JP3414976B2 - Impurity analysis sample container and sample storage member used therein - Google Patents
Impurity analysis sample container and sample storage member used thereinInfo
- Publication number
- JP3414976B2 JP3414976B2 JP07059197A JP7059197A JP3414976B2 JP 3414976 B2 JP3414976 B2 JP 3414976B2 JP 07059197 A JP07059197 A JP 07059197A JP 7059197 A JP7059197 A JP 7059197A JP 3414976 B2 JP3414976 B2 JP 3414976B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- container
- storage member
- analysis
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は不純物分析試料用容
器に関し、特に、高純度が要求される半導体製造工程に
おいて、主成分がシリコンやシリカ等の珪素質材料に含
有する不純物量を、主成分のシリコンやシリカを昇華、
分解除去し不純物のみを残存させて高精度に分析するた
めのものであり、詳しくは、酸液等外部不純物の混入を
防止して酸蒸気分解処理に用いる2部材を組合せる収納
方式、または、外部不純物の混入を防止し操作を簡便化
して酸分解−濃縮−定容−分析の全処理を容器の移し替
えを不要とする、不純物分析試料用容器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impurity analysis sample container, and more particularly, in a semiconductor manufacturing process requiring high purity, the amount of impurities contained in a silicon-based material such as silicon or silica Sublimates silicon and silica,
This is for high-precision analysis by decomposing and removing only impurities, and more specifically, a storage method in which two members used for acid vapor decomposition treatment are combined to prevent mixing of external impurities such as an acid solution, or The present invention relates to a container for an impurity analysis sample, which prevents contamination by external impurities, simplifies the operation, and does not require transfer of the container for all processes of acid decomposition, concentration, constant volume, and analysis.
【0002】[0002]
【従来の技術】近年、半導体の高集積化が進みディバイ
ス特性の高信頼性が求められ、製造工程のクリーン化と
共に、直接材料のシリコンウエハ(単結晶)の不純物分
析は、ppb(10-9)オーダーからppt(10
-12 )オーダー以下の高精度な分析が必要となってきて
いる。そのため電気特性等による間接的な検査では十分
でなく、シリコンウエハの純度を直接評価する方法が採
用されている。従来、高純度シリコン中の不純物の直接
分析法としては、中性子放射化分析法や、サンプリング
試料を酸で溶解分解した後に、残存する不純物をフレー
ム原子吸光分析法、フレームレス原子吸光分析法、IC
P−MS分析法(誘導結合プラズマ質量分析法、以下、
ICP質量分析法とする)、ICP−発光分析法で分析
する方法が知られている。上記直接分析方法における酸
溶解分解方式には、直接溶解法と間接溶解法とがある。2. Description of the Related Art In recent years, as semiconductors have been highly integrated and high reliability of device characteristics has been demanded, the manufacturing process has been made cleaner, and the impurity analysis of a silicon wafer (single crystal) as a direct material has been carried out by ppb (10 −9). ) Order to ppt (10
-12 ) It is necessary to carry out highly accurate analysis of orders or less. Therefore, an indirect inspection based on electrical characteristics is not sufficient, and a method of directly evaluating the purity of a silicon wafer is adopted. Conventionally, as a direct analysis method of impurities in high-purity silicon, neutron activation analysis method, or after dissolving and decomposing a sampling sample with acid, residual impurities are analyzed by flame atomic absorption spectrometry, flameless atomic absorption spectrometry, IC
P-MS analysis method (inductively coupled plasma mass spectrometry, hereinafter,
ICP mass spectrometry) and ICP-emission spectrometry are known. The acid dissolution decomposition method in the above direct analysis method includes a direct dissolution method and an indirect dissolution method.
【0003】直接溶解法は、試料と酸とを直接混合して
試料を溶解分解するものであり、間接溶解法は、一般
に、分析試料を試料用容器に採取して密閉式の酸蒸気発
生装置内に設置して、装置内に貯留させた酸試薬液を蒸
発させ、分析試料と接触させて分解する方式である。間
接溶解法は、分解試薬の酸を蒸発させ気化して試料と気
相接触させ分解する方式であり、試薬中の不純物の影響
が低減される。このことから、分析試料、特にシリコン
ウエハ等の半導体製造工程での試料中の不純物分析法と
して多用されるようになっている。間接溶解法は、例え
ば、従来の酸蒸気発生分解装置を図5に示したような酸
蒸気発生分解装置50を用いて行われる。この場合、酸
蒸気発生分解装置50は、一般に商品名テフロンとして
よく知られているポリテトラフルオロエチレン(PTF
E)製の比較的肉薄の加圧可能な蓋体51と上部開放容
器52とから形成される密閉式容器であり、上部開放容
器52内には、例えばフッ化水素酸及び硝酸(HF+H
NO3 )の混酸溶液53が貯留され、分析試料54を採
取した試料容器55は、通常、混酸溶液53中にどぶ付
け状態に設置される。酸蒸気発生分解装置50は、容器
52下面外側からヒータ56で約100〜200℃に加
温されて混酸溶液53が蒸発気化される。HF−HNO
3 混酸蒸気は、容器52内の全域に拡散し試料容器55
内の分析試料54と接触し試料を分解する。分析試料5
4が、例えば珪素(Si)質材であれば、主成分のSi
がケイフッ化水素酸(H2 SiF6 )や四フッ化珪素
(SiF4 )として昇華し混酸溶液53に吸収除去され
て、試料容器55内には不純物が残存する。また、間接
溶解法は、上記試料容器55内に分析試料を採取すると
共に、入手が容易で酸液に比し安価で且つ超高純度な純
水を注入し、気化された混酸蒸気がその純水に溶解して
超高純度な混酸となり、一種の直接溶解方式的に分析試
料を分解することも行われる。The direct dissolution method is a method in which a sample and an acid are directly mixed to dissolve and decompose the sample, and the indirect dissolution method is generally a closed type acid vapor generator in which an analytical sample is collected in a sample container. This is a system that is installed inside and evaporates the acid reagent solution stored in the device, and brings it into contact with the analysis sample to decompose it. The indirect dissolution method is a method in which the acid of a decomposition reagent is evaporated and vaporized to bring it into gas phase contact with a sample to decompose, and the influence of impurities in the reagent is reduced. For this reason, it is widely used as an impurity analysis method in an analysis sample, particularly a sample in a semiconductor manufacturing process such as a silicon wafer. The indirect dissolution method is performed, for example, by using a conventional acid vapor generation / decomposition device 50 as shown in FIG. In this case, the acid vapor generating and decomposing device 50 is a polytetrafluoroethylene (PTF) which is generally well known as Teflon.
E) is a hermetically sealed container formed of a relatively thin pressurizable lid 51 and an upper open container 52. In the upper open container 52, for example, hydrofluoric acid and nitric acid (HF + H) are used.
The mixed acid solution 53 of NO 3 ) is stored, and the sample container 55 in which the analysis sample 54 is collected is usually installed in the mixed acid solution 53 in a drip state. In the acid vapor generation / decomposition device 50, the mixed acid solution 53 is evaporated and vaporized by heating from about the outside of the lower surface of the container 52 to about 100 to 200 ° C. by the heater 56. HF-HNO
The 3 mixed acid vapor diffuses throughout the container 52 and diffuses into the sample container 55.
The sample is decomposed by coming into contact with the analysis sample 54 inside. Analysis sample 5
If 4 is, for example, a silicon (Si) material, the main component Si
Is sublimed as hydrosilicofluoric acid (H 2 SiF 6 ) or silicon tetrafluoride (SiF 4 ) and absorbed and removed by the mixed acid solution 53, and impurities remain in the sample container 55. In addition, in the indirect dissolution method, an analytical sample is collected in the sample container 55, pure water that is easy to obtain, is cheaper than an acid solution, and has a very high purity is injected, and the vaporized mixed acid vapor is pure. It is also dissolved in water to form an ultra-high purity mixed acid, and an analytical sample is decomposed by a kind of direct dissolution method.
【0004】[0004]
【発明が解決しようとする課題】上記の直接溶解法及び
間接溶解法のいずれにおいても、分析試料の主成分を分
解して得た残存物は、必要に応じ濃縮し、更に所要量の
純水を添加して定容とした後、ICP質量分析法等で分
析して分析試料中の不純物を定量分析することができ
る。しかし、直接溶解法は、高価な高純度な酸試薬を用
いる必要があること、また、間接溶解法では、分析試料
と接触する酸蒸気は、酸液から蒸発気化されたものであ
りpptオーダーの不純物も含有することなく超高純度
となるが、用いるHF−HNO3 混酸溶液は、直接溶解
法と同様に高価な高純度品を用いる必要がある。更に、
従来の間接溶解法で用いる酸蒸気発生装置では、上記の
ように試料容器が混酸分解用溶液中にどぶ付け状態であ
り、混酸溶液が試料容器の外壁を伝って容器内に混入す
るおそれがある。更に、試料容器は開放型であり、酸蒸
気発生装置の上部で凝縮し付着した酸蒸気液滴が、試料
容器に落下して汚染し分析精度が低下するおそれがあ
る。このように直接溶解法より分析精度が高いとされて
いる間接溶解法でも分析精度に関し種々の問題がある。
更にまた、直接溶解及び間接溶解法のいずれも、分解−
濃縮−定容−分析の過程で最終的な各分析装置用の容器
に分析試料を移し替えるまでに、各種用具や各容器等が
用いられて移替えることから、その度に汚染のおそれが
あり分析精度に問題が生じると共に、操作も煩雑となっ
ているのが現状である。In both the direct dissolution method and the indirect dissolution method described above, the residue obtained by decomposing the main component of the analytical sample is concentrated if necessary, and the required amount of pure water is further added. Can be added to make the volume constant and then analyzed by ICP mass spectrometry or the like to quantitatively analyze impurities in the analysis sample. However, in the direct dissolution method, it is necessary to use an expensive high-purity acid reagent, and in the indirect dissolution method, the acid vapor that comes into contact with the analysis sample is vaporized from the acid solution and is in the ppt order. Although it does not contain impurities and becomes ultra-high purity, the HF-HNO 3 mixed acid solution to be used needs to use an expensive high-purity product as in the direct dissolution method. Furthermore,
In the conventional acid vapor generator used in the indirect dissolution method, the sample container is in a state of being dipped in the mixed acid decomposition solution as described above, and the mixed acid solution may be mixed in the container along the outer wall of the sample container. . Further, since the sample container is an open type, there is a possibility that the acid vapor droplets condensed and adhered on the upper part of the acid vapor generator may fall on the sample container to be contaminated and the analysis accuracy may be deteriorated. As described above, the indirect dissolution method, which is said to have higher analysis accuracy than the direct dissolution method, has various problems regarding the analysis accuracy.
Furthermore, in both the direct dissolution method and the indirect dissolution method, decomposition-
During the process of concentration-constant volume-analysis, until the analytical sample is transferred to the final container for each analyzer, various tools and containers are used for transfer, which may cause contamination. At present, there is a problem in analysis accuracy and the operation is complicated.
【0005】更に、上記のICP質量分析等分析装置に
おける分析試料は、一般に自動サンプリング装置を用い
て行われる。自動サンプリング装置は、複数のサンプル
容器がセットできるようになっており、予めその各サン
プル容器に、所定の酸分解、濃縮、定容処理をした後の
分析試料を、ピペット等の用具を用いそれぞれ採取し
て、自動サンプリング装置の試料ターンテーブルにそれ
ぞれセットしている。これら作業は、一般に手作業で行
われ、試料採取量も通常少量であり、取扱いには注意を
要する等、操作が極めて煩雑である上、外部汚染物の混
入のおそれも多い。また、従来の自動サンプリング装置
にセットするサンプル容器は、通常、収容底部がV字状
またはU字状であることから、サンプル容器を再度繰り
返し使用する場合に洗浄の清浄度にも問題が生じること
から、分析精度にも影響を与えていた。また、U字状の
試料容器は、比較的洗浄の清浄化が良好である一方、極
微量試料の分析が行えないという問題もあった。Further, an analysis sample in the above-mentioned ICP mass spectrometric analyzer is generally used by using an automatic sampling device. The automatic sampling device is designed so that multiple sample containers can be set, and the sample to be analyzed is subjected to predetermined acid decomposition, concentration, and constant volume processing in advance, using an instrument such as a pipette. Samples are collected and set on the sample turntable of the automatic sampling device. These operations are generally performed manually, the amount of sampled is usually small, and the handling is very complicated, and the operation is extremely complicated, and external contaminants are likely to be mixed. In addition, the sample container set in the conventional automatic sampling device usually has a V-shaped or U-shaped container bottom, and therefore, when the sample container is repeatedly used again, there arises a problem in cleanliness of washing. Therefore, it also affected the accuracy of analysis. Further, the U-shaped sample container has relatively good cleanliness of cleaning, but there is also a problem that it is not possible to analyze an extremely small amount of sample.
【0006】本発明は、上記の半導体製造工程等におけ
る不純物定量分析における汚染物混入等分析精度や操作
の煩雑さ等従来の問題を鑑み、それらを解消することを
目的になされた。即ち、本発明は、第1に、特に、シリ
コンウエハの半導体製造工程等の高純度が要求される場
合において、各種材料の不純物を精度よく定量的に分析
するため、酸蒸気分解処理における酸液等による汚染を
防止するための不純物分析用試料容器の提供を目的とす
る。また、第2に、試料採取の最初から分解、濃縮、定
容処理を経て最終的なICP質量分析等の分析装置によ
る不純物定量分析に至るまでを容器の移し替えを不要と
する不純物分析用試料容器の提供を目的とする。更に、
上記のような容器を用い高精度で信頼性のある不純物量
を得ることにより、作業性がよく短時間処理でき、特
に、不純物量を厳格に管理する半導体製造プロセスの一
環として不純物の定量分析を定常操作として組込み生産
効率を向上させることを可能にすることを目的とする。The present invention has been made in view of the conventional problems such as the accuracy of analysis such as contamination of contaminants and the complexity of operation in the quantitative analysis of impurities in the above semiconductor manufacturing process and the like. That is, the present invention is, firstly, in order to analyze impurities of various materials accurately and quantitatively, particularly when high purity is required in a semiconductor wafer semiconductor manufacturing process or the like. The purpose of the present invention is to provide a sample container for impurity analysis to prevent contamination due to the like. Secondly, an impurity analysis sample that does not require container transfer from the beginning of sampling until decomposition, concentration, constant volume processing, and finally to quantitative analysis of impurities by an analyzer such as ICP mass spectrometry. The purpose is to provide a container. Furthermore,
By using a container like the one described above to obtain a highly accurate and reliable amount of impurities, workability can be improved and short-time processing can be performed. In particular, quantitative analysis of impurities can be performed as part of the semiconductor manufacturing process that strictly controls the amount of impurities. The purpose is to enable to improve the built-in production efficiency as a steady operation.
【0007】発明者らは、上記目的のために、従来から
用いられている間接溶解方式の分析試料用試料容器及び
ICP質量分析等分析装置のための試料容器について鋭
意検討した。その結果、第1の目的として、間接溶解法
の酸蒸気発生分解装置に設置する試料容器としては、従
来の単一部材からなる容器と異なり、2部材を組合せる
ことにより前記した分析精度低下の不都合を解消し不純
物を精度よく分析できることを見出した。また、第2の
目的として、特に、ICP質量分析等分析装置のため
に、試料採取−酸分解−濃縮−定容−分析までの全処理
を同一容器で行うことのできる不純物定量分析用容器を
見出した。更に、これら容器を用いた不純物定量分析が
高精度で得られることから、不純物の定常的定量分析を
半導体製造工程に組込むことができることを見出し本発
明を完成した。[0007] For the above-mentioned purpose, the inventors diligently studied a conventionally used indirect dissolution type sample container for an analytical sample and a sample container for an analyzer such as ICP mass spectrometry. As a result, as a first object, as a sample container to be installed in an acid vapor generation / decomposition apparatus of the indirect dissolution method, unlike the conventional container made of a single member, by combining two members, the above-mentioned deterioration of the analysis accuracy can be prevented. It has been found that the inconvenience can be eliminated and impurities can be analyzed accurately. Further, as a second object, in particular, for an ICP mass spectrometry analyzer, a container for quantitative analysis of impurities capable of performing all the processes from sampling to acid decomposition-concentration-constant volume-analysis in the same container. I found it. Further, since the quantitative quantitative analysis of impurities using these containers can be obtained with high accuracy, the present invention has been completed by finding that steady quantitative analysis of impurities can be incorporated into the semiconductor manufacturing process.
【0008】[0008]
【課題を解決するための手段】本発明によれば、酸蒸気
分解させる試料を収容して酸蒸気発生装置内に配置され
る容器であって、試料収容部材と収納部材との組合せで
あり、該収納部材が中空体で中空内部を外部酸蒸気が流
通自在となるように開口部を有し、酸蒸気分解時に該収
納部材の上部外形および中空内部上面が滑らかな液流下
が可能に形成されると共に、該試料収容部材が平板体で
表面に曲面底部の試料収容凹部が1または2以上凹設さ
れ、該収納部材の中空内部に収納されて保持されること
を特徴とする不純物分析試料用容器が提供される。According to the present invention, there is provided a container for containing a sample to be decomposed by an acid vapor and arranged in an acid vapor generator, which is a combination of a sample containing member and a containing member. The accommodating member is a hollow body and has an opening for allowing the external acid vapor to flow through the hollow interior, and the outer shape of the upper part of the accommodating member and the hollow inner upper surface are formed to allow smooth liquid flow during acid vapor decomposition. In addition, the sample storage member is a flat plate body, and one or more sample storage recesses at the bottom of the curved surface are provided on the surface, and the sample storage recess is stored and held in the hollow inside of the storage member. A container is provided.
【0009】上記本発明の不純物分析試料用容器におい
て、試料収容部材及び収納部材がポリテトラフルオロエ
チレン製であることが好ましい。また、本発明の収納部
材が両端部が開放された半円筒形であり、半円筒形の平
坦部を底部として前記酸蒸気発生装置に配設して、該平
坦部の筒内部面が前記酸蒸気発生装置の酸液表面より上
部となる厚さを有して形成される共に該筒内部面に前記
試料収容部材の配置部を有することが好ましい。更に、
前記試料収容部材が、前記曲面底部の中心部に小さな窪
みを有して、超微量試料の不純物でも分析できるように
することが好ましい。また上記小さな窪みが開口部径φ
2〜10mmの曲面凹部であることが好ましい。In the impurity analysis sample container of the present invention, it is preferable that the sample storage member and the storage member are made of polytetrafluoroethylene. In addition, the storage member of the present invention is a semi-cylindrical shape with both ends open, and the semi-cylindrical flat portion is disposed as the bottom portion in the acid vapor generating device, and the inner surface of the flat portion of the cylinder is the acid. It is preferable that the vapor generation device is formed to have a thickness above the surface of the acid liquid, and also has an arrangement portion for the sample storage member on the inner surface of the cylinder. Furthermore,
It is preferable that the sample accommodating member has a small recess at the center of the curved bottom surface so that impurities in an ultratrace amount sample can be analyzed. In addition, the above-mentioned small depression is the opening diameter φ
It is preferably a curved concave portion of 2 to 10 mm.
【0010】また、本発明によれば、上記不純物分析試
料容器に用いられる試料収容用部材であって、ほぼ円盤
形状で上平面に試料収容凹部が曲面底部を有して凹設さ
れると共に、分析装置の試料載置部に装着可能に一体的
に形成されてなることを特徴とする試料収容部材が提供
される。前記分析装置は、ICP−発光分析装置、IC
P質量分析装置、原子吸光−フレーム分析装置または原
子吸光−フレームレス分析装置であり、前記試料載置部
が自動サンプリング装置であることが好ましい。Further, according to the present invention, in the sample accommodating member used for the above-mentioned impurity analysis sample container, the sample accommodating concave portion is formed into a substantially disk shape and has an upper flat surface having a curved bottom portion, and There is provided a sample accommodating member which is integrally formed so as to be attachable to a sample mounting portion of an analyzer. The analyzer is an ICP-emission analyzer, IC
A P mass spectrometer, an atomic absorption-frame analyzer or an atomic absorption-frameless analyzer, and the sample mounting part is preferably an automatic sampling device.
【0011】本発明の不純物分析試料用容器は上記のよ
うに構成され、酸蒸気分解を要する試料では、酸蒸気発
生装置内に試料収容部材と収納部材とを組合せて設置
し、収納部材が中空体であり、試料を収容した収容部材
全体を中空内に包囲して保持しながら、開口部を有する
ため酸蒸気の流通を自由にすることから、不純物分析試
料と超高純度の酸蒸気との接触を確保する。同時に、酸
蒸気発生装置の上部に付着する凝縮液滴の試料収容部材
への落下を防止でき、また、試料収容部材が配置される
収納部材の底部は十分に酸液面より表出して形成するこ
とにより試料収容凹部への酸液の混入を防止することが
できることから、高精度で不純物の分析が可能となる。
また、本発明の収納部材は、酸蒸気発生装置の上部に付
着する酸蒸気の凝縮液滴が落下した場合、その中空内に
保持する試料収容部材上への落下を防止すると共に、収
納部材の外形上部が液の滑らかな流下を確保する形状に
形成されることから、落下液滴が迅速且つ円滑に酸液中
に流下するため飛散することもなく、中空内部や試料を
汚染することもない。更に、本発明の不純物分析試料用
容器の試料収容部材及び収納部材をPTFEで形成する
ことにより、PTFEの特性上、耐酸性、耐薬品性、耐
腐食性に優れると共に、繰り返し使用しても前回の試料
が付着することがなく、また、不純物溶出量が少なく分
析の高精度を保証することができる。また、試料収容部
材の試料収容凹部の曲面底部に更に小窪みを設けること
により極微量の試料にも対応でき、pptオーダーの不
純物が問題となる各種材料や薬液等を好適に処理して含
有する不純物を高精度に定量分析することができる。The container for impurity analysis sample of the present invention is constructed as described above, and for a sample which requires acid vapor decomposition, a sample accommodating member and an accommodating member are installed in combination in the acid vapor generator, and the accommodating member is hollow. It is a body, and while enclosing and holding the entire housing member that houses the sample in the hollow, because it has an opening, it allows the acid vapor to flow freely, so that the impurity analysis sample and the ultra-high purity acid vapor Ensure contact. At the same time, it is possible to prevent condensed droplets adhering to the upper part of the acid vapor generator from falling onto the sample containing member, and the bottom of the containing member in which the sample containing member is arranged is sufficiently exposed from the acid liquid surface. As a result, it is possible to prevent the acid solution from mixing into the sample accommodating concave portion, so that it is possible to analyze the impurities with high accuracy.
Further, the storage member of the present invention prevents, when the condensed droplets of the acid vapor adhering to the upper part of the acid vapor generation device drop, dropping onto the sample storage member held in the hollow, and Since the upper part of the outer shape is formed in a shape that ensures a smooth flow of the liquid, the falling liquid drops do not flow around the acid liquid because it flows down quickly and smoothly, and does not contaminate the hollow interior or the sample. . Further, by forming the sample storage member and the storage member of the impurity analysis sample container of the present invention from PTFE, the characteristics of PTFE are excellent in acid resistance, chemical resistance, and corrosion resistance, and even when repeatedly used, The sample does not adhere, and the amount of impurities eluted is small, so high accuracy of analysis can be guaranteed. Further, by providing a small depression further on the curved bottom of the sample-holding recess of the sample-holding member, it is possible to handle a very small amount of sample, and various materials and chemicals, etc. in which ppt-order impurities pose a problem are preferably processed and contained. Impurities can be quantitatively analyzed with high accuracy.
【0012】本発明の不純物分析試料容器は、また、I
CP質量分析等分析装置の試料載置部に装着可能に一体
的に形成して構成されることから、分析試料を酸液で分
解する直接溶解法の容器とし、試料収容凹部への試料採
取及び酸液注入−酸分解−濃縮−定容−分析を、また、
例えば半導体製造工程で用いられる薬液や純水等の酸分
解する必要がない試料を、試料採取−濃縮−定容−分析
を、そのまま同一容器で処理でき、容器の移し替え等に
よる汚染が防止され、移し替えのための煩雑な操作がな
くなり処理操作が極めて簡便となる。更にまた、試料収
容凹部の曲面底部に更に小窪みを設けることにより極微
量の試料にも対応でき、pptオーダーの不純物が問題
となる各種材料や薬液等を好適に処理して含有する不純
物を高精度に定量分析することができる。これは、上記
小窪みが開口部径φ2〜10mmの曲面凹部である場合
において顕著である。2mm未満では試料の採取が困難
であり10mmを超えると実質的に、小窪みとしての機
能をなさない。分析装置に装着する容器をPTFEで形
成することにより、前記の試料収容部材及び収納部材と
同様に、耐酸性、耐薬品性、耐腐食性に優れ、不純物溶
出量が少なく、繰り返し使用しても分析に影響すること
がなく不純物の高精度の定量分析が保証される。また、
分析に先立ち酸蒸気分解する場合には、分析装置に装着
する試料容器を、前記2部材組合せ容器の試料収容部材
とし、所定の収納部材と組合せて用いることができ、同
一容器を用いて分析試料の採取から酸蒸気分解−濃縮−
定容−分析を一貫処理でき、煩雑な操作が簡便となると
同時に、酸液による汚染を防止できると共に容器の移し
替え等による汚染も防止でき分析精度を一層高めること
ができる。The impurity analysis sample container of the present invention also comprises
Since it is integrally formed so as to be attachable to the sample placing part of an analyzer such as CP mass spectrometry, it is used as a container for a direct dissolution method for decomposing an analytical sample with an acid solution, Acid solution injection-acid decomposition-concentration-constant volume-analysis,
For example, samples that do not need to be decomposed by acid, such as chemicals and pure water used in semiconductor manufacturing processes, can be directly processed in the same container for sampling, concentration, constant volume, and analysis, and contamination due to container transfer is prevented. , The complicated operation for transferring is eliminated and the processing operation becomes extremely simple. Furthermore, by providing a small depression in the curved bottom of the sample-holding recess, it is possible to handle a very small amount of sample, and it is possible to increase the amount of impurities contained by suitably processing various materials and chemicals, etc. in which ppt-order impurities pose a problem. Quantitative analysis can be performed with high accuracy. This is remarkable when the small depression is a curved concave portion having an opening diameter of φ2 to 10 mm. If it is less than 2 mm, it is difficult to collect a sample, and if it exceeds 10 mm, it does not substantially function as a small depression. By forming the container to be mounted on the analyzer with PTFE, it has excellent acid resistance, chemical resistance, and corrosion resistance as well as the sample storage member and storage member described above, and has a small amount of impurity elution, and can be used repeatedly. Highly accurate quantitative analysis of impurities is guaranteed without affecting the analysis. Also,
In the case of acid vapor decomposition prior to analysis, the sample container to be mounted on the analyzer can be used as a sample container member of the two-member combination container, and can be used in combination with a predetermined container member. From acid vapor decomposition-concentration-
The constant volume-analysis can be consistently processed, complicated operations can be simplified, and at the same time, the contamination due to the acid solution can be prevented, the contamination due to the transfer of the container can be prevented, and the analysis accuracy can be further enhanced.
【0013】本発明の不純物分析試料容器は、上記した
間接溶解法の酸蒸気と試料とを接触させて分析試料を分
解し、残留した不純物を定量分析するために用いること
ができる。試料と接触する酸蒸気は酸液から蒸発気化さ
れpptオーダの超高純度となることから、酸蒸気発生
装置に貯留させる酸液として高価な超高純度な試薬を用
いる必要がなく、一般的な高純度試薬を用いることがで
き工業的に有用である。また、本発明の不純物分析試料
容器は、間接溶解法として、試料収容部材の試料収容凹
部に試料と共に超高純度水を注入し、発生する酸蒸気を
水分中に吸収させて超高純度な酸液として試料を分解す
る直接溶解法の変形方式として用いることができる。こ
の場合、試料収容凹部に注入して試料に直接接触する超
高純度水は、超高純度酸液に比して安価に入手でき、蒸
発させる酸液としては比較的安価な高純度試薬を用いて
蒸発気化により超高純度な酸蒸気として超高純度水に吸
収させて超高純度酸液を用いることと同様となり、経費
が嵩むことがなく、この点でも工業的実用性が高いもの
となる。なお、本発明において、分析試料としては、特
に、半導体シリコン単結晶ウエハ、ポリシリコン、合成
石英、石英ガラス製ルツボ、ボート及び炉芯管等の珪素
単体、珪素酸化物、SiC−Si等の珪素質を主成分と
する珪素質材の主成分を酸溶解して分解除去する分析試
料のほか、半導体製造工程で使用される薬液や純水も含
むものである。この場合、上記したように不純物分析試
料用容器をICP質量分析等の分析装置の試料載置部に
装着可能に一体的に形成して、薬液や純水を収容し、酸
分解処理することなく濃縮−定容処理して不純物を定量
分析することができる。The impurity analysis sample container of the present invention can be used to bring the acid vapor of the indirect dissolution method into contact with the sample to decompose the analysis sample and quantitatively analyze the residual impurities. Since the acid vapor that comes into contact with the sample is vaporized from the acid liquid to have an ultrahigh purity of ppt order, it is not necessary to use an expensive ultrahigh purity reagent as the acid liquid stored in the acid vapor generator, A high-purity reagent can be used and is industrially useful. Further, the impurity analysis sample container of the present invention, as an indirect dissolution method, injects ultra-high-purity water together with the sample into the sample-accommodating recess of the sample-accommodating member, absorbs the generated acid vapor in the water, and converts the ultra-high-purity It can be used as a modification of the direct dissolution method that decomposes a sample as a liquid. In this case, the ultra-high purity water that is injected into the sample accommodating recess and directly contacts the sample can be obtained at a lower cost than the ultra-high purity acid solution, and a relatively inexpensive high-purity reagent is used as the acid solution to be evaporated. It becomes the same as using ultra-high purity acid liquid by absorbing it into ultra-high-purity water as ultra-high-purity acid vapor by evaporative vaporization, and it does not increase the cost, and also in this respect it becomes highly industrially practical. . In the present invention, as the analysis sample, in particular, semiconductor silicon single crystal wafer, polysilicon, synthetic quartz, quartz glass crucible, silicon simple substance such as boat and furnace core tube, silicon oxide, silicon such as SiC-Si, etc. In addition to the analytical sample in which the main component of the silicon-based material whose main component is the quality is dissolved by acid and decomposed and removed, the chemical liquid and pure water used in the semiconductor manufacturing process are also included. In this case, as described above, the impurity analysis sample container is integrally formed so as to be attachable to the sample mounting part of the analyzer such as ICP mass spectrometry, and the chemical solution and the pure water are stored in the container without the acid decomposition treatment. Concentration-constant volume treatment can be performed for quantitative analysis of impurities.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施例について図
面を参照しながら詳細に説明する。但し、本発明は下記
実施例により制限されるものでない。図1は本発明の不
純物分析試料用容器の試料収容部材の概要について模式
的に示した平面説明図(A)、そのB−B線断面説明図
(B)及び斜視説明図(C)である。図1において、試
料収容部材1は、所定の厚さを有する矩形平板体2であ
り、その表面に複数の試料収容凹部3、3、3・・を凹
設したものである。試料収容部材1の形状は、矩形に限
らず下記する収納部材の中空内部に収納できればよく、
円形、三角形、錐形、異形のいずれでもよい。図1に示
したような矩形平板体や後記するICP質量分析等の分
析装置用の試料容器として兼用できる円盤形状で作成す
るのが簡便であり一般的である。また、平板表面の試料
収容凹部3の設置数も特に制限されず、必要に応じて適
宜選択すればよい。試料収容凹部3は、底部を曲面状に
形成すればよく特に形状や大きさは、不純物分析試料の
種類や収容量、酸分解条件、分析条件に応じて適宜選択
することができる。通常、直径約φ10〜15mm、深
さ約15mmの円柱状で、底部を曲面状に形成する。収
容部材の厚さは、この試料収容凹部の深さを考慮してそ
れより厚いもので、更に、下記する収納部材の下部に設
ける段部により形成される底部凹部に配置してその段部
より約3mm上方となるように、また、酸蒸気発生装置
に設置した場合に、装置底部に貯留される酸液面から約
10mm以上の間隔が保持できるような高さとなるよう
にすればよい。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will now be described in detail with reference to the drawings. However, the present invention is not limited to the following examples. FIG. 1 is a plan explanatory view (A) schematically showing an outline of a sample storage member of an impurity analysis sample container of the present invention, a cross-sectional explanatory view (B) and a perspective explanatory view (C) taken along line BB thereof. . In FIG. 1, a sample storage member 1 is a rectangular flat plate 2 having a predetermined thickness, and a plurality of sample storage recesses 3, 3, 3, ... Are provided on the surface thereof. The shape of the sample storage member 1 is not limited to a rectangle as long as it can be stored in the hollow inside of the storage member described below.
It may be circular, triangular, conical or irregular. It is simple and common to make a rectangular flat plate as shown in FIG. 1 or a disk shape that can also be used as a sample container for an analyzer such as ICP mass spectrometry described later. Further, the number of the sample accommodating concave portions 3 provided on the flat plate surface is not particularly limited, and may be appropriately selected as needed. The sample-accommodating concave portion 3 may have a curved bottom surface, and its shape and size can be appropriately selected depending on the type and amount of impurity-analyzed sample, acid decomposition conditions, and analysis conditions. Usually, it has a cylindrical shape with a diameter of about 10 to 15 mm and a depth of about 15 mm, and the bottom is formed in a curved shape. The thickness of the storage member is thicker in consideration of the depth of the sample storage recess, and further, it is arranged in the bottom recess formed by the step provided at the lower part of the storage member described below, and The height may be about 3 mm above, and when installed in the acid vapor generator, the height may be such that a distance of about 10 mm or more can be maintained from the acid liquid surface stored at the bottom of the apparatus.
【0015】図2は、本発明の不純物分析試料用容器の
収納部材の概要について模式的に示した正面説明図
(D)、側面説明図(E)及び斜視説明図(F)であ
る。図2において、試料収容部材5は、垂直断面が水平
底面6を有する半円アーチ型外形で、両横側面7、7が
開放されて開口部を形成して、内部8が中空の筒状体で
ある。中空内部8の下部周面には底面6から立上るよう
に段部9を設け、段部9で形成される底面凹部に上記の
試料収容部材1が装入できるようにする。この場合、中
空内部8と収納部材5とは、両端側面7、7の開口部に
より連通されてガスは自由に流通できると共に、この両
端の開口部から試料収容部材1を自由に出入できるよう
に形成される。また、移送等の取扱いを容易にするため
外部上面中央にはノブKを設けてある。FIG. 2 is a front explanatory view (D), a side explanatory view (E) and a perspective explanatory view (F) schematically showing the outline of the storage member of the impurity analysis sample container of the present invention. In FIG. 2, the sample storage member 5 has a semicircular arch-shaped outer shape having a horizontal bottom surface 6 in a vertical cross section, both lateral side surfaces 7, 7 are opened to form an opening, and an inner portion 8 has a hollow cylindrical body. Is. A step portion 9 is provided on the lower peripheral surface of the hollow interior 8 so as to rise from the bottom surface 6, and the above-described sample accommodating member 1 can be loaded into the bottom surface recess formed by the step portion 9. In this case, the hollow interior 8 and the storage member 5 are communicated with each other by the openings of both side surfaces 7, 7 so that the gas can freely flow and the sample storage member 1 can be freely put in and out through the openings of both ends. It is formed. In addition, a knob K is provided at the center of the outer upper surface to facilitate handling such as transfer.
【0016】本発明の収納部材5の外形形状は、特に図
2に示したような半円アーチ型筒状体に制限されるもの
でない。内部が中空で、試料収容部材1が部分的に収納
部材5外に突出することなく全体が中空内部8に収納さ
れるような形状で、外部上面が、例えば、図2の半円と
同様に曲面形状や所定の傾斜面に形成されて、酸蒸気発
生装置に配設した場合に落下した酸蒸気凝縮液滴がその
上面に溜ることなく円滑に流下するようにすればよい。
また、中空内部上面も、同様に曲面状または傾斜面とす
るのが好ましい。製作上簡便であると同時に、酸蒸気分
解時に収納部材内部を酸蒸気が流通することにより微量
の酸蒸気凝縮液滴が中空内部上面に付着した場合に、落
下を防止して同様に流下させ汚染を防止することができ
るためである。また、上記のように図2では両側面7、
7が開放されガス流通の開口部であると同時に、試料収
容部材1の出入口として形成しているが、酸蒸気の流通
を確保するための開口部と、収容部材出入口はとを共通
させる必要はなく、例えば、収納部材を2分割して嵌合
組立方式や蝶番方式として、中空内部に試料収容凹部材
を配置して後に、所定形状を保持するようにしてもよ
い。開口部は、酸蒸気が自在に流通できればよく、その
大きさ、形状は使用条件に合わせて適宜選択することが
できる。収納部材5において、開口部は、酸蒸気凝縮液
滴が流下するときに支障にならないようにすると共に、
流下する液滴が中空内部に流入したり飛散しないように
して配設する。通常、収納部材の立体形状の相対する2
か所を垂直切断した形態で設けることが好ましい。酸蒸
気の流通が円滑に行われるためである。The outer shape of the storage member 5 of the present invention is not particularly limited to the semi-circular arch type tubular body as shown in FIG. The inside is hollow and the whole sample housing member 1 is housed in the hollow interior 8 without partially protruding to the outside of the housing member 5, and the outer upper surface is similar to, for example, a semicircle in FIG. The acid vapor condensed droplets, which are formed in a curved surface shape or a predetermined inclined surface and fall when arranged in the acid vapor generator, may flow smoothly without accumulating on the upper surface thereof.
In addition, the upper surface of the hollow interior is also preferably curved or inclined. It is easy to manufacture, and at the same time, when a small amount of acid vapor condensed droplets adheres to the upper surface of the hollow interior due to the acid vapor flowing through the inside of the storage member when decomposing acid vapor, it is prevented from falling and is also caused to flow down and contaminate. This is because it is possible to prevent Further, as described above, in FIG.
The opening 7 is an opening for gas flow, and at the same time is formed as an inlet / outlet port of the sample storage member 1. However, the opening for ensuring the flow of the acid vapor and the inlet / outlet port of the storage member need not be common. Instead, for example, the storage member may be divided into two, and a fitting and assembling method or a hinge method may be used to arrange the sample accommodating recessed material inside the hollow and then retain the predetermined shape. It suffices that the acid vapor can freely flow through the opening, and its size and shape can be appropriately selected according to the use conditions. In the storage member 5, the opening does not hinder the acid vapor condensed droplets from flowing down, and
It is arranged so that the liquid droplets flowing down do not flow into the hollow interior or scatter. Usually, two of the three-dimensional shape of the storage member
It is preferable to provide the locations in a vertically cut form. This is because the acid vapor is smoothly distributed.
【0017】上記した本発明の不純物分析試料用容器の
試料収容部材1及び収納部材5は、共にPTFEで形成
することが好ましい。それぞれ適宜な肉厚を有する市販
のPTFE単体を用いて形成することができる。PTF
Eは、前記したように耐酸性、耐薬品性に優れ、また、
洗浄剥離性に優れ、繰り返しの使用でも前使用時の残留
痕跡がなく、高精度が要求される半導体製造工程におけ
る不純物分析に好適である。上記のように形成された試
料収容部材1及び収納部材5は、試料収容部材1の収容
凹部3、3、・・・に、それぞれ分解試料採取し、要す
れば、更に超高純度水を注入して、収納部材5の中空内
部8の両側の段部9の間に試料収容部材1を装入して組
合せ、酸蒸気発生装置に配設する不純物分析試料用容器
とする。図3は、試料収容部材1及び収納部材5を組合
せて、酸蒸気発生装置内に配設した状態の概要について
の説明図である。図3において、酸蒸気発生装置50
は、前記した従来法の図5と同様に、蓋体51と上部開
放容器52とからなる密閉式容器で、底部には、例え
ば、HF−HNO3 混酸等の酸液53が貯留保持され
る。また、装置50底面の外部下方にはヒータ56等の
加熱手段が配設され、貯留酸液53を加熱して、酸蒸気
を発生できるように構成される。It is preferable that both the sample storage member 1 and the storage member 5 of the above-described container for impurity analysis sample of the present invention are made of PTFE. It can be formed by using a commercially available PTFE simple substance each having an appropriate thickness. PTF
E is excellent in acid resistance and chemical resistance as described above, and
It is excellent in cleaning and peeling properties, has no residual traces even before repeated use even after repeated use, and is suitable for impurity analysis in semiconductor manufacturing processes that require high accuracy. The sample accommodating member 1 and the accommodating member 5 formed as described above are subjected to decomposition sample collection in the accommodating recesses 3, 3, ... Of the sample accommodating member 1 and, if necessary, further injected with ultra-high purity water. Then, the sample storage member 1 is inserted and assembled between the step portions 9 on both sides of the hollow interior 8 of the storage member 5 to form an impurity analysis sample container arranged in the acid vapor generator. FIG. 3 is an explanatory view of an outline of a state in which the sample storage member 1 and the storage member 5 are combined and arranged in the acid vapor generator. In FIG. 3, an acid vapor generator 50
5 is a hermetically sealed container composed of a lid 51 and an upper open container 52, as in FIG. 5 of the above-mentioned conventional method, and an acid solution 53 such as HF-HNO 3 mixed acid is stored and held at the bottom. . Further, a heating means such as a heater 56 is arranged below the bottom of the apparatus 50 so as to heat the stored acid solution 53 and generate acid vapor.
【0018】上記のように、試料11を採取収容し、更
に、超高純度水12を注入後の試料収容部材1と収納部
材5とを組合せた不純物分析試料用容器10を、装置5
0の酸液中に設置してヒータ56で120〜150℃に
加熱して酸蒸気を発生させる。この場合、蒸発した酸蒸
気が装置50の蓋体51内面で凝縮して液滴として付着
して落下しても、分解試料11を採取した試料収容部材
1は、上部全面が収納部材で被われており落下液滴で汚
染されることがない。落下液滴は、収納部材5の外部円
形面を緩やかに酸液53内に流下する。収納部材5の中
空内部8を流通する酸蒸気は、収容凹部3内の超高純度
水12に吸収されて、超高純度の酸液となり試料を分解
する。酸蒸気分解に用いる一般的な試薬液中の不純物量
(ppb)は、表1に示す通りであり、高純度フッ化水
素酸(HF)の不純物含有量は、一般分析用試薬のフッ
化水素酸に比較すれば著しく低減されているが、高純度
水に比較すると極めて多い。しかも、高純度フッ化水素
酸は高純度水に比し1000倍も高価である。本発明に
おいては、低廉な一般的な分析用フッ化水素酸と高純度
水を用いて、pptオーダで不純物含有量の定量分析が
可能であり、生産効率の向上を図ることができる。As described above, the sample container 11 for collecting and storing the sample 11 and further combining the sample storing member 1 and the storing member 5 after the injection of the ultra high purity water 12 is combined with the device 10 for the impurity analysis sample, and the apparatus 5 is used.
It is installed in an acid solution of 0 and heated by a heater 56 to 120 to 150 ° C. to generate an acid vapor. In this case, even if the vaporized acid vapor condenses on the inner surface of the lid 51 of the apparatus 50 and adheres and drops as droplets, the sample housing member 1 in which the decomposition sample 11 is collected is covered with the housing member on the entire upper surface. Therefore, it is not contaminated by falling liquid drops. The falling liquid drops gently flow down into the acid liquid 53 on the outer circular surface of the storage member 5. The acid vapor flowing through the hollow interior 8 of the storage member 5 is absorbed by the ultrahigh-purity water 12 in the accommodation recess 3 to become an ultrahigh-purity acid solution and decomposes the sample. The amount of impurities (ppb) in a general reagent solution used for acid vapor decomposition is as shown in Table 1, and the impurity content of high-purity hydrofluoric acid (HF) is the hydrogen fluoride of a general analytical reagent. Although it is remarkably reduced as compared with acid, it is extremely high as compared with high-purity water. Moreover, high-purity hydrofluoric acid is 1000 times more expensive than high-purity water. In the present invention, it is possible to quantitatively analyze the impurity content on the ppt order using inexpensive general hydrofluoric acid for analysis and high-purity water, and it is possible to improve the production efficiency.
【0019】[0019]
【表1】 [Table 1]
【0020】上記のように不純物分析試料を酸蒸気で分
解処理する場合、収納部材中空内部8では、酸蒸気発生
装置50の蓋体51と異なり外気に接することがないた
め、中空内外で温度差が顕著とならず酸蒸気の凝縮は殆
ど生じることなく酸蒸気が流通し、試料収容部材1表
面、試料収容凹部3、不純物分析試料11及び超高純度
水12を汚染することがない。更に、中空内部8の上面
は外形面と同様に半円の曲面に形成されているため、微
量の酸蒸気凝縮液滴が付着しても曲面を滑り流下し段部
9を経て底部に流れ、更に、装置50の貯留酸液53中
に流れ込ませることができ、試料収容部材1の上面は段
部9より上方であり、流下する酸液滴で汚染されること
はない。また、収納部材5の中空内部8での極僅かの酸
蒸気凝縮液滴の落下のおそれへの対処として、図示して
いないが試料収容部材の収容凹部3が形成されていない
上表面に小溝を形成、また要すればその小溝を平板体上
面周縁まで連続させて形成することにより、小溝に微量
液滴を滞留、または周縁に流通させ収納部材5の底面6
に流下させるようにしてもよい。上記したように、本発
明の不純物分析試料用容器を用いて酸蒸気分解し、その
後、濃縮−定容処理を経て、得られた残存物を、従来と
同様にフレーム原子吸光法、フレームレス原子吸光法、
ICP質量分析法、ICP発光分析法等で分析すること
により極めて高精度で含有不純物を定量的に求めること
ができる。また、図3において、試料収容凹部3に試料
11と共に超高純度水12を注入する方式を説明した
が、超高純度水12を用いることなく試料11のみを収
容して酸蒸気との接触により分解する方式においても同
様である。また、図1の試料収容凹部3中心部に、下記
する図4で示すような小窪み15を有するように形成し
て極微量試料に対応できるようにしてもよい。When the impurity analysis sample is decomposed with acid vapor as described above, unlike the lid 51 of the acid vapor generator 50, the hollow interior 8 of the storage member does not come into contact with the outside air, so that there is a temperature difference between the inside and outside of the hollow. Is not significant and acid vapor does not condense, and the acid vapor circulates without contaminating the surface of the sample containing member 1, the sample containing recess 3, the impurity analysis sample 11 and the ultra high purity water 12. Further, since the upper surface of the hollow interior 8 is formed in a curved surface of a semicircle like the outer surface, even if a small amount of condensed droplets of acid vapor adheres, it slides down the curved surface and flows to the bottom through the step 9, Further, it can be made to flow into the stored acid solution 53 of the apparatus 50, the upper surface of the sample storage member 1 is above the step portion 9, and is not contaminated by the acid droplets flowing down. Further, as a countermeasure against the risk of a very small amount of acid vapor condensed droplets falling in the hollow interior 8 of the storage member 5, although not shown, a small groove is formed on the upper surface where the storage recess 3 of the sample storage member is not formed. By forming, and if necessary, the small groove continuously up to the peripheral edge of the upper surface of the flat plate body, a small amount of liquid droplets are retained in the small groove or flowed to the peripheral edge, and the bottom surface 6 of the storage member 5 is formed.
You may make it flow down. As described above, acid vapor decomposition is carried out using the container for impurity analysis sample of the present invention, and thereafter, the obtained residue is subjected to concentration-constant volume treatment, and the obtained residue is subjected to flame atom absorption method, flameless atom as in the conventional method. Absorption method,
Impurities contained can be quantitatively determined with extremely high accuracy by analysis by ICP mass spectrometry, ICP emission spectrometry and the like. Further, in FIG. 3, the method of injecting the ultrahigh-purity water 12 together with the sample 11 into the sample-accommodating concave portion 3 has been described. However, only the sample 11 is accommodated without using the ultra-high-purity water 12 and contacted with the acid vapor. The same applies to the disassembling method. Further, it may be formed so as to have a small recess 15 as shown in FIG. 4 described below in the center of the sample accommodating concave portion 3 of FIG.
【0021】図4は、本発明のICP質量分析等分析装
置に装着可能に形成した試料収容部材の一実施例の概要
について模式的に示した平面説明図(G)及びそのH−
H線断面の端面説明図(H)である。図4において、試
料収容部材10’は、ICP質量分析装置等への装着部
13、13を下面側に有して、分析装置の試料容器形
状、通常、円盤状に形成され、中央に把手14が配置さ
れる。更に、その上面に底部が曲面状で円筒凹部に形成
した複数の試料収容凹部3、3、・・・を所定に配置さ
れ、試料収容凹部のほぼ中心部に小窪み15、15、・
・・を形成した以外は、上記図1の試料収容部材1の試
料収容部と同様である。図1の試料収容部材1と同一部
位については同一符号を付して説明は省略する。図4の
試料収容部材10’は、所定の分析装置、例えばICP
質量分析装置に装着できるように円盤2の外径、厚さ等
を適宜選択して形成すればよい。通常、外径約250m
mで、厚さ約20mmである。また、試料収容凹部3底
部中心に設けた小窪み15が、試料収容凹部3より小径
で、深さ1〜5mmで、約10〜100mm3 の容積に
形成し、例えば、従来の試料容器では分析が困難であっ
た0.05cc程度の極微量の試料分析にも対応できる
ようにしたものである。この場合、試料収容凹部3を、
円筒凹部状でなく円錐状で底部を曲面として形成するこ
とにより極微量の分析試料にも対応できるが、酸液分解
及び酸蒸気分解のためには比較的おおきな容積とするこ
とが好ましく、試料収容凹部容積を同等とすると、試料
収容凹部数、即ち採取サンプル数を同等にしようとすれ
ば肉厚が相当な厚さとなり、厚さを所定にすれば採取サ
ンプル数が減少することになる。従って、上記のように
底部に小窪みを設けることにより、使用する既存の分析
装置の試料載置部に対応させて肉厚が設定でき、採取サ
ンプル数も所定に設定でき、好ましい。FIG. 4 is a plan view (G) schematically showing an outline of an embodiment of a sample accommodating member which can be mounted on an ICP mass spectrometric analysis apparatus of the present invention and its H-.
It is an end face explanatory view (H) of the H-line cross section. In FIG. 4, the sample storage member 10 ′ has mounting portions 13, 13 for mounting on an ICP mass spectrometer and the like on the lower surface side, is formed in a sample container shape of an analyzer, usually a disk shape, and has a handle 14 at the center. Are placed. Further, a plurality of sample-accommodating recesses 3, 3, ... Formed in a cylindrical recess with a curved bottom at the upper surface thereof are arranged in a predetermined manner, and small recesses 15, 15 ,.
.. is the same as the sample storage portion of the sample storage member 1 of FIG. The same parts as those of the sample storage member 1 shown in FIG. The sample storage member 10 'shown in FIG. 4 is a predetermined analyzer, for example, ICP.
The outer diameter and thickness of the disk 2 may be appropriately selected and formed so that the disk 2 can be mounted on the mass spectrometer. Usually about 250m outside diameter
m, the thickness is about 20 mm. Further, a small recess 15 provided at the center of the bottom of the sample storage recess 3 is formed to have a smaller diameter than the sample storage recess 3 and a depth of 1 to 5 mm and a volume of about 10 to 100 mm 3. For example, in a conventional sample container, analysis is performed. It was made possible to deal with an extremely small amount of sample analysis of about 0.05 cc, which was difficult to achieve. In this case,
Although it is possible to handle an extremely small amount of analytical sample by forming the conical shape instead of the cylindrical concave shape and the bottom part as a curved surface, it is preferable to have a relatively large volume for acid liquid decomposition and acid vapor decomposition. If the volume of the recesses is made equal, if the number of recesses for containing the sample, that is, the number of sampled samples is made equal, the wall thickness becomes a considerable thickness, and if the thickness is set to a predetermined value, the number of sampled samples is reduced. Therefore, by providing the small depression at the bottom as described above, the wall thickness can be set corresponding to the sample mounting portion of the existing analyzer to be used, and the number of collected samples can be set to a predetermined value, which is preferable.
【0022】上記の図4に示した不純物分析試料用容器
は、酸分解−濃縮−定容処理、または、半導体製造工程
での薬液や純水を酸分解せずに濃縮−定容処理に用いる
ことができ、処理後、そのままICP質量分析等の分析
装置の例えば自動サンプリング装置に直接装着して不純
物の分析をすることができる。即ち、複数試料の採取か
ら、要すれば分解処理して濃縮処理、定容処理し、更に
各種分析装置による分析を、容器を移し替えることなく
本発明の不純物分析試料用容器で一貫して行うことがで
きる。従って、作業の簡素化、処理時間の短縮に加え、
容器の移し替え等による外部からの不純物混入の汚染が
極力排除できる。このため不純物定量分析の精度を著し
く高めることができる。本発明の上記不純物分析用試料
容器を用ることにより、前記の従来のICP質量分析等
の分析装置へのサンプリングでの注意の要する煩雑な操
作をなくし、汚染のおそれも解消でき、高精度で不純物
を定量分析することができる。また、作業性がよく短時
間処理できることからも半導体製造工程に組み込み生産
効率を向上させることができる。なお、図4では、試料
収容部材の試料収容凹部3、3・・・の中心部に小窪み
15を有して極微量試料に対応できるものを示したが、
上記図1に示した試料収容凹部3と同様に小窪みを形成
しない曲面底部としてもよく、取扱う試料の種類や量的
制限により適宜選択することができる。The container for impurity analysis sample shown in FIG. 4 is used for acid decomposition-concentration-constant volume treatment or concentration-constant volume treatment without acid decomposition of chemicals or pure water in the semiconductor manufacturing process. After the treatment, the impurities can be analyzed by directly mounting them on, for example, an automatic sampling device of an analyzer such as ICP mass spectrometry. That is, from the collection of a plurality of samples, if necessary, decomposition treatment, concentration treatment, constant volume treatment, and further, analysis by various analyzers is performed consistently in the impurity analysis sample container of the present invention without transferring the container. be able to. Therefore, in addition to simplifying the work and shortening the processing time,
It is possible to eliminate contamination caused by mixing impurities from the outside by transferring containers. Therefore, the precision of the impurity quantitative analysis can be remarkably improved. By using the above-mentioned sample container for impurity analysis of the present invention, the complicated operation requiring caution in sampling to the analyzer such as the conventional ICP mass spectrometry can be eliminated, the risk of contamination can be eliminated, and high accuracy can be achieved. Impurities can be quantitatively analyzed. Further, since it has good workability and can be treated for a short time, it can be incorporated into a semiconductor manufacturing process to improve production efficiency. Although FIG. 4 shows that the sample containing recesses 3 of the sample containing member have a small recess 15 at the center thereof and can handle a very small amount of sample,
Similar to the sample accommodating recess 3 shown in FIG. 1 described above, a curved bottom without a small depression may be formed, and can be appropriately selected depending on the type of sample to be handled and the quantitative limitation.
【0023】上記図4に示した試料収容部材を用いて、
酸蒸気分解−濃縮−定容−分析処理する場合には、前記
収納部材に試料収容部材10’収納して前記図3に示し
たように同様に組合せて酸蒸気分解処理を行うことがで
きる。この場合、収納部材5の大きさや形状を、円盤状
試料収容部材10’が中空内部8に収納できるように、
例えば、前記半円アーチ型の底面幅を円盤径より大きく
する等適宜選択して形成できる。酸蒸気分解処理後は、
収納部材から取り出し、同様に濃縮−定容処理し、所定
の分析装置の自動サンプリング装置に載置して分析する
ことができる。Using the sample storage member shown in FIG. 4,
In the case of acid vapor decomposition-concentration-constant volume-analytical treatment, the sample accommodating member 10 'can be accommodated in the accommodating member and the acid vapor decomposition treatment can be performed in the same manner as shown in FIG. In this case, the size and shape of the storage member 5 are set so that the disk-shaped sample storage member 10 ′ can be stored in the hollow interior 8.
For example, it can be formed by appropriately selecting the bottom width of the semicircular arch type to be larger than the disc diameter. After acid vapor decomposition treatment,
It can be taken out from the storage member, similarly subjected to concentration-constant volume processing, and placed on an automatic sampling device of a predetermined analyzer for analysis.
【0024】[0024]
実施例1
(試料収容部材の形成)PTFE単体を用いて、厚さ約
40mm、160×80(mm)の矩形平板体2で、図
1と同様に試料収容凹部3が配置された試料収容部材1
を作製した。試料収容凹部3は、直径約10mm、深さ
約37mmで、底部が曲率半径約10mmの曲面となる
ように形成した。Example 1 (Formation of Sample Containing Member) A sample accommodating member in which a sample accommodating concave portion 3 is arranged in the same manner as in FIG. 1 with a rectangular flat plate body 2 having a thickness of about 40 mm and 160 × 80 (mm) using PTFE alone. 1
Was produced. The sample-accommodating recessed portion 3 had a diameter of about 10 mm, a depth of about 37 mm, and a bottom portion formed to have a curved surface with a radius of curvature of about 10 mm.
【0025】(収納部材の形成)同様にPTEF単体を
用い、図2に示した収納部材と同様に、全高が約102
mm、長軸方向長さ180mm、周壁厚さを8mm、下
部に長軸方向に高さ約6mmで幅約5mmの段部9を設
けた底面6を有する中空半円アーチ型筒状の収納部材5
を作製した。段部9上方の中空幅は82mmで上部は内
径が約46mmの半円形に形成した。(Formation of Storage Member) Similar to the storage member shown in FIG. 2, a single PTEF is used, and the total height is about 102.
mm, the length in the major axis direction is 180 mm, the thickness of the peripheral wall is 8 mm, and the hollow semicircular arch-shaped cylindrical storage member has a bottom surface 6 provided with a step portion 9 having a height of about 6 mm and a width of about 5 mm in the lower part in the lower part. 5
Was produced. The hollow width above the stepped portion 9 was 82 mm, and the upper portion was formed in a semicircular shape having an inner diameter of about 46 mm.
【0026】上記で作製した試料収容部材1の各試料収
容凹部3、3、・・・に、分析試料として合成石英、ポ
リシリコン及びSiC−Si材の粉末を、それぞれ1.
0g採取し、更に、イオン交換−逆浸透膜精製の前記表
1に示した不純物量の高純度水を10ml注入した。そ
の後、上記の収納部材5の中空内部に装入して不純物分
析試料用容器10を組合せ、図3に示したように酸蒸気
発生装置50に設置した。酸蒸気発生装置50には、弘
田化学工業製の半導体用試薬のフッ化水素酸及び硝酸を
それぞれ50重量%と50重量%で含有させたHF−H
NO3 溶液を200ml貯留した。下方に配置したホッ
トプレートヒータ56で約150℃に加温して20時間
保持した。その後、室温まで放冷し、容器10を取り出
し、更に、そのまま、収納部材底面6下方から加熱して
試料収容凹部3内の残留物を蒸発乾固した。放冷後、適
量の純水により、試料収容凹部3内の極微量の残存物を
回収して元素分析した。元素の定量分析には、AT−3
00型オートサンプラー及びEV−300型加熱気化導
入装置を取付けたセイコー電子工業製SPQ−8000
A型ICP質量処理装置に取付け使用して測定した。測
定はクリーンルーム(クリーンクラス103 )で実施し
た。その結果を表2に示した。なお、表2中の試料番号
1〜3はサンプリング箇所の違いを示したものである。.. of synthetic quartz, polysilicon, and SiC--Si material as analytical samples are respectively placed in the respective sample accommodating recesses 3, 3, ... Of the sample accommodating member 1 produced above.
0 g was collected, and 10 ml of high-purity water having the amount of impurities shown in Table 1 for ion exchange-reverse osmosis membrane purification was injected. Then, the container 10 for the impurity analysis sample was inserted into the hollow inside of the above-mentioned storage member 5 and assembled, and the container 10 was installed in the acid vapor generator 50 as shown in FIG. The acid vapor generator 50 contains HF-H containing 50% by weight and 50% by weight of hydrofluoric acid and nitric acid, which are reagents for semiconductors manufactured by Hirota Chemical Industries, Ltd., respectively.
200 ml of NO 3 solution was stored. The hot plate heater 56 arranged below was heated to about 150 ° C. and kept for 20 hours. Then, it was left to cool to room temperature, the container 10 was taken out, and further, as it was, it was heated from below the bottom surface 6 of the storage member to evaporate the residue in the sample storage recess 3 to dryness. After allowing to cool, a trace amount of the residual substance in the sample-accommodating concave portion 3 was recovered with an appropriate amount of pure water and elemental analysis was performed. AT-3 for quantitative analysis of elements
Seiko Denshi Kogyo SPQ-8000 equipped with 00 type auto sampler and EV-300 type heating vaporization introducing device
It was measured by mounting it on an A-type ICP mass processing device. The measurement was carried out in a clean room (clean class 10 3 ). The results are shown in Table 2. In addition, sample numbers 1 to 3 in Table 2 show differences in sampling points.
【0027】[0027]
【表2】 [Table 2]
【0028】実施例2
試料収容部材として、前記ICP質量分析装置のAT−
300型オートサンプラーの試料用ターンテーブルにセ
ットできるように、図4に示したものと同様の円盤状試
料収容部材10’を、PTFE単体を用いて作製した。
作製した円盤状試料収容部材10’は、厚さ20mm、
直径φ250mmのPTFE製円板に、図4に示したよ
うに、ICP質量分析装置への装着部13を所定に形成
し、直径φ15mmの円筒状で曲面底部の収容凹部3を
形成し、形成した各収容凹部3の底部に、更に直径φ6
mmの小窪み15を曲面状に形成した。また、収納部材
5は、蒸気の円盤状試料収容部材10’を収納できるよ
うに底面6の幅を約205mmし、それに合わせて上部
半円径を変えて形成した以外は実施例1と同様にして形
成した。Example 2 As a sample accommodating member, AT-of the ICP mass spectrometer was used.
A disk-shaped sample accommodating member 10 ′ similar to that shown in FIG. 4 was prepared by using PTFE alone so that it could be set on the sample turntable of the 300 type autosampler.
The prepared disk-shaped sample accommodating member 10 ′ has a thickness of 20 mm,
As shown in FIG. 4, a mounting part 13 for mounting on an ICP mass spectrometer was formed in a predetermined shape on a PTFE disk having a diameter of 250 mm, and a cylindrical storage recess 3 having a diameter of 15 mm was formed at the bottom of the curved surface. At the bottom of each accommodation recess 3, a diameter of φ6
The mm small recess 15 was formed into a curved surface. The storage member 5 is similar to that of the first embodiment except that the bottom surface 6 has a width of about 205 mm so that the vapor disk-shaped sample storage member 10 'can be stored, and the upper semicircle diameter is changed accordingly. Formed.
【0029】上記で形成した円盤状試料収容部材10’
の各収納凹部3に、単結晶シリコンを粉末にして1.0
g秤量採取して収容し、高純度水を加えることなくその
ままとした以外は、実施例1と同様にして収納部材5と
共に不純物分析試料用容器10を組合わせて形成し酸蒸
気分解処理した。その後の加熱濃縮、高純度水による定
容処理して、ICP質量分析を同様に行い、不純物含有
量を測定した。このようにした不純物の定量分析を試料
A〜Dの4種の単結晶シリコンについて実施した。その
結果を表3に示した。表3から実施例より明らかなよう
に、本発明の不純物分析試料用容器を用いた不純物分析
では、従来の分析法では困難であった1pptレベルで
の定量が可能であることが分かる。The disk-shaped sample accommodating member 10 'formed above
Powdered single crystal silicon into each storage recess 3 of
g Weighed and collected, housed, and stored as it was without adding high-purity water, and in the same manner as in Example 1, a container 10 for impurity analysis sample was formed in combination with the housing member 5 and subjected to acid vapor decomposition treatment. Thereafter, heat concentration and constant volume treatment with high-purity water were performed, and ICP mass spectrometry was performed in the same manner to measure the impurity content. The quantitative analysis of impurities thus performed was performed on the four types of single crystal silicon of Samples A to D. The results are shown in Table 3. As is clear from the examples in Table 3, it is understood that the impurity analysis using the container for impurity analysis sample of the present invention enables quantification at the level of 1 ppt, which was difficult by the conventional analysis method.
【0030】[0030]
【表3】 [Table 3]
【0031】[0031]
【発明の効果】本発明の不純物分析試料用容器は、試料
収容部材とそれを収納して被う収納部材とを組合わせて
用いて酸蒸気発生装置に配設して、試料を酸蒸気分解す
ることができることから、酸蒸気の凝縮液滴の落下によ
る汚染がなく、また、好ましくは各部材を不純物溶出量
が極めて少ないPTFE材を用いて形成できることから
も、高精度に不純物を定量分析できる。また、試料収容
部材をICP質量分析装置の試料セット部材として装着
できるように形成することにより、試料の採取、酸蒸気
分解、濃縮及び定容処理の全処理を同一容器で行うこと
ができ、更に、定量分析も同一容器からサンプリングで
きることから、従来の煩雑な作業工程を排除でき簡素化
が著しく作業効率の向上が図れる。また、酸蒸気分解に
比較的低廉な高純度水と一般分析用純度のフッ化水素酸
を用いてpptオーダで不純物を定量分析でき経費が嵩
むこともない。このため、最終的性能に不純物含有量が
大きく影響する半導体製造工程で定不純物定量分析とし
て組み入れることができ、生産効率を向上させることが
できる。The container for impurity analysis sample according to the present invention is arranged in the acid vapor generator using a combination of a sample accommodating member and an accommodating member covering and accommodating the sample accommodating member to decompose the sample with an acid vapor. Therefore, there is no contamination due to the drop of condensed droplets of acid vapor, and preferably, each member can be formed using a PTFE material having an extremely small amount of impurity elution, and therefore, impurities can be quantitatively analyzed with high accuracy. . Further, by forming the sample accommodating member so that it can be mounted as a sample setting member of an ICP mass spectrometer, all processes of sample collection, acid vapor decomposition, concentration and constant volume treatment can be performed in the same container. Since the quantitative analysis can be sampled from the same container, the conventional complicated work steps can be eliminated and the simplification can be remarkably improved to improve the work efficiency. Further, it is possible to quantitatively analyze impurities on the ppt order using high-purity water, which is relatively inexpensive for acid vapor decomposition, and hydrofluoric acid having a purity for general analysis, and the cost does not increase. Therefore, it can be incorporated as a constant impurity quantitative analysis in the semiconductor manufacturing process in which the impurity content greatly affects the final performance, and the production efficiency can be improved.
【図1】本発明の試料収容部材の一実施例を模式的に示
した平面説明図(A)、そのB−B線断面説明図(B)
及び斜視説明図(C)FIG. 1 is an explanatory plan view (A) schematically showing an embodiment of a sample storage member of the present invention, and an explanatory view (B) taken along the line BB thereof.
And perspective explanatory view (C)
【図2】本発明の収納部材の一実施例を模式的に示した
正面説明図(D)、側面説明図(E)及び斜視説明図
(F)FIG. 2 is a front explanatory view (D), a side explanatory view (E) and a perspective explanatory view (F) schematically showing an embodiment of a storage member of the present invention.
【図3】本発明の試料収容部材及び収納部材を組合せて
不純物分析試料用容器を形成して、酸蒸気発生装置内に
配設した状態の説明図FIG. 3 is an explanatory view of a state in which a sample storage member of the present invention and a storage member are combined to form an impurity analysis sample container, and the container is placed in an acid vapor generator.
【図4】本発明の他の試料収容部材の実施例を模式的に
示した平面説明図(G)及びそのH−H線断面の端面説
明図(H)FIG. 4 is an explanatory plan view (G) schematically showing an embodiment of another sample storage member of the present invention and an end face explanatory view (H) taken along the line HH.
【図5】従来の酸蒸気発生分解装置の一例を模式的に示
した縦断面説明図FIG. 5 is an explanatory longitudinal sectional view schematically showing an example of a conventional acid vapor generating / decomposing apparatus.
K ノブ 1、10’ 試料収容部材 2 平板体 3 試料収容凹部 5 収納部材 6 収納底面 7 開口部 8 中空内部 9 段部 10 不純物分析試料用容器 11 分析試料 12 高純度水 13 装着部 14 把手 15 小窪み 50 酸蒸気発生装置 51 蓋体 52 上部開放容器 53 酸液 54 分解試料 55 試料容器 56 ヒータ K knob 1, 10 'sample storage member 2 flat plate 3 Sample storage recess 5 storage members 6 Storage bottom 7 openings 8 hollow inside 9 steps 10 Impurity analysis sample container 11 Analytical samples 12 High-purity water 13 Mounting part 14 Handle 15 Small depression 50 acid vapor generator 51 lid 52 Top open container 53 Acid solution 54 Decomposition sample 55 Sample container 56 heater
フロントページの続き (72)発明者 嶋貫 和彦 山形県西置賜郡小国町大字小国町378番 地 東芝セラミックス株式会社 小国製 造所内 (72)発明者 濱野 力 山形県西置賜郡小国町大字小国町378番 地 東芝セラミックス株式会社 小国製 造所内 (56)参考文献 特開 昭61−221649(JP,A) 特開 平8−145858(JP,A) 特開 平7−333121(JP,A) 特開 平2−192750(JP,A) 実開 昭63−120165(JP,U) 実開 昭63−120164(JP,U) 実開 昭63−8659(JP,U) 実開 昭60−128733(JP,U) 実開 平5−3976(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 1/28 G01N 21/73 G01N 27/62 G01N 33/00 JICSTファイル(JOIS)Front page continuation (72) Inventor Kazuhiko Shimanuki, Oguni Town, Oguni Town, Nishikitama District, Yamagata Prefecture, 378 Oguni Factory, Toshiba Ceramics Co., Ltd. (72) Riki Hamano 378, Oguni Town, Oguni Town, Nishiokitama District, Yamagata Prefecture Toshiba Ceramics Co., Ltd. Oguni Manufacturing Co., Ltd. (56) Reference JP 61-221649 (JP, A) JP 8-145858 (JP, A) JP 7-333121 (JP, A) JP 2 -192750 (JP, A) Actual Open 63-120165 (JP, U) Actual Open 63-120164 (JP, U) Actual Open 63-8659 (JP, U) Actual Open 60-128733 (JP, U) ) Actual Kaihei 5-3976 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 1/28 G01N 21/73 G01N 27/62 G01N 33/00 JISST file (JOIS)
Claims (7)
発生装置内に配置される容器であって、試料収容部材と
収納部材との組合せであり、該収納部材が中空体で中空
内部を外部酸蒸気が流通自在となるように開口部を有
し、酸蒸気分解時に該収納部材の上部外形および中空内
部上面が滑らかな液流下が可能に形成されると共に、該
試料収容部材が平板体で表面に曲面底部の試料収容凹部
が1または2以上凹設され、該収納部材の中空内部に収
納されて保持されることを特徴とする不純物分析試料用
容器。1. A container for accommodating a sample to be decomposed by an acid vapor and arranged in an acid vapor generator, which is a combination of a sample accommodating member and a accommodating member, wherein the accommodating member is a hollow body having a hollow interior. has an opening to the outside acid vapor is freely flowing, upper contour and hollow of the housing member during acid vapor decomposed
The upper surface of the part is formed so that the liquid can flow smoothly, and the sample storage member is a flat plate body, and one or more sample storage recesses at the bottom of the curved surface are provided on the surface, and the sample storage member is stored in the hollow inside of the storage member. A container for an impurity analysis sample, which is held.
テトラフルオロエチレン製である請求項1記載の不純物
分析試料用容器。2. The impurity analysis sample container according to claim 1, wherein the sample storage member and the storage member are made of polytetrafluoroethylene.
筒形であり、半円筒形の平坦部を底部として前記酸蒸気
発生装置に配設して、該平坦部の筒内部面が前記酸蒸気
発生装置の酸液表面より上部となる厚さを有して形成さ
れる共に該筒内部面に前記試料収容部材の配置部を有す
る請求項1または2記載の不純物分析試料用容器。3. The storage member has a semi-cylindrical shape with both ends open, and a semi-cylindrical flat portion is disposed as a bottom portion in the acid vapor generating device, and the inner surface of the flat portion has a cylindrical shape. The container for impurity analysis sample according to claim 1 or 2, which is formed to have a thickness above the surface of the acid liquid of the acid vapor generator and has an arrangement portion for the sample storage member on the inner surface of the cylinder.
心部に小さな窪みを有する請求項1〜3のいずれか記載
の不純物分析試料用容器。4. The container for impurity analysis sample according to claim 1, wherein the sample storage member has a small recess at the center of the curved bottom.
mの曲面凹部であることを特徴とする請求項4記載の不
純物分析試料用容器。5. The small recess has an opening diameter of φ2 to 10 m.
The container for impurity analysis sample according to claim 4, wherein the container is a curved concave portion of m.
分析試料容器に用いられる試料収容用部材であって、ほ
ぼ円盤形状で上平面に試料収容凹部が曲面底部を有して
凹設されると共に、分析装置の試料載置部に装着可能に
一体的に形成されてなることを特徴とする試料収容部
材。6. Impurity according to any one of claims 1 to 5.
A sample storage member used in an analysis sample container , which is substantially disk-shaped and has a sample storage recess on the upper flat surface with a curved bottom and is integrally mountable on the sample mounting part of the analyzer. The sample storage part is characterized in that
Material .
置、ICP質量分析装置、原子吸光−フレーム分析装置
または原子吸光−フレームレス分析装置であり、前記試
料載置部が自動サンプリング装置である請求項6記載の
試料収容部材。7. The analysis device is an ICP-emission analysis device, an ICP mass analysis device, an atomic absorption-frame analysis device or an atomic absorption-frameless analysis device, and the sample mounting part is an automatic sampling device. Item 6
Sample storage member .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07059197A JP3414976B2 (en) | 1997-03-07 | 1997-03-07 | Impurity analysis sample container and sample storage member used therein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07059197A JP3414976B2 (en) | 1997-03-07 | 1997-03-07 | Impurity analysis sample container and sample storage member used therein |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10253511A JPH10253511A (en) | 1998-09-25 |
JP3414976B2 true JP3414976B2 (en) | 2003-06-09 |
Family
ID=13435961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07059197A Expired - Lifetime JP3414976B2 (en) | 1997-03-07 | 1997-03-07 | Impurity analysis sample container and sample storage member used therein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3414976B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000193570A (en) * | 1998-09-24 | 2000-07-14 | Toshiba Ceramics Co Ltd | Sample treating device for highly sensitive analysis of impurities in siliceous sample to be analyzed, and analyzing method using the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010066251A (en) * | 2008-08-12 | 2010-03-25 | Mitsubishi Materials Corp | Device and method for analyzing chlorosilanes |
JP6732595B2 (en) * | 2016-08-04 | 2020-07-29 | 株式会社トクヤマ | Method for measuring metal impurity concentration in polycrystalline silicon |
CN106404488B (en) * | 2016-10-25 | 2018-11-27 | 中国水产科学研究院黄海水产研究所 | A kind of smoked device of multilayer acid of closed controllable release acid vapor |
JP7350632B2 (en) * | 2019-11-18 | 2023-09-26 | 株式会社住化分析センター | Analysis methods and kits |
JP2021196190A (en) * | 2020-06-10 | 2021-12-27 | 株式会社Sumco | Analysis container, method for analyzing semiconductor sample, and method for manufacturing semiconductor substrate |
-
1997
- 1997-03-07 JP JP07059197A patent/JP3414976B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000193570A (en) * | 1998-09-24 | 2000-07-14 | Toshiba Ceramics Co Ltd | Sample treating device for highly sensitive analysis of impurities in siliceous sample to be analyzed, and analyzing method using the same |
JP3476373B2 (en) | 1998-09-24 | 2003-12-10 | 東芝セラミックス株式会社 | Sample processor for highly sensitive analysis of impurities in siliconaceous analysis sample and analysis method using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH10253511A (en) | 1998-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3051023B2 (en) | Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample | |
EP0787981B1 (en) | Impurity measuring method | |
EP0137409B1 (en) | Resolution device for semiconductor thin films | |
JP3414976B2 (en) | Impurity analysis sample container and sample storage member used therein | |
JP2978192B2 (en) | Semiconductor wafer sample preparation method | |
JP2004340685A (en) | Method for evaluating semiconductor wafer housing container | |
JP4693268B2 (en) | Sample water quality evaluation method | |
JP4073138B2 (en) | Method for analyzing metals contained in quartz | |
JP2004335955A (en) | METHOD FOR DETECTING CONCENTRATION OF Cu ON SILICON SUBSTRATE | |
JP3804864B2 (en) | Impurity analysis method | |
JP2843600B2 (en) | Method for measuring the amount of impurities on the wafer surface | |
US6609415B2 (en) | Method of evaluating adsorption of contaminant on solid surface | |
JP5645601B2 (en) | Water quality evaluation method | |
JP3890047B2 (en) | Method for analyzing metal in quartz and jig for analysis | |
JP2000292326A (en) | Method for manufacturing analyzing sample for metal impurity contained in synthetic resin, and measuring method of metal impurity using it | |
JP3476373B2 (en) | Sample processor for highly sensitive analysis of impurities in siliconaceous analysis sample and analysis method using the same | |
JPH01189558A (en) | Analyzing method of surface of si semiconductor substrate | |
JP5661348B2 (en) | Water quality evaluation apparatus and water quality evaluation method | |
JP3345121B2 (en) | Method and apparatus for analyzing trace components of solid sample | |
KR20000067357A (en) | Method for collection contamination sample of semiconductor wafers surface | |
JPS63195540A (en) | Dissolving device for semiconductor thin film | |
JP2002289660A (en) | Method for evaluating semiconductor wafer and its evaluation apparatus | |
Balaram et al. | Analysis of sub-boil distilled water, hydrochloric and nitric acid for trace element impurities by ICP-MS | |
JPH01280249A (en) | Reaction apparatus for surface analysis of si semiconductor substrate | |
JPS612040A (en) | Dissolving device of semiconductor thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080404 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080404 Year of fee payment: 5 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080404 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090404 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090404 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100404 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140404 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |