JP3523068B2 - Local decomposition treatment jig and method for analyzing impurities in sample wafer using the same - Google Patents

Local decomposition treatment jig and method for analyzing impurities in sample wafer using the same

Info

Publication number
JP3523068B2
JP3523068B2 JP16933798A JP16933798A JP3523068B2 JP 3523068 B2 JP3523068 B2 JP 3523068B2 JP 16933798 A JP16933798 A JP 16933798A JP 16933798 A JP16933798 A JP 16933798A JP 3523068 B2 JP3523068 B2 JP 3523068B2
Authority
JP
Japan
Prior art keywords
wafer
partition plate
sample wafer
processed
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16933798A
Other languages
Japanese (ja)
Other versions
JPH11344428A (en
Inventor
幸雄 今
昌三 有賀
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP16933798A priority Critical patent/JP3523068B2/en
Publication of JPH11344428A publication Critical patent/JPH11344428A/en
Application granted granted Critical
Publication of JP3523068B2 publication Critical patent/JP3523068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は局所分解処理治具に
関し、より詳細には、半導体製造用シリコン単結晶ウエ
ハ中に存在するクロム、鉄、ニッケル、銅等の微量不純
物の深さ方向濃度プロフィ−ルを知るための定量分析用
に使用されるウエハの分解処理治具であって、ウエハ全
面の平均値としての深さ方向プロフィ−ルのみならず、
面内局所の深さ方向プロフィ−ルの正確な測定が可能な
局所分解処理治具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a local decomposition treatment jig, and more particularly to a depth profile profile of trace impurities such as chromium, iron, nickel and copper present in a silicon single crystal wafer for semiconductor production. -A wafer disassembly processing jig used for quantitative analysis to know the profile, and not only the depth direction profile as an average value of the entire surface of the wafer,
The present invention relates to a local disassembly processing jig capable of accurately measuring a local profile in the depth direction.

【0002】[0002]

【従来の技術】最近の半導体デバイスの高集積化・微細
化に伴い、ウエハ等の素材の不純物濃度を極めて低く押
さえることが要求されるようになってきている。特に、
ウエハの表面近傍に存在する重金属元素は、そのデバイ
スの基本特性を大きく変化させるため、その低減化が強
く求められている。このため、これら極微量の不純物重
金属元素の分析においても、その検出の高精度化はもと
より、ウエハ中における不純物の分布状態、即ち、ウエ
ハ内の不純物濃度プロフィ−ルの詳細な情報の提供が要
求されるようになってきた。
2. Description of the Related Art With the recent trend toward higher integration and miniaturization of semiconductor devices, it has been required to keep the impurity concentration of materials such as wafers extremely low. In particular,
Heavy metal elements existing in the vicinity of the surface of the wafer greatly change the basic characteristics of the device, and therefore reduction thereof is strongly demanded. For this reason, even in the analysis of these trace amounts of impurity heavy metal elements, it is required not only to improve the detection accuracy but also to provide detailed information on the distribution state of impurities in the wafer, that is, the impurity concentration profile in the wafer. It has started to be done.

【0003】ウエハ中の不純物元素分析としては、従来
から、一般に、表面分析、深さ方向分析、バルク分析等
が実施され、それぞれ、全反射蛍光X線分析法(TRX
RF),二次イオン質量分析法(SIMS),ICP質
量分析法(ICP−MS)などの分析法で測定分析され
ている。このようなウエハの重金属不純物分析のうち、
ウエハ表面からの深さ方向分析におては、従来、シリコ
ンウエハ等の試料の全面を、HF−HNO3 混酸等の分
解エッチング薬液を用いて、その深さ方向に逐次段階的
に分解エッチングし、各段階毎に所定厚さのSi層を分
解揮散させ、分解エッチング薬液中に溶解残留した微量
不純物重金属類を回収濃縮して分析処理する手法、所
謂、逐次溶解法が一般に採用されてきた。
As the analysis of impurity elements in a wafer, surface analysis, depth direction analysis, bulk analysis and the like have been generally carried out in the past.
RF), secondary ion mass spectrometry (SIMS), ICP mass spectrometry (ICP-MS) and other analytical methods. Among the heavy metal impurities analysis of such wafer,
In the depth direction analysis from the wafer surface, conventionally, the whole surface of a sample such as a silicon wafer is sequentially and stepwise decomposed and etched in the depth direction using a decomposition etching chemical such as HF-HNO 3 mixed acid. Generally, a so-called sequential dissolution method, which is a method of decomposing and volatilizing a Si layer having a predetermined thickness at each stage, recovering and concentrating trace impurities heavy metals dissolved and remaining in the decomposition etching chemical solution, and performing an analysis process, has been generally used.

【0004】例えば、雑誌「BUNSEKI KAGAKU(分析化
学)、第43巻173乃至176頁(1994)」に記
載されているように、分解処理治具を用いて、この治具
容器内に試料ウエハを装填し、該装填されたウエハの上
面に分解エッチング薬液を所定量注入し、薬液の分解エ
ッチング作用によりその表面から逐次段階的に試料のS
i成分を分解揮散させ、各段階毎の不純物含有薬液の元
素濃度を、例えば、ICPーMS測定により定量するも
のである。従って、この方法では試料の全面を分解処理
するため、得られる深さ方向不純物濃度プロフィ−ル
は、例えば試料がウエハの場合、必然的にウエハ全面の
平均濃度値として得られることとなる。
For example, as described in the magazine “BUNSEKI KAGAKU (Analytical Chemistry), Vol. 43, pp. 173 to 176 (1994)”, a sample wafer is placed in this jig container using a decomposition jig. A predetermined amount of a decomposition etching chemical solution is loaded onto the upper surface of the loaded wafer, and the decomposition S of the chemical solution causes the S of the sample to be sequentially and stepwise from the surface.
The i component is decomposed and volatilized, and the element concentration of the impurity-containing chemical liquid at each stage is quantified by, for example, ICP-MS measurement. Therefore, in this method, since the entire surface of the sample is decomposed, the obtained depth direction impurity concentration profile is inevitably obtained as the average concentration value of the entire surface of the wafer when the sample is a wafer.

【0005】これを図7に基づいて詳述すると、図中1
0は従来の分解処理具であって、この分解処理具10は
円形のウエハ載置面を有するウエハ載置体11と、前記
ウエハ載置体11に載置された試料ウエハ12上に加え
られるエッチング分解用薬液を保持する薬液保持部材1
3とから構成されている。この薬液保持部材13は円筒
状筒体からなり、試料ウエハ12の外周部に薬液保持部
材13の壁部13bが載置されることにより、エッチン
グ分解用薬液は前記試料ウエハ12の上に保持されるよ
うに構成されている。なお、前記薬液保持部材13の中
央部分に形成された貫通開口部13aは試料ウエハ12
の径より小さく形成され、試料ウエハ12の所定エッチ
ング面に一致するように形成されている。また、治具の
これら部材の材質としては、一般に、その耐薬液腐食性
及び防塵性の観点からポリテトラフルオロエチレン樹脂
(PTFE)が用いられる。
This will be described in detail with reference to FIG.
Reference numeral 0 denotes a conventional decomposition processing tool, and this decomposition processing tool 10 is applied to a wafer mounting body 11 having a circular wafer mounting surface and a sample wafer 12 mounted on the wafer mounting body 11. Chemical liquid holding member 1 for holding chemical liquid for etching decomposition
3 and 3. The chemical liquid holding member 13 is formed of a cylindrical body, and the wall portion 13b of the chemical liquid holding member 13 is placed on the outer peripheral portion of the sample wafer 12, so that the chemical liquid for etching decomposition is held on the sample wafer 12. Is configured to. The through opening 13a formed in the central portion of the chemical liquid holding member 13 is the sample wafer 12
Is formed to have a diameter smaller than that of the sample wafer 12, and is formed so as to match the predetermined etching surface of the sample wafer 12. Further, as a material of these members of the jig, generally, polytetrafluoroethylene resin (PTFE) is used from the viewpoint of its chemical solution corrosion resistance and dust resistance.

【0006】この治具を用いて試料ウエハ12をその深
さ方向に逐次段階的に分解エッチング処理するには、先
ず治具のウエハ載置体11上に試料ウエハ12を載置
し、次いで、図7(b)に示すように、薬液保持部材1
3の壁部13bを、ウエハ載置体11の試料ウエハ12
上に載せる。この状態で、薬液保持部材13の貫通開口
部13aを形成する壁部と、装着された試料ウエハ12
の上面とにより形成された凹部にエッチング分解用薬液
を所定量注入し、試料ウエハ12をエッチング処理す
る。このように、この従来の分解処理治具の場合は、分
解エッチング処理は試料ウエハのほぼ全面がその対象と
なる。
In order to perform the stepwise decomposition etching of the sample wafer 12 in the depth direction using this jig, the sample wafer 12 is first placed on the wafer holder 11 of the jig, and then, As shown in FIG. 7B, the chemical liquid holding member 1
The wall 13b of the sample wafer 12
Put it on top. In this state, the wall portion forming the through opening 13a of the chemical liquid holding member 13 and the mounted sample wafer 12
A predetermined amount of a chemical solution for etching decomposition is injected into a concave portion formed by the upper surface of the sample wafer 12 and the sample wafer 12 is etched. As described above, in the case of the conventional disassembly processing jig, the disassembly etching processing is performed on almost the entire surface of the sample wafer.

【0007】[0007]

【発明が解決しようとする課題】ところで、各種熱処
理、研磨、研削加工等の各工程を経たウエハでは、各工
程経過中の外部汚染等の汚染状態は、その面内一様では
なく、そのため最近では、面内各域の局所的な不純物濃
度の深さ方向プロフィールが求められるようになり、こ
の分析を効率よく且つ確実に遂行処理できる局所分解処
理治具の出現が強く求められている。しかしながら、前
記したように従来の分解処理治具を用いた場合、分解エ
ッチング処理は試料ウエハのほぼ全面がその対象とな
り、面内各域の局所的な不純物濃度の深さ方向プロフィ
ールが求めることができないという技術的課題があっ
た。
By the way, in a wafer that has undergone various steps such as heat treatment, polishing, and grinding, the contamination state such as external contamination during the course of each step is not uniform in the plane, and therefore, recently, Then, the depth direction profile of the local impurity concentration in each in-plane region is required, and the emergence of a local decomposition treatment jig capable of efficiently and reliably performing this analysis is strongly demanded. However, as described above, when the conventional decomposition treatment jig is used, the decomposition etching treatment covers almost the entire surface of the sample wafer, and the depth profile of the local impurity concentration in each in-plane region can be obtained. There was a technical problem that could not be done.

【0008】また、従来の分解処理治具にあっては、試
料ウエハの外周部に薬液保持部材の壁部を載置すること
により、エッチング分解用薬液を前記試料ウエハの上に
保持するように構成されている。しかし、薬液保持部材
の歪み、あるいはウエハと接する壁部底面の平面度等の
理由から、薬液保持部材の壁部と試料ウエハとが密着し
ないために、エッチング分解用薬液が外部に洩れるとい
う技術的課題があった。
Further, in the conventional decomposition treatment jig, the chemical solution for etching and decomposition is held on the sample wafer by placing the wall of the chemical solution holding member on the outer peripheral portion of the sample wafer. It is configured. However, due to the distortion of the chemical liquid holding member or the flatness of the bottom surface of the wall portion in contact with the wafer, the chemical liquid for etching decomposition leaks to the outside because the wall portion of the chemical liquid holding member does not adhere to the sample wafer. There were challenges.

【0009】本発明は上記技術的課題を解決するために
なされたものであり、面内各域毎の不純物濃度深さ方向
プロフィールが容易に得られるウエハ等の不純物分析用
の局所分解処理治具を提供することにある。特に、被処
理面を外周域、中間域及び中央域の3域毎の正確な不純
物濃度深さ方向プロフィールが容易に得られるウエハ等
の不純物分析用の局所分解処理治具を提供することにあ
る。また、上記各3域を更に4分割し、被処理面の12
領域毎の正確な不純物濃度深さ方向プロフィールが容易
に得られるウエハ等の不純物分析用の局所分解処理治具
を提供することにある。また、本発明にあっては、エッ
チング分解用薬液の外部への洩れを防止すると共に、分
割された被処理面のエッチング分解用薬液が混合されな
いウエハ等の不純物分析用の局所分解処理治具を提供す
ることにある。更に、本発明は、面内各域毎の不純物濃
度深さ方向プロフィールが容易に得られる局所分解処理
治具を用いた試料ウエハの不純物分析方法を提供するこ
とにある。
The present invention has been made in order to solve the above technical problems, and a local decomposition treatment jig for impurity analysis of a wafer or the like from which an impurity concentration depth direction profile for each in-plane region can be easily obtained. To provide. In particular, it is an object of the present invention to provide a local decomposition treatment jig for impurity analysis of a wafer or the like, which can easily obtain an accurate profile in the depth direction of the impurity concentration in each of the outer peripheral region, the intermediate region and the central region of the surface to be treated. . In addition, each of the above three areas is further divided into four, and 12
It is an object of the present invention to provide a local decomposition treatment jig for impurity analysis of a wafer or the like, which can easily obtain an accurate impurity concentration depth direction profile for each region. Further, in the present invention, a local decomposition treatment jig for preventing impurities from leaking to the outside of the etching decomposition chemical and for analyzing impurities such as wafers in which the etching decomposition chemical on the divided processed surface is not mixed is provided. To provide. Another object of the present invention is to provide an impurity analysis method for a sample wafer using a local decomposition treatment jig, which can easily obtain the impurity concentration depth direction profile for each in-plane region.

【0010】[0010]

【課題を解決するための手段】本発明によれば、試料ウ
エハをエッチング分解処理して、該ウエハの不純物分析
に用いる局所分解処理治具において、上面に試料ウエハ
を載置するウエハ載置面が設けられたウエハ載置体と、
前記ウエハ載置体に載置された試料ウエハ上に加えられ
るエッチング分解用薬液を保持する薬液保持手段とを有
し、前記薬液保持手段は、少なくとも、試料ウエハ上に
加えられるエッチング分解用薬液を試料ウエハの被処理
面上に保持する仕切板と、前記仕切板を試料ウエハの被
処理面に圧接する蓋体とを備え、前記仕切板は、ウエハ
載置体に載置された試料ウエハの被処理面を複数の領域
に区画分割する仕切板であり、厚さ3mm以下の薄板状
に形成され、あるいは試料ウエハの被処理面と当接する
前記仕切板部分が少なくとも厚さ3mm以下のエッジ状
に形成され、前記蓋体には、試料ウエハ上にエッチング
分解用薬液を注入するための開口部が形成されると共
に、ウエハ載置体の外周側面と螺合するように形成さ
れ、前記蓋体をウエハ載置体に螺合することによって、
仕切板は試料ウエハの被処理面に圧接されるように構成
されていることを特徴とする局所分解処理治具が提供さ
れる。このように、本発明は従来の試料ウエハの被処理
面全体を深さ方向にエッチング分解する分析法で用いら
れている治具を改良し、薬液保持手段に試料ウエハの被
処理面を複数の領域に区画分割する仕切板を設けること
により、ウエハ被処理面のエッチング分解液充填空間
(凹部)を複数の区画域に分割して分析できる。特に、
仕切板を蓋体と別体に形成することによって、区画分割
の様式が異なる仕切板(例えば4分割の仕切板から12
分割の仕切板へ)に交換することができ、態様の異なる
領域を容易に分析することができるという特徴を有する
ものである。この特徴ある局所分解処理治具を用いるこ
とにより、従来分析が困難であった試料ウエハの複数の
局所域毎の深さ方向不純物分析を容易に達成できる。
According to the present invention, a wafer mounting surface for mounting a sample wafer on an upper surface of a local decomposition processing jig used for etching decomposition processing of a sample wafer and used for impurity analysis of the wafer. A wafer stage provided with
And a chemical solution holding means for holding a chemical solution for etching and decomposition applied on the sample wafer placed on the wafer mounting body, wherein the chemical solution holding means at least stores the chemical solution for etching and decomposition applied on the sample wafer. comprising a partition plate for holding onto the processed surface of the sample wafer, and a lid for pressing the partition plate surface to be processed of the sample wafer, the partition plate is a wafer
The processed surface of the sample wafer mounted on the mounting body is divided into a plurality of areas.
It is a partition plate that is divided into sections and is a thin plate with a thickness of 3 mm or less.
Formed on the surface of the sample wafer or comes into contact with the surface to be processed of the sample wafer
The partition plate has an edge shape with a thickness of at least 3 mm or less
The lid is formed with an opening for injecting a chemical solution for etching and decomposing on the sample wafer, and is formed so as to be screwed with the outer peripheral side surface of the wafer mounting body. By screwing the
There is provided a local decomposition processing jig, wherein the partition plate is configured to be pressed against the surface to be processed of the sample wafer. As described above, the present invention has improved the jig used in the conventional analysis method in which the entire surface to be processed of the sample wafer is etched and decomposed in the depth direction, and the chemical liquid holding means is provided with a plurality of surfaces to be processed of the sample wafer. By providing a partition plate for partitioning into regions, the etching decomposition solution filling space (recess) on the surface to be processed of the wafer can be divided into a plurality of partition regions for analysis. In particular,
By forming the partition plate as a separate body from the lid, partition plates having different partition division modes (for example, a partition plate divided into 4 to 12
It can be replaced with a divided partition plate), and regions having different modes can be easily analyzed. By using this characteristic local decomposition treatment jig, it is possible to easily achieve depth direction impurity analysis for each of a plurality of local regions of a sample wafer, which has been difficult to analyze in the past.

【0011】また、本発明によれば、仕切板は蓋体がウ
エハ載置体と螺合することによって試料ウエハの被処理
面に圧接され、仕切板下端部はウエハの被処理面と密
接するため、エッチング分解用薬液の外部への洩れを防
止すると共に、分割された被処理面のエッチング分解用
薬液が混合されるのを防止することができる。なお、前
記仕切板は、試料ウエハの複数の局所域毎の深さ方向不
純物分析をなすため、ウエハ載置体に載置された試料ウ
エハの被処理面を複数の領域に区画分割する仕切板であ
ることが望ましい。
Further , according to the present invention, the partition plate is pressed against the surface of the sample wafer to be processed by the lid body screwed onto the wafer mounting body, and the lower end of the partition plate is in close contact with the surface of the wafer to be processed. Therefore, it is possible to prevent the chemical solution for etching decomposition from leaking to the outside and to prevent the chemical solution for etching decomposition on the divided surfaces to be mixed. Since the partition plate performs depth direction impurity analysis for each of a plurality of local regions of the sample wafer, the partition plate divides the surface to be processed of the sample wafer placed on the wafer holder into a plurality of regions. Is desirable.

【0012】更に、前記仕切板は厚さ3mm以下の薄板
状に形成され、あるいは試料ウエハの被処理面と当接す
る前記仕切板部分が少なくとも厚さ3mm以下のエッジ
状に形成されていることが望ましい。このように、仕切
板を厚さ3mm以下の薄板状、あるいは試料ウエハの被
処理面と当接する前記仕切板部分を少なくとも厚さ3m
m以下のエッジ状に形成することによって、試料ウエハ
の被処理面と密着されることができ、エッチング分解用
薬液が外部に洩れるという弊害を防止することができ
る。特に、蓋体によって、仕切板がウエハの被処理面に
圧接している状態にあっては、仕切板の下端部が変形す
ることによって、ウエハの被処理面とより密着するた
め、エッチング分解用薬液の洩れを完全に防止すること
ができる。
Further, the partition plate is formed in a thin plate shape having a thickness of 3 mm or less, or the partition plate portion contacting the surface to be processed of the sample wafer is formed in an edge shape having a thickness of 3 mm or less. desirable. Thus, the partition plate is a thin plate having a thickness of 3 mm or less, or at least the partition plate portion abutting the surface to be processed of the sample wafer has a thickness of 3 m.
By forming the edge shape of m or less, it can be brought into close contact with the surface to be processed of the sample wafer, and the adverse effect that the chemical solution for etching decomposition leaks to the outside can be prevented. In particular, when the partition plate is pressed against the surface to be processed of the wafer by the lid, the lower end portion of the partition plate is deformed so that the partition plate comes into closer contact with the surface to be processed of the wafer. It is possible to completely prevent the chemical liquid from leaking.

【0013】また、前記仕切板の試料ウエハの被処理面
の外周部と当接する部分のエッジの角度は30度乃至6
0度に形成されていることが望ましい。当接部分の変形
を容易ならしめるためである。より好ましくは、仕切板
の試料ウエハの被処理面の外周部と当接する部分のエッ
ジの角度は略45度に形成されているのが良い。
Further, the angle of the edge of the portion of the partition plate that comes into contact with the outer peripheral portion of the surface to be processed of the sample wafer is 30 to 6 degrees.
It is preferably formed at 0 degrees. This is for facilitating the deformation of the contact portion. More preferably, the angle of the edge of the portion of the partition plate that comes into contact with the outer peripheral portion of the processed surface of the sample wafer is formed to be approximately 45 degrees.

【0014】更に、前記仕切板は、試料ウエハの被処理
面に対して、同心円状に形成され、ウエハ載置体に載置
された試料ウエハの被処理面を外周域、中間域及び中央
域の3領域に分割区画するように構成されていることが
望ましい。また、前記仕切板は、試料ウエハの被処理面
に対して、同心円状に形成する共に、また径方向に90
度の間隔をもって直線状に形成し、ウエハ載置体に載置
された試料ウエハの被処理面を外周域、中間域、中央域
の3領域の各々を更に4分割し、12分割区画するよう
に構成されていることが望ましい。
Further, the partition plate is formed concentrically with respect to the surface to be processed of the sample wafer, and the surface to be processed of the sample wafer mounted on the wafer mounting body is provided in the outer peripheral region, the intermediate region and the central region. It is desirable to be configured to be divided into three areas. Further, the partition plate is formed concentrically with respect to the surface of the sample wafer to be processed, and the partition plate is formed in a radial direction.
Formed linearly with an interval of 4 degrees, and the surface to be processed of the sample wafer placed on the wafer holder is further divided into four areas in each of the outer peripheral area, the intermediate area and the central area, and divided into 12 areas. It is desirable to be configured in.

【0015】このように、区画領域を中央円領域、中間
円環領域及び外周円環領域の3区画に分割した態様のも
のは、これら各領域の深さ方向不純物プロフィールを容
易に得ることができ、全体として、ウエハ表面近傍の不
純物分布を平面的ないし立体的にとらえることができ
る。これによって例えば一般に最も汚染され易いといわ
れているウエハの外周域と比較的汚染の少ない中央域と
の汚染状態を定量的に比較できる。そして、この解析結
果から熱処理工程などの各工程での外部汚染状況を的確
に把握することができると共に、検討結果をそれ以後の
ウエハ処理に反映させて適切な対策処置をすることが可
能となる。また前記3区画の各々を更に4分割した12
区画領域の局所分解処理治具は、これを用いることによ
り、ウエハのほぼ全域にわたる各部分の完全な局所不純
物分布状態の把握が可能となる。また、本発明によれ
ば、前記した局所分解処理治具用いて、複数に区画化
し、区画化された各領域で同等深さの湿式エッチング分
解を行い、この分解液を捕集し、さらに上記区画化され
た各領域で上記分解・捕集を所定回数繰り返し、各分解
液での不純物分析を行うことによってウエハの立体的不
純物分布を得ることを特徴とする局所分解処理治具を用
いた試料ウエハの不純物分析方法が提供される。この方
法によれば、試料ウエハの立体的不純物分布を容易に得
ることができる。
As described above, in the embodiment in which the divided area is divided into the three areas of the central circular area, the intermediate annular area and the outer annular area, the impurity profile in the depth direction of each of these areas can be easily obtained. As a whole, the impurity distribution in the vicinity of the wafer surface can be grasped two-dimensionally or three-dimensionally. As a result, for example, it is possible to quantitatively compare the contamination states of the outer peripheral area of the wafer, which is generally said to be most easily contaminated, and the central area, which is relatively less contaminated. Then, from this analysis result, it is possible to accurately grasp the external contamination state in each step such as the heat treatment step, and it is possible to reflect the examination result in the subsequent wafer processing and take appropriate countermeasures. . In addition, each of the above three sections is further divided into four 12
By using this for the local decomposition treatment jig for the partitioned area, it becomes possible to grasp the complete state of local impurity distribution in each portion over almost the entire area of the wafer. Further, according to the present invention, the above-mentioned local decomposition treatment jig is used to partition into a plurality of areas, wet etching decomposition of an equal depth is performed in each of the partitioned areas, and the decomposition solution is collected. A sample using a local decomposition treatment jig characterized by obtaining the three-dimensional impurity distribution of the wafer by repeating the above decomposition and collection a predetermined number of times in each partitioned area and performing impurity analysis in each decomposition solution. A method for analyzing impurities in a wafer is provided. According to this method, the three-dimensional impurity distribution of the sample wafer can be easily obtained.

【0016】[0016]

【発明の実施の形態】以下本発明の一実施形態を図1及
び図2に基づいて説明する。図1は試料ウエハの被処理
面を3分割した局所分解処理治具を示す図であって、
(a)は平面図、(b)は(a)に示したA−A断面図
であり、図2は試料ウエハの被処理面を12分割した局
所分解処理治具を示す図であって、(a)はその平面
図、(b)は(a)のB−B断面図である。なお、従来
の分解処理具と同一、あるいは相当部材である場合に
は、図1、2中、同一符号を付する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a view showing a local decomposition treatment jig in which a surface to be treated of a sample wafer is divided into three,
FIG. 2A is a plan view, FIG. 2B is a sectional view taken along line AA shown in FIG. 2A, and FIG. 2 is a view showing a local decomposition treatment jig in which a surface to be treated of a sample wafer is divided into 12 parts. (A) is the top view, (b) is a BB sectional view of (a). In addition, when it is the same or equivalent member as the conventional disassembly processing tool, the same code | symbol is attached | subjected in FIG.

【0017】本発明にかかる局所分解処理具1は、図
1、図2に示すように、円形のウエハ載置面を有するウ
エハ載置体11と、前記ウエハ載置体11に載置された
試料ウエハ12上に加えられるエッチング分解用薬液を
保持する薬液保持部材13と、前記薬液保持部材13の
貫通開口部13a内に配置される仕切板2とから構成さ
れている。この薬液保持部材13は従来と同様円筒状筒
体からなり、前記仕切板2は前記薬液保持部材13の貫
通開口部13a内に収納される。なお、前記仕切板2は
ウエハ載置体11に載置された試料ウエハ12の被処理
面を複数の領域、具体的には図1の実施形態にあっては
3つの領域に、図2に示す実施形態にあっては12つの
領域に区画分割するものである。また、図1、図2に示
された実施形態における薬液保持手段としては、ウエハ
載置体11、薬液保持部材13、仕切板2が相当する。
As shown in FIGS. 1 and 2, the local decomposition processing tool 1 according to the present invention has a wafer mounting body 11 having a circular wafer mounting surface, and is mounted on the wafer mounting body 11. It is composed of a chemical liquid holding member 13 for holding the chemical liquid for etching and decomposition applied on the sample wafer 12, and a partition plate 2 arranged in the through opening 13a of the chemical liquid holding member 13. The chemical liquid holding member 13 is made of a cylindrical tube as in the conventional case, and the partition plate 2 is housed in the through opening 13 a of the chemical liquid holding member 13. The partition plate 2 has a surface to be processed of the sample wafer 12 mounted on the wafer mounting body 11 in a plurality of regions, specifically, three regions in the embodiment of FIG. In the embodiment shown, it is divided into 12 areas. Further, as the chemical liquid holding means in the embodiment shown in FIGS. 1 and 2, the wafer mount 11, the chemical liquid holding member 13, and the partition plate 2 correspond.

【0018】図1に示されている形態の局所分解処理治
具においては、この仕切板2は前記薬液保持部材13の
貫通開口部13aの側壁に接するように形成された十字
形状の仕切板支持体2dと、該仕切板支持体2aに下面
に設けられたリング状仕切板2a、2b、2cとから成
り、この仕切板2を装着した状態では、該リング状仕切
板2a、2b、2cの下端が試料ウエハ12の被処理面
に接し、ウエハ被処理面を外周域3a、中間域3b、中
央域3cの3環状域に夫々分割区画するように構成され
ている。
In the local decomposition treatment jig of the form shown in FIG. 1, the partition plate 2 is a cross-shaped partition plate support formed so as to contact the side wall of the through opening 13a of the chemical solution holding member 13. It comprises a body 2d and ring-shaped partition plates 2a, 2b, 2c provided on the lower surface of the partition plate support 2a. When the partition plate 2 is mounted, the ring-shaped partition plates 2a, 2b, 2c are The lower end is in contact with the surface to be processed of the sample wafer 12 and the wafer to be processed is divided into three annular areas, that is, an outer peripheral area 3a, an intermediate area 3b and a central area 3c.

【0019】また、図2に示されている別形態の局所分
解処理治具においては、図1の場合と同様、この仕切板
2は前記薬液保持部材13の貫通開口部13aの側壁に
接するように形成された十字形状の仕切板支持体2d
と、該仕切板支持体2aに下面に設けられたリング状仕
切板2a、2b、2cとを備えている。そして、この実
施形態の局所分解処理治具にあっては、更に、十字形状
の仕切板支持体2dの下側に、中心から径方向に延びる
直線状の仕切板2eが4本形成されている。この仕切板
2eは90度の間隔をもって形成されると共に、その下
端が試料ウエハ12の被処理面に接するように形成され
ている。このような局所分解処理治具によって、試料ウ
エハの被処理面の外周域、中間域、中央域の3環状域が
夫々更に4区画に分けられ、12分割の区画31a〜3
4a、31b〜34b、31c〜34cとすることがで
きる。
In the local decomposition treatment jig of another embodiment shown in FIG. 2, the partition plate 2 is in contact with the side wall of the through opening 13a of the chemical liquid holding member 13 as in the case of FIG. Cross-shaped partition plate support 2d
And ring-shaped partition plates 2a, 2b, 2c provided on the lower surface of the partition plate support 2a. Further, in the local disassembly processing jig of this embodiment, four linear partition plates 2e extending in the radial direction from the center are further formed below the cross-shaped partition plate support 2d. . The partition plate 2e is formed with an interval of 90 degrees, and its lower end is in contact with the surface to be processed of the sample wafer 12. With such a local decomposition treatment jig, the three annular regions of the outer peripheral region, the intermediate region, and the central region of the surface to be processed of the sample wafer are further divided into four regions, and the regions 31a to 3 are divided into 12 regions.
4a, 31b to 34b, 31c to 34c.

【0020】従って、本発明の局所分解処理治具におい
ては、試料ウエハの上記区画毎の分解エッチング処理が
可能で、これにより、試料ウエハ面内各域の局所的な不
純物濃度の深さ方向プロフィールを求めることができ
る。
Therefore, in the local decomposition treatment jig of the present invention, the decomposition etching process for each section of the sample wafer can be performed, whereby the depth direction profile of the local impurity concentration in each region in the surface of the sample wafer is obtained. Can be asked.

【0021】本発明の仕切板2の形状は、分析測定を所
望するウエハの局所位置に応じて適宜それに応じた形状
に成形して差し支えなく、また区画分割態様も必ずしも
上記した区画分割に限定されるものではなく、2分割、
3分割等任意の所望分割区画に設定して差し支えない。
更に、前記仕切板2は、薬液保持部材13と別体であっ
てもよいが、一体に形成することによって、薬液保持部
材13を試料ウエハ12の上に装着すると同時に、試料
ウエハ12の被処理面を複数の区画に分割することがで
き、仕切板2が別体の場合に比べて仕切板2の装着を容
易に行うことができる。
The partition plate 2 of the present invention may be shaped appropriately according to the local position of the wafer for which analysis and measurement are desired, and the partitioning mode is not limited to the partitioning described above. It ’s not one, it ’s divided into two,
It may be set to any desired divisional division such as three divisions.
Further, the partition plate 2 may be a separate body from the chemical liquid holding member 13, but by being integrally formed, the chemical liquid holding member 13 is mounted on the sample wafer 12 and at the same time, the sample wafer 12 to be processed is processed. The surface can be divided into a plurality of sections, and the partition plate 2 can be mounted more easily than when the partition plate 2 is a separate body.

【0022】ウエハ処理面に接する仕切板の板厚も特に
限定されるものではないが、有効エッチング処理面をで
きるだけ広くとることが好ましく、可能な限り薄くする
ことが好ましい。通常、厚さは1乃至15mm程度に設
定される。特に、前記仕切板は厚さ3mm以下の薄板
状、あるいは少なくとも試料ウエハの被処理面と当接す
る部分が3mm以下のエッジ状に形成されていることが
望ましい。仕切板の下端部とウエハ被処理面とが密着す
るため、分割された被処理面のエッチング分解用薬液が
混合されるのを防止することができる。特に、仕切板の
上面に荷重を加えて、仕切板を試料ウエハの被処理面に
圧接させると、仕切板の下端部がウエハ処理面に対して
より密着するため、分割された被処理面のエッチング分
解用薬液が混合されるのをより防止することができる。
The plate thickness of the partition plate in contact with the wafer processing surface is not particularly limited, but it is preferable that the effective etching processing surface is as wide as possible, and it is preferable that it is as thin as possible. Usually, the thickness is set to about 1 to 15 mm. In particular, it is desirable that the partition plate is formed in a thin plate shape having a thickness of 3 mm or less, or at least a portion in contact with the surface to be processed of the sample wafer has an edge shape of 3 mm or less. Since the lower end of the partition plate and the surface to be processed of the wafer are in close contact with each other, it is possible to prevent the chemical solution for etching and decomposition of the divided surface to be processed from being mixed. In particular, when a load is applied to the upper surface of the partition plate to bring the partition plate into pressure contact with the surface to be processed of the sample wafer, the lower end of the partition plate comes into closer contact with the wafer processing surface, so It is possible to further prevent the chemical solution for etching decomposition from being mixed.

【0023】この仕切板2を含めて、本発明にかかる治
具の蓋体13、ウエハ載置体11等の構成材質は従来の
治具と同様ポリテトラフルオロエチレン樹脂(PTF
E)から形成されることが好ましい。
Including the partition plate 2, the constituent materials of the lid 13 of the jig, the wafer holder 11 and the like according to the present invention are the same as those of the conventional jig, such as polytetrafluoroethylene resin (PTF).
It is preferably formed from E).

【0024】次に本発明にかかる第2の実施形態につい
て図3及び図4に基づいて説明する。図3はこの実施形
態にかかる局所分解処理具の分解側面図であり、図4は
薬液保持手段の底面図である。図において、符号4は上
面に試料ウエハ12を載置するウエハ載置面4aが設け
られたウエハ載置体であり、その外周側面には螺子部4
bが形成されている。また、符号5は試料ウエハ上に加
えられるエッチング分解用薬液を保持する仕切板であ
り、この仕切板5には脚部5aと、試料ウエハ12の外
周部を仕切る仕切部5bと、試料ウエハ12の被処理面
を分割する仕切部5cとが形成されている。前記仕切部
5bは環状に形成され、試料ウエハ12の外周部を区画
している。また前記仕切部5cは十字状に形成され、試
料ウエハ12の被処理面を4分割している。
Next, a second embodiment according to the present invention will be described with reference to FIGS. FIG. 3 is an exploded side view of the local decomposition processing tool according to this embodiment, and FIG. 4 is a bottom view of the chemical liquid holding means. In the figure, reference numeral 4 is a wafer mounting body having a wafer mounting surface 4a for mounting the sample wafer 12 on the upper surface thereof, and the screw portion 4 on the outer peripheral side surface thereof.
b is formed. Reference numeral 5 is a partition plate that holds the chemical solution for etching and decomposition applied on the sample wafer. The partition plate 5 has leg portions 5a, partition portions 5b that partition the outer peripheral portion of the sample wafer 12, and the sample wafer 12 And a partition portion 5c for dividing the surface to be processed. The partition portion 5b is formed in an annular shape and partitions the outer peripheral portion of the sample wafer 12. Further, the partition portion 5c is formed in a cross shape, and divides the surface to be processed of the sample wafer 12 into four.

【0025】また、仕切部5b、5cの試料ウエハの被
処理面と当接する部分は3mm以下のエッジ状に形成さ
れ、仕切部5bの試料ウエハの被処理面と当接する部分
のエッジの角度θ1 は30度乃至60度に形成されてい
る。また、仕切部5cの試料ウエハの被処理面と当接す
る部分のエッジの角度θ2 は60度乃至120度に形成
されている。特に、仕切板5bのエッジの角度θ1 は略
45度、仕切部5cのにエッジの角度θ2 は略90度に
形成されているのが好ましい。このようにエッジの角度
を規定しているのは、仕切板5に歪み等があっても、仕
切板5を試料ウエハの被処理面に圧接させることによ
り、仕切板5の下端部を容易に変形させ、ウエハの被処
理面と密着させることができるためである。
Further, the portions of the partition portions 5b and 5c that come into contact with the surface of the sample wafer to be processed are formed in an edge shape of 3 mm or less, and the angle θ of the edge of the portion of the partition portion 5b that comes into contact with the surface of the sample wafer to be processed is θ. 1 is formed at 30 to 60 degrees. In addition, the angle θ 2 of the edge of the portion of the partition 5c that comes into contact with the surface to be processed of the sample wafer is formed to be 60 degrees to 120 degrees. Particularly, it is preferable that the edge angle θ 1 of the partition plate 5b is formed to be approximately 45 degrees, and the edge angle θ 2 of the partition portion 5c is formed to be approximately 90 degrees. The edge angle is thus defined so that even if the partition plate 5 is distorted or the like, the lower end portion of the partition plate 5 can be easily pressed by pressing the partition plate 5 against the surface to be processed of the sample wafer. This is because it can be deformed and brought into close contact with the surface to be processed of the wafer.

【0026】更に、仕切部5b、5cの試料ウエハの被
処理面と当接する部分は、前記脚部5aの底面より上方
に位置し、その両者の高さの差はウエハ載置面4aの高
さよりも小さく形成されている。即ち、仕切板5を試料
ウエハの被処理面に載せた際、脚部5aがウエハ載置体
4の中間段部4cに接しない高さに形成されている。ま
た、符号6は前記仕切板5を試料ウエハ12の被処理面
に圧接する蓋体6であって、その内側面には前記螺子部
4bと螺合する螺子部6aが形成されている。また前記
蓋体6の上面には開口部6bが形成され、エッチング分
解用薬液を仕切板5によって区分されたウエハ処理面に
注入することができるように構成されている。前記開口
部6bを構成する上面側壁6cは、仕切板5におけるウ
エハの外周部を区切る側壁5dと略同じ位置、あるいは
内側に形成される。
Further, the portions of the partition portions 5b and 5c which come into contact with the surface to be processed of the sample wafer are located above the bottom surface of the leg portion 5a, and the difference in height between them is the height of the wafer mounting surface 4a. It is formed smaller than that. That is, when the partition plate 5 is placed on the surface to be processed of the sample wafer, the legs 5a are formed at a height that does not contact the intermediate step 4c of the wafer holder 4. Reference numeral 6 is a lid 6 for pressing the partition plate 5 against the surface of the sample wafer 12 to be processed, and a screw portion 6a that is screwed with the screw portion 4b is formed on the inner side surface thereof. An opening 6b is formed on the upper surface of the lid body 6 so that the chemical solution for etching and decomposition can be injected into the wafer processing surface divided by the partition plate 5. The upper side wall 6c forming the opening 6b is formed at substantially the same position as or inside the side wall 5d that divides the outer peripheral portion of the wafer in the partition plate 5.

【0027】このように、前記開口部6bを構成する上
面側壁6cが、仕切板5におけるウエハの外周部を区切
る側壁5dと略同じ位置あるいは内側に形成されるた
め、蓋体6の螺子部6aをウエハ載置体4の螺子部4b
と螺合させることにより、蓋体6の上面6dは仕切板5
の上面5d全体を押圧することができる。この押圧力に
よって仕切板は試料ウエハの被処理面に圧接される。そ
の結果、仕切板5の下端部はウエハの被処理面に密着す
るため、エッチング分解用薬液の外部への洩れを防止す
ると共に、分割された被処理面のエッチング分解用薬液
が混合されるのを防止することができる。特に、試料ウ
エハ12の外周部を仕切る仕切部5bの下端部はウエハ
の被処理面に密着するため、エッチング分解用薬液の外
部への洩れを防止できる。
As described above, since the upper surface side wall 6c forming the opening 6b is formed at substantially the same position as or inside the side wall 5d partitioning the outer peripheral portion of the wafer in the partition plate 5, the screw portion 6a of the lid 6 is formed. The screw part 4b of the wafer holder 4
The upper surface 6d of the lid 6 is screwed with the partition plate 5
The entire upper surface 5d can be pressed. The partition plate is pressed against the surface to be processed of the sample wafer by this pressing force. As a result, since the lower end portion of the partition plate 5 comes into close contact with the surface to be processed of the wafer, the chemical solution for etching and decomposition is prevented from leaking to the outside, and the chemical solution for etching and decomposition on the divided surfaces to be processed is mixed. Can be prevented. In particular, since the lower end of the partition 5b for partitioning the outer peripheral portion of the sample wafer 12 is in close contact with the surface to be processed of the wafer, it is possible to prevent the chemical solution for etching decomposition from leaking to the outside.

【0028】なお、上記実施形態において、薬液保持手
段はウエハ載置体4、仕切板5、蓋体6が相当する。ま
た、上記実施形態にあっては、前記仕切部は、4分割の
もので説明したが、第1の実施形態と同様に、試料ウエ
ハの被処理面に対して、同心円状に形成し、ウエハ載置
体に載置された試料ウエハの被処理面を外周域、中間域
及び中央域の3領域に分割区画しても良く、また前記仕
切部は、試料ウエハの被処理面に対して、同心円状に形
成する共に、また径方向に90度の間隔をもって直線状
に形成し、ウエハ載置体に載置された試料ウエハの被処
理面を外周域、中間域、中央域の3領域の各々を更に4
分割し、12分割区画しても良い。更に、前記仕切板5
と同一の外形寸法を有する異なる分割様式の仕切板5を
用意し、かかる薬液保持部材5に交換することにより、
簡単にしかも短時間に分割様式を変更することができ
る。また、上記実施形態にあっては、仕切板5の下端部
をエッジ状になしたものを説明したが、仕切板5の材質
等によっては、仕切部5b、5cを厚さ3mm以下の薄
板状に形成し、その下端部をエッジ状に形成しなくても
良い。
In the above embodiment, the chemical solution holding means corresponds to the wafer mount 4, the partition plate 5, and the lid 6. Further, in the above-described embodiment, the partition portion is described as being divided into four, but as in the first embodiment, the partition surface is formed concentrically with respect to the surface to be processed of the sample wafer. The surface to be processed of the sample wafer mounted on the mounting body may be divided into three regions of an outer peripheral region, an intermediate region and a central region, and the partitioning part is provided with respect to the surface to be processed of the sample wafer. The sample wafer is formed concentrically and linearly at intervals of 90 degrees in the radial direction, and the surface to be processed of the sample wafer mounted on the wafer mounting body is divided into three regions: an outer peripheral region, an intermediate region, and a central region. 4 more each
It may be divided into 12 divisions. Further, the partition plate 5
By preparing partition plates 5 having the same outer dimensions as those of the different division styles and exchanging with such a chemical solution holding member 5,
The division style can be changed easily and in a short time. Further, in the above-mentioned embodiment, the edge of the lower end of the partition plate 5 is described. However, depending on the material of the partition plate 5 and the like, the partition parts 5b and 5c are thin plates with a thickness of 3 mm or less. However, it is not necessary to form the lower end portion into an edge shape.

【0029】本発明の第2の実施形態に示した局所分解
処理治具を用いて、例えば、Si、SiO2 等より成る
ウエハの局所深さ方向不純物分布を分析測定するには、
先ず、ウエハ載置体4上部のウエハ載置面4a上に被処
理試料ウエハ12を載置し、次いで仕切板5をその上に
載置する。その後、蓋体6の内部に仕切板5を収納する
ように、蓋体6を仕切板5の上方から被せ、蓋体6の螺
子部6aとウエハ載置体4の螺子部4bと螺合させるこ
とにより、蓋体6の上面6dは仕切板5の上面5d全体
を押圧する。このとき、仕切板5の脚部5aにも押圧力
が作用するが、脚部5aの底面とウエハ載置体4の中間
段部4cとの間には隙間が形成されるため、脚部5aか
らの反発力は生じない。その結果、蓋体6の押圧力は仕
切部5b、5cに作用し、仕切部5b、5cは試料ウエ
ハの被処理面に圧接され、密着する。
In order to analyze and measure the impurity distribution in the local depth direction of a wafer made of, for example, Si or SiO 2 using the local decomposition treatment jig shown in the second embodiment of the present invention,
First, the sample wafer 12 to be processed is mounted on the wafer mounting surface 4a above the wafer mounting body 4, and then the partition plate 5 is mounted thereon. After that, the lid 6 is covered from above the partition 5 so that the partition 5 is housed inside the lid 6, and the screw 6a of the lid 6 and the screw 4b of the wafer mounting body 4 are screwed together. As a result, the upper surface 6d of the lid 6 presses the entire upper surface 5d of the partition plate 5. At this time, the pressing force also acts on the leg portion 5a of the partition plate 5, but since a gap is formed between the bottom surface of the leg portion 5a and the intermediate step portion 4c of the wafer mounting body 4, the leg portion 5a is formed. The repulsive force from does not occur. As a result, the pressing force of the lid body 6 acts on the partition parts 5b and 5c, and the partition parts 5b and 5c are pressed against and contacted with the surface of the sample wafer to be processed.

【0030】この状態で、区画されたウエハ被処理面に
対して、各区画毎にウエハエッチング分解液を注入装填
する。エッチング分解液としては、ウエハがSi乃至S
iO2 製の場合には、通常HF・HNO3 混酸等の薬液
が用いられる。
In this state, a wafer etching decomposed solution is injected and loaded into each of the divided wafer-processed surfaces. As the etching decomposition liquid, the wafer is Si to S
In the case of iO 2, a chemical solution such as HF / HNO 3 mixed acid is usually used.

【0031】逐次エッチング分解処理の一回のエッチン
グ深さに対応して、所定時間経過後に該区画毎のエッチ
ング薬液を回収する。通常、Siウエハを、HF(38
%):HNO3 (68%)=1:40〜1:100の混
酸を用いて処理する場合、5分程度で深さ1.0μm程
度にエッチング分解が進行する。この操作を繰り返し、
深さ方向の段階的エッチング液試料を各区画領域毎に採
取し、所定の処理により分析測定用試料溶液を調製す
る。この各分析用試料中に溶解したCr、Fe,Cu、
Ni等の微量不純物濃度を、例えば加熱気化/ICPー
MS(ETV/ICP−MS)測定装置等を用いて定量
分析する。本発明の局所分解処理治具を用いてウエハを
逐次エッチング分解処理し、Cr、Fe,Cu、Ni等
の微量不純物濃度をETV/ICP−MS装置を用いて
定量分析した場合の検出感度は、Cr及びFeで0.0
1ng/g(3×1012atoms /cm3 )、Ni及びCu
で0.005ng/g(1×1012atoms /cm3 )に達
する。
Corresponding to one etching depth of the sequential etching decomposition treatment, the etching chemical solution for each section is recovered after a predetermined time has elapsed. Normally, a Si wafer is HF (38
%): HNO 3 (68%) = 1:40 to 1: 100 when treated with a mixed acid, etching decomposition proceeds to a depth of about 1.0 μm in about 5 minutes. Repeat this operation,
A stepwise etching solution sample in the depth direction is sampled for each partitioned area, and a sample solution for analysis and measurement is prepared by a predetermined process. Cr, Fe, Cu dissolved in each analysis sample,
The trace impurity concentration of Ni or the like is quantitatively analyzed using, for example, a heating vaporization / ICP-MS (ETV / ICP-MS) measuring device. The detection sensitivity in the case where the wafer is sequentially etched and decomposed using the local decomposition treatment jig of the present invention and the concentration of trace impurities such as Cr, Fe, Cu, and Ni is quantitatively analyzed using the ETV / ICP-MS device, 0.0 for Cr and Fe
1 ng / g (3 × 10 12 atoms / cm 3 ), Ni and Cu
Reaches 0.005 ng / g (1 × 10 12 atoms / cm 3 ).

【0032】[0032]

【実施例】(実施例1)径5インチのSiウエハを、図
3に示した本発明にかかる局所分解処理治具(3分割区
画)にセットし、HF(38%):HNO3 (68%)
=1:40の混酸をエッチング分解薬液を、ウエハ外周
部区画域に5ml、中間部区画域に5ml、中央部区画
域に5ml夫々注入し、注入後5分間経過した後各区画
毎のエッチング分解薬液をテフロン容器に回収し分析用
試料とした。この操作を繰り返し実施して各区画領域毎
の深さ方向の段階的分析用試料を得た。これらの各分析
用試料を、所定の前処理により測定用試料溶液とした
後、ETV/ICPーMS分析装置に依り不純物金属で
あるFeの濃度を測定し、ウエハの外周域、中間域、中
央域の各区画毎の深さ方向Fe濃度分布を得た。この結
果を棒状線図としてまとめ図5に示す。
(Example 1) A Si wafer having a diameter of 5 inches was set on the local decomposition treatment jig (divided into 3 sections) according to the present invention shown in FIG. 3, and HF (38%): HNO 3 (68) %)
= 1: 40 mixed acid etching decomposition chemical solution was injected into the wafer outer peripheral section area 5 ml, the intermediate section area 5 ml, and the central section area 5 ml, respectively, and after 5 minutes from the injection, etching decomposition of each section The chemical solution was collected in a Teflon container and used as a sample for analysis. By repeating this operation, a sample for stepwise analysis in the depth direction for each partitioned area was obtained. After each of these analysis samples was made into a measurement sample solution by a predetermined pretreatment, the concentration of Fe, which is an impurity metal, was measured by an ETV / ICP-MS analysis device, and the wafer was measured in the outer peripheral region, intermediate region, and central region. The Fe concentration distribution in the depth direction was obtained for each section of the region. The results are summarized as a bar chart and shown in FIG.

【0033】なお、各区画領域の逐次エッチング段階毎
のエッチング厚さの検定は、上記各採取試料の一部(1
00乃至200μm)を分取し、前記分取試料溶液を用
いて溶解Si量をモリブデンブルー法を利用した吸光度
測定により定量し、この溶解Si定量値から換算する方
法により算出すると共に、表面粗さ計で直接測定する方
法を併用して確認した。
The verification of the etching thickness for each successive etching step of each partitioned region is carried out by using a part (1
00 to 200 μm), the amount of dissolved Si is quantified by the absorbance measurement using the molybdenum blue method using the aforesaid sample solution, and the surface roughness is calculated by the method of converting from the quantitative value of the dissolved Si. It was confirmed by using a method of directly measuring with a meter.

【0034】(比較例1)次いで、図7に示した従来の
局所分解処理治具を用いて、ウエハの被処理盤面全体を
一領域とし、エッチング分解薬液量の注入量を上記各領
域への合計注入量(15ml)とした以外は上記実施例
1と同様に処理してウエハ全面平均値としての深さ方向
Fe濃度分布を得た。この結果を棒状線図として図6に
示す。
(Comparative Example 1) Next, using the conventional local decomposition treatment jig shown in FIG. 7, the entire surface of the wafer to be processed is set as one region, and the amount of the chemical solution for etching decomposition to be injected into each of the above regions. Except for the total injection amount (15 ml), the same process as in Example 1 was performed to obtain the Fe concentration distribution in the depth direction as an average value over the entire wafer. The results are shown in FIG. 6 as a bar chart.

【0035】図5と図6の結果からウエハの微量金属不
純物の深さ方向分布はウエハ面の局所領域により大きく
異なり、ウエハ全面の平均値としての分布プロフィール
のみではウエハの実際の汚染状態を的確に把握し得ない
ことが認められた。また、図7に示した従来の局所分解
処理治具にあっては、エッチング分解薬液の洩れが少量
認められた。これに対し、本発明にかかる局所分解処理
治具はエッチング分解薬液の洩れは認められなかった。
From the results of FIGS. 5 and 6, the distribution of trace metal impurities in the wafer in the depth direction greatly differs depending on the local area of the wafer surface, and the actual contamination state of the wafer can be accurately determined only by the distribution profile as the average value of the entire wafer surface. It was admitted that it was impossible to grasp. Also, in the conventional local decomposition treatment jig shown in FIG. 7, a small amount of leakage of the etching decomposition chemical liquid was observed. On the other hand, in the local decomposition treatment jig according to the present invention, no leakage of the chemical solution for etching decomposition was observed.

【0036】[0036]

【発明の効果】本発明は、従来のシリコンウエハ全面を
エッチングする分解処理治具を改良し、上記本発明の仕
切板によりウエハのエッチング面を複数の領域に分割
し、例えば外周域、中間域、中央域の3区画域、あるい
は12区画域等、に分割区画したことにより、従来容易
には得ることのできなかったウエハ外周部、中間部、中
央部等の面内局所不純物分布が簡単に得られ、ウエハの
熱処理工程をはじめとする各処理工程における外部汚染
の的確な実態把握が、時間的に制約のある工程分析で初
めて可能となった。また本発明は、仕切板は試料ウエハ
の被処理面に圧接され、その下端部は密着するため、エ
ッチング分解用薬液の外部への洩れを防止すると共に、
分割された被処理面のエッチング分解用薬液が混合され
るのを防止することができる。更に、ウエハ面内を局所
分解処理治具用いて、複数に区画化し、区画化された各
領域で同等深さの湿式エッチング分解を行い、この分解
液を捕集し、さらに上記区画化された各領域で上記分解
・捕集を所定回数繰り返し、各分解液での不純物分析を
行うことによってウエハの立体的不純物分布を得ること
を特徴とする本発明ににかかる試料ウエハの不純物分析
方法によれば、試料ウエハの立体的不純物分布を容易に
得ることができる。
The present invention improves a conventional disassembly processing jig for etching the entire surface of a silicon wafer, and divides the etched surface of the wafer into a plurality of regions by the partition plate of the present invention, for example, the outer peripheral region and the intermediate region. , The central area is divided into 3 areas or 12 areas, so that the in-plane local impurity distribution of the wafer peripheral area, the intermediate area, the central area, etc., which cannot be obtained easily, can be easily obtained. It was possible for the first time to accurately understand the actual state of external contamination in each processing step, including the wafer heat treatment step, through a time-sensitive process analysis. Further, according to the present invention, the partition plate is pressed against the surface to be processed of the sample wafer, and the lower end portion thereof is in close contact, so that the chemical solution for etching decomposition is prevented from leaking to the outside.
It is possible to prevent the chemical solution for etching and decomposition of the divided surface to be processed from being mixed. Further, the surface of the wafer was divided into a plurality of parts by using a local decomposition treatment jig, wet etching decomposition of the same depth was performed in each divided region, and the decomposition liquid was collected and further divided into the above. The sample wafer impurity analysis method according to the present invention is characterized in that the above-mentioned decomposition / collection is repeated a predetermined number of times in each region and impurity analysis is performed in each decomposition solution to obtain a three-dimensional impurity distribution of the wafer. Thus, the three-dimensional impurity distribution of the sample wafer can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明にかかる局所分解処理治具の第
1の実施形態を示す図であって、(a)はその平面図、
(b)は(a)に示したA−A断面図である。
FIG. 1 is a diagram showing a first embodiment of a local decomposition treatment jig according to the present invention, in which (a) is a plan view thereof,
(B) is an AA sectional view shown in (a).

【図2】図2は、本発明にかかる局所分解処理治具の第
1の実施形態の変形例を示す図であって、(a)はその
平面図、(b)は(a)に示したB−B断面図である。
2A and 2B are views showing a modified example of the first embodiment of the local decomposition processing jig according to the present invention, in which FIG. 2A is a plan view thereof, and FIG. 2B is shown in FIG. It is the BB sectional view.

【図3】図3は、本発明にかかる局所分解処理治具の第
2の実施形態を示す分解側面である。
FIG. 3 is an exploded side view showing a second embodiment of the local disassembly processing jig according to the present invention.

【図4】図4は、図3に示された薬液保持手段の底面図
である。
FIG. 4 is a bottom view of the drug solution holding means shown in FIG.

【図5】図5は、実施例1におけるウエハの外周域、中
間域、中央域各区画毎の深さ方向Fe濃度分布を表した
線図である。
FIG. 5 is a diagram showing the Fe concentration distribution in the depth direction for each of the outer peripheral region, the intermediate region, and the central region of the wafer in Example 1.

【図6】図6は、比較例1におけるウエハ全面の平均値
としての深さ方向Fe濃度分布を表した線図である。
FIG. 6 is a diagram showing an Fe concentration distribution in the depth direction as an average value over the entire surface of a wafer in Comparative Example 1.

【図7】従来の分解処理治具の一例を示す図であって、
(a)はその平面図、(b)はその断面図である。
FIG. 7 is a diagram showing an example of a conventional disassembly treatment jig,
(A) is the top view and (b) is the sectional view.

【符号の説明】[Explanation of symbols]

1 局所分解処理具 2 仕切板 2a〜2c リング状仕切板 2d 仕切板支持体 2e 直線状仕切板 3a〜3c 分割区画(3分割) 31a〜34c 分割区画(3分割) 4 ウエハ載置体 4a 螺子部 5 仕切板 5a 脚部 5b 仕切部 5c 仕切部 6 蓋体 6a 螺子部 10 分解処理具 11 ウエハ載置体 12 試料ウエハ 13 薬液保持部材 13a 貫通開口部 1 Local decomposition processing tool 2 partition boards 2a to 2c Ring-shaped partition plate 2d partition plate support 2e Linear partition plate 3a-3c division division (3 divisions) 31a-34c division division (3 divisions) 4 Wafer mount 4a screw part 5 partition boards 5a legs 5b partition 5c partition 6 lid 6a screw part 10 Disassembly tool 11 Wafer mount 12 Sample wafer 13 Chemical liquid holding member 13a through opening

フロントページの続き (56)参考文献 特開 昭63−195540(JP,A) 特開 昭61−221649(JP,A) 特開 平8−5526(JP,A) 特開 平8−152387(JP,A) 実開 昭62−126749(JP,U) 実開 昭61−206845(JP,U) 竹中、富田、窪田、土屋、松永,化学 分析,日本,1994年 2月 5日,第43 巻、第2号,p.173−176 (58)調査した分野(Int.Cl.7,DB名) G01N 1/00 - 1/44 G01N 31/00 H01L 21/66 JICSTファイル(JOIS)Continuation of the front page (56) Reference JP-A-63-195540 (JP, A) JP-A-61-221649 (JP, A) JP-A-8-5526 (JP, A) JP-A-8-152387 (JP , A) Actual Development Sho 62-126749 (JP, U) Actual Development Sho 61-206845 (JP, U) Takenaka, Tomita, Kubota, Tsuchiya, Matsunaga, Chemical Analysis, Japan, February 5, 1994, Volume 43. No. 2, p. 173-176 (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 1/00-1/44 G01N 31/00 H01L 21/66 JISST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料ウエハをエッチング分解処理して、
該ウエハの不純物分析に用いる局所分解処理治具におい
て、 上面に試料ウエハを載置するウエハ載置面が設けられた
ウエハ載置体と、前記ウエハ載置体に載置された試料ウ
エハ上に加えられるエッチング分解用薬液を保持する薬
液保持手段とを有し、 前記薬液保持手段は、少なくとも、試料ウエハ上に加え
られるエッチング分解用薬液を試料ウエハの被処理面上
に保持する仕切板と、前記仕切板を試料ウエハの被処理
面に圧接する蓋体とを備え、前記仕切板は、ウエハ載置体に載置された試料ウエハの
被処理面を複数の領域に区画分割する仕切板であり、厚
さ3mm以下の薄板状に形成され、あるいは試料ウエハ
の被処理面と当接する前記仕切板部分が少なくとも厚さ
3mm以下のエッジ状に形成され、 前記蓋体には、試料ウエハ上にエッチング分解用薬液を
注入するための開口部が形成されると共に、ウエハ載置
体の外周側面と螺合するように形成され、前記蓋体をウ
エハ載置体に螺合することによって、仕切板は試料ウエ
ハの被処理面に圧接されるように構成されていることを
特徴とする局所分解処理治具。
1. A sample wafer is subjected to etching decomposition treatment,
In a local decomposition processing jig used for impurity analysis of the wafer, a wafer mounting body having a wafer mounting surface on which a sample wafer is mounted, and a sample wafer mounted on the wafer mounting body are provided. And a chemical solution holding means for holding a chemical solution for etching decomposition to be added, wherein the chemical solution holding means is at least a partition plate for holding the chemical solution for etching decomposition to be added on the sample wafer on the surface to be processed of the sample wafer, A lid body that presses the partition plate against the surface to be processed of the sample wafer, and the partition plate is provided for the sample wafer mounted on the wafer mounting body.
It is a partition plate that divides the surface to be processed into multiple areas.
Formed into a thin plate of 3 mm or less, or a sample wafer
The partition plate portion that comes into contact with the surface to be processed of
The lid is formed to have an edge shape of 3 mm or less, and an opening for injecting a chemical solution for etching and decomposing on the sample wafer is formed in the lid and formed so as to be screwed with the outer peripheral side surface of the wafer mounting body. The partition plate is configured to be pressed against the surface to be processed of the sample wafer by screwing the lid body onto the wafer mounting body.
【請求項2】 前記仕切板の試料ウエハの被処理面の外
周部と当接する部分のエッジの角度は30度乃至60度
に形成されていることを特徴とする請求項に記載され
た局所分解処理治具。
2. The local according to claim 1 , wherein an angle of an edge of a portion of the partition plate which is in contact with the outer peripheral portion of the processed surface of the sample wafer is formed to be 30 degrees to 60 degrees. Disassembly jig.
【請求項3】 前記仕切板は、試料ウエハの被処理面に
対して、同心円状に形成され、ウエハ載置体に載置され
た試料ウエハの被処理面を外周域、中間域及び中央域の
3領域に分割区画するように構成されていることを特徴
とする請求項に記載された局所分解処理治具。
3. The partition plate is formed concentrically with respect to the surface to be processed of the sample wafer, and the surface to be processed of the sample wafer placed on the wafer mounting body is in the outer peripheral region, the intermediate region and the central region. The local decomposition treatment jig according to claim 1 , wherein the local decomposition treatment jig is configured to be divided into three areas.
【請求項4】 前記仕切板は、試料ウエハの被処理面に
対して、同心円状に形成すると共に、また径方向に90
度の間隔をもって直線状に形成し、ウエハ載置体に載置
された試料ウエハの被処理面を外周域、中間域、中央域
の3領域の各々を更に4分割し、12分割区画するよう
に構成されていることを特徴とする請求項に記載され
た局所分解処理治具。
4. The partition plate is formed concentrically with respect to the surface to be processed of the sample wafer, and is 90 mm in the radial direction.
Formed linearly with an interval of 4 degrees, and the surface to be processed of the sample wafer placed on the wafer holder is further divided into four areas in each of the outer peripheral area, the intermediate area and the central area, and divided into 12 areas. The local decomposition treatment jig according to claim 1 , wherein
【請求項5】 請求項1乃至請求項のいずれかに記載
された局所分解処理治具を用いて、複数に区画化し、区
画化された各領域で同等深さの湿式エッチング分解を行
い、この分解液を捕集し、さらに上記区画化された各領
域で上記分解・捕集を所定回数繰り返し、各分解液での
不純物分析を行うことによってウエハの立体的不純物分
布を得ることを特徴とする局所分解処理治具を用いた試
料ウエハの不純物分析方法。
5. The local decomposition treatment jig according to any one of claims 1 to 4 is used to partition into a plurality of areas, and wet etching decomposition of equal depth is performed in each partitioned area, The three-dimensional impurity distribution of the wafer is obtained by collecting the decomposition solution, repeating the decomposition and collection a predetermined number of times in each of the partitioned areas, and performing impurity analysis in each decomposition solution. Method for impurity analysis of sample wafer using local decomposition treatment jig.
JP16933798A 1998-06-02 1998-06-02 Local decomposition treatment jig and method for analyzing impurities in sample wafer using the same Expired - Lifetime JP3523068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16933798A JP3523068B2 (en) 1998-06-02 1998-06-02 Local decomposition treatment jig and method for analyzing impurities in sample wafer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16933798A JP3523068B2 (en) 1998-06-02 1998-06-02 Local decomposition treatment jig and method for analyzing impurities in sample wafer using the same

Publications (2)

Publication Number Publication Date
JPH11344428A JPH11344428A (en) 1999-12-14
JP3523068B2 true JP3523068B2 (en) 2004-04-26

Family

ID=15884696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16933798A Expired - Lifetime JP3523068B2 (en) 1998-06-02 1998-06-02 Local decomposition treatment jig and method for analyzing impurities in sample wafer using the same

Country Status (1)

Country Link
JP (1) JP3523068B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156315A (en) * 2000-11-20 2002-05-31 Fujitsu Ltd Sampling device for adhesive collection, and method
WO2019212624A1 (en) * 2018-05-04 2019-11-07 Applied Materials, Inc. Nanoparticle measurement for processing chamber
CN115360115A (en) * 2022-10-19 2022-11-18 西安奕斯伟材料科技有限公司 Method and system for measuring depth of damaged layer on surface of wafer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
竹中、富田、窪田、土屋、松永,化学分析,日本,1994年 2月 5日,第43巻、第2号,p.173−176

Also Published As

Publication number Publication date
JPH11344428A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
US9721817B2 (en) Apparatus for measuring impurities on wafer and method of measuring impurities on wafer
US6174740B1 (en) Method for analyzing impurities within silicon wafer
JP3523068B2 (en) Local decomposition treatment jig and method for analyzing impurities in sample wafer using the same
JPH07176510A (en) Method of impurity analysis
KR100544860B1 (en) Sample plate and method of manufacturing the thereof
US6844545B1 (en) MALDI plate with removable insert
US7601538B2 (en) Method for analyzing impurity
JP2882377B2 (en) Metal recovery container and metal recovery method
JP3439584B2 (en) Method for measuring concentration distribution of element in solid and sample for measurement
WO2000004579A9 (en) Process for mapping metal contaminant concentration on a silicon wafer surface
US6603119B1 (en) Calibration method for quantitative elemental analysis
JP3414976B2 (en) Impurity analysis sample container and sample storage member used therein
JP4073138B2 (en) Method for analyzing metals contained in quartz
Hockett A review of standardization issues for total reflection X-ray fluorescence and vapor phase decomposition/total reflection X-ray fluorescence
JP3292355B2 (en) Sampling cup and manufacturing method thereof
JPH10209112A (en) Etching method and equipment
KR100203749B1 (en) Measuring method for metal contamination of poly silicon layer
KR20000067357A (en) Method for collection contamination sample of semiconductor wafers surface
CN111261515B (en) Electronic device surface treatment method
US5882504A (en) Method of measuring impurities
KR100557702B1 (en) Method for analysis of impurities in silicon wafer through local etching
JP3365461B2 (en) Surface treatment method and apparatus
JP2003194747A (en) Method of measuring concentration distribution of element in solid
KR100906279B1 (en) Method for analyzing bulk metallic impurities in bulk of silicon wafer
TW200528405A (en) Inspection method and inspection assisting device of quartz product in semiconductor processing system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term