れの減速が無い場
合の速度三角形を示している。この場合も前記実施例と
同じように、境界層内の動翼への相対流入速度W1Bおよ
び動翼からの相対流出速度W2Bの周方向成分の差ΔWBが
設計上の周方向成分の差ΔWAと同一になるように速度三
角形を変形し、キャンバーθRBを決定する。また、この
キャンバーθRBは相対流入角と相対流出角の差にほぼ等
しく、近似的に θRB=(β1B−β2B)で求められる。
FIG. 5 shows a velocity triangle that determines the increase amount of the camber, the solid line shows the actual velocity triangle in the boundary layer with flow deceleration, and the dotted line shows the velocity triangle without flow deceleration by the boundary layer. Shows. Also in this case, as in the above-described embodiment, the difference ΔWB between the circumferential components of the relative inflow velocity W1B to the moving blade and the relative outflow velocity W2B from the moving blade in the boundary layer is the designed difference ΔWA of the circumferential component. The camber θRB is determined by deforming the velocity triangle so that it becomes the same. The camber θRB is almost equal to the difference between the relative inflow angle and the relative outflow angle, and can be approximately calculated by θRB = (β1B−β2B).

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明は、動翼および
静翼の翼根元部および翼先端部のスタガーまたはキャン
バーが、翼中央部のスタガーまたはキャンバーより大き
く形成してあるので、動翼および静翼背面での剥離流れ
を防止することができ、優れた段落性能を保持すること
ができる。また、段落の圧力上昇を翼の高さ方向に一定
とすることができ、作動流体の容積流量の減少による次
段落への流れの変形を防止することができる。
As is clear from the above description, the present invention is characterized in that the blade root portion and the blade tip stagger or camber of the moving blade and the stationary blade are formed larger than the stagger or camber of the blade central portion. Separation flow on the back surface of the vane can be prevented, and excellent paragraph performance can be maintained. Further, the pressure increase in the paragraph can be made constant in the height direction of the blade, and the deformation of the flow to the next paragraph due to the decrease in the volumetric flow rate of the working fluid can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による軸流圧縮機の動翼のスタガー分布
を示す図、第2図は本発明による軸流圧縮機の静翼のス
タガー分布を示す図、第3図は上記動翼の入口部および
出口部における作動流体の速度三角形を示す図、第4図
は本発明による軸流圧縮機の他の実施例による動翼のキ
ャンバー分布を示す図、第5図は上記他の実施例の動翼
の入口部および出口部における作動流体の速度三角形を
示す図、第6図は軸流圧縮機の概略を示す縦断面図、第
7図および第8図は軸流圧縮機の環状通路に形成される
境界層を説明する図、第9図は従来の作動流体の速度三
角形を示す図である。 1……ロータ、2……動翼、4……静翼、5……ロータ
側内壁、6……ケーシング側外壁、7……環状通路、δ
……境界層厚さ、CX,CX′……軸流速度成分、λR,λS
……スタガー、θR……キャンバー。
FIG. 1 is a diagram showing a stagger distribution of a moving blade of an axial flow compressor according to the present invention, FIG. 2 is a diagram showing a stagger distribution of a stationary blade of an axial flow compressor according to the present invention, and FIG. The figure which shows the velocity triangle of the working fluid in an inlet part and an outlet part, FIG. 4 is a figure which shows the camber distribution of the moving blade by the other Example of the axial flow compressor by this invention, FIG. 5 is the said other Example. Showing a velocity triangle of the working fluid at the inlet and outlet of the rotor blade of Fig. 6, Fig. 6 is a longitudinal sectional view showing the outline of the axial compressor, and Figs. 7 and 8 are annular passages of the axial compressor. FIG. 9 is a diagram for explaining the boundary layer formed in FIG. 9, and FIG. 9 is a diagram showing a velocity triangle of a conventional working fluid. 1 ... Rotor, 2 ... Moving blade, 4 ... Stationary blade, 5 ... Rotor-side inner wall, 6 ... Casing-side outer wall, 7 ... Annular passage, δ
...... Boundary layer thickness, CX, CX ′ …… Axial flow velocity component, λR, λS
…… Stagger, θR …… Camber.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】動翼および静翼を備えた軸流圧縮機におい
て、上記軸流圧縮機の流体通路部の内壁付近または外壁
付近に生ずる粘性境界層内で作動する上記動翼及び静翼
の翼根元部及び翼先端部の少なくとも一端部を、上記動
翼及び静翼とからなる段落の圧力上昇が流体通路部の高
さ方向に一定となるように形成したことを特徴とする軸
流圧縮機。
1. An axial flow compressor having a moving blade and a stationary blade, wherein the moving blade and the stationary blade of the axial flow compressor are operated in a viscous boundary layer formed near an inner wall or an outer wall of a fluid passage portion of the axial flow compressor. Axial flow compression characterized in that at least one end portion of the blade root portion and the blade tip portion is formed so that the pressure increase in the paragraph consisting of the moving blade and the stationary blade becomes constant in the height direction of the fluid passage portion. Machine.
【請求項2】上記動翼および静翼のスタガーは、翼根元
部より所定高さ上方の位置から翼根元部に向かうに従っ
て連続的に大きくなると共に翼先端部より所定高さ下っ
た位置から翼先端部に向かうに従って連続的に大きくな
るように形成してあることを特徴とする特許請求の範囲
第1項に記載の軸流圧縮機。
2. The stagger of the moving blades and the stationary blades increases continuously from a position above a predetermined height above the blade root toward the blade root and at a position below a predetermined height below the blade tip. The axial flow compressor according to claim 1, characterized in that the axial flow compressor is formed so as to be continuously increased toward the tip end portion.
【請求項3】上記動翼および静翼のキャンバーは、翼根
元部より所定高さ上方の位置から翼根元部に向かうに従
って連続的に大きくなると共に翼先端部より所定高さ下
った位置から翼先端部に向かうに従って連続的に大きく
なるように形成してあることを特徴とする特許請求の範
囲第1項に記載の軸流圧縮機。
3. The camber of the moving blade and the stationary blade increases continuously from the position above a predetermined height above the blade root toward the blade root and at the position below a predetermined height below the blade tip. The axial flow compressor according to claim 1, characterized in that the axial flow compressor is formed so as to be continuously increased toward the tip end portion.
JP61034479A 1986-02-19 1986-02-19 Axial compressor Expired - Fee Related JPH07103877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61034479A JPH07103877B2 (en) 1986-02-19 1986-02-19 Axial compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61034479A JPH07103877B2 (en) 1986-02-19 1986-02-19 Axial compressor

Publications (2)

Publication Number Publication Date
JPS62195495A JPS62195495A (en) 1987-08-28
JPH07103877B2 true JPH07103877B2 (en) 1995-11-08

Family

ID=12415383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034479A Expired - Fee Related JPH07103877B2 (en) 1986-02-19 1986-02-19 Axial compressor

Country Status (1)

Country Link
JP (1) JPH07103877B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3528285B2 (en) * 1994-12-14 2004-05-17 株式会社日立製作所 Axial blower
US8702398B2 (en) * 2011-03-25 2014-04-22 General Electric Company High camber compressor rotor blade
JP2013224627A (en) * 2012-04-23 2013-10-31 Mitsubishi Electric Corp Axial flow fan
JP6169007B2 (en) * 2014-01-23 2017-07-26 三菱重工業株式会社 Rotor blade and axial flow rotating machine
WO2016157530A1 (en) * 2015-04-03 2016-10-06 三菱重工業株式会社 Rotor blade and axial flow rotary machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128687B (en) * 1982-10-13 1986-10-29 Rolls Royce Rotor or stator blade for an axial flow compressor

Also Published As

Publication number Publication date
JPS62195495A (en) 1987-08-28

Similar Documents

Publication Publication Date Title
JP3876195B2 (en) Centrifugal compressor impeller
US6213711B1 (en) Steam turbine and blade or vane for a steam turbine
US4543041A (en) Impellor for centrifugal compressor
EP1875045B1 (en) Turbine wheel
EP1798377B1 (en) Airfoil embodying mixed loading conventions
US5215439A (en) Arbitrary hub for centrifugal impellers
EP2463480B1 (en) Blade with hybrid airfoil
US7419353B2 (en) Blade of a turbomachine with block-wise defined profile skeleton line
EP1967694A2 (en) Turbine blade for a turbomachine
US5292230A (en) Curvature steam turbine vane airfoil
JPH0141839B2 (en)
JPS6243042B2 (en)
US4652212A (en) Rotor for a gas turbine
US8690523B2 (en) Fluid flow machine with running gap retraction
GB1579222A (en) Impeller for a centrifugal pump
CN1026019C (en) Free standing blade for use in low pressure steam turbine
JPH07103877B2 (en) Axial compressor
US2952403A (en) Elastic fluid machine for increasing the pressure of a fluid
EP1559870B1 (en) Shrouded rotor blade for a turbomachine
JPH09510527A (en) Noise reduction device for rotor pump
JP3604533B2 (en) Wing for axial compressor
EP1612372B1 (en) Turbine blade with a cut-back at the root of the blade
JP5478617B2 (en) Cascade for fluid engine and fluid engine having such cascade
JPH11229805A (en) Turbine blade and steam turbine
JP3423850B2 (en) Axial turbine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees