JP5661348B2 - Water quality evaluation apparatus and water quality evaluation method - Google Patents

Water quality evaluation apparatus and water quality evaluation method Download PDF

Info

Publication number
JP5661348B2
JP5661348B2 JP2010147459A JP2010147459A JP5661348B2 JP 5661348 B2 JP5661348 B2 JP 5661348B2 JP 2010147459 A JP2010147459 A JP 2010147459A JP 2010147459 A JP2010147459 A JP 2010147459A JP 5661348 B2 JP5661348 B2 JP 5661348B2
Authority
JP
Japan
Prior art keywords
sealed space
substrate
sample water
quality evaluation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010147459A
Other languages
Japanese (ja)
Other versions
JP2012013430A (en
Inventor
由紀子 猪俣
由紀子 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2010147459A priority Critical patent/JP5661348B2/en
Publication of JP2012013430A publication Critical patent/JP2012013430A/en
Application granted granted Critical
Publication of JP5661348B2 publication Critical patent/JP5661348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、超純水などの試料水の水質評価装置および水質評価方法に関する。   The present invention relates to a water quality evaluation apparatus and a water quality evaluation method for sample water such as ultrapure water.

近年、半導体製造や薬品製造等の分野で汎用されている超純水には、さらなる高純度化が要求されている。そのために、超純水の製造において、目的の水質が維持されていることを確認するための水質管理が行われており、超純水中に含まれるイオン、金属類、微粒子、生菌、シリカ、全有機炭素(TOC)等が各種分析装置によって分析されている。   In recent years, ultrapure water that is widely used in fields such as semiconductor manufacturing and chemical manufacturing has been required to have higher purity. Therefore, in the production of ultrapure water, water quality management is performed to confirm that the target water quality is maintained. Ions, metals, fine particles, viable bacteria, silica contained in ultrapure water Total organic carbon (TOC) and the like are analyzed by various analyzers.

特に、半導体製造の分野で洗浄用などに用いられている超純水は、その中に含まれる不純物が製品の品質や歩留まりに影響するため、より正確な分析が必要とされている。   In particular, ultrapure water used for cleaning or the like in the field of semiconductor manufacturing requires more accurate analysis because impurities contained therein affect the quality and yield of the product.

このような超純水の水質評価方法として、超純水のユースポイントから容器等に採取した超純水を分析する方法が知られている。しかしながら、この方法は、超純水そのものを分析する方法であるため、その超純水が特定の基板に与える影響を直接評価することは困難である。   As such a method for evaluating the quality of ultrapure water, a method of analyzing ultrapure water collected in a container or the like from a use point of ultrapure water is known. However, since this method is a method of analyzing ultrapure water itself, it is difficult to directly evaluate the influence of the ultrapure water on a specific substrate.

これに対して、特許文献1〜3に記載されているように、超純水を接触させたシリコン基板の表面を分析する提案がいくつかなされている。例えば、特許文献3には、内部にシリコン基板を収容するとともに、試料水である超純水を通水しながら貯留可能な採取容器を備え、採取容器を密閉状態で搬送可能な水質評価装置と、それを用いた水質評価方法とが開示されている。この水質評価方法によれば、上述の採取容器を用いて超純水中に含まれる不純物をシリコン基板上に採取して、その基板表面を正確に分析することで、超純水中の不純物のシリコン基板への影響を正しく評価することが行われている。   On the other hand, as described in Patent Documents 1 to 3, some proposals have been made to analyze the surface of a silicon substrate in contact with ultrapure water. For example, Patent Document 3 includes a water quality evaluation apparatus that includes a collection container that can store a silicon substrate inside while storing ultrapure water as sample water, and can convey the collection container in a sealed state. And a water quality evaluation method using the same. According to this water quality evaluation method, impurities contained in ultrapure water are collected on a silicon substrate using the above-described collection container, and the substrate surface is accurately analyzed, so that impurities in ultrapure water can be analyzed. A correct evaluation of the influence on the silicon substrate has been made.

特開平4−147060号公報JP-A-4-147060 特開平5−251542号公報Japanese Patent Laid-Open No. 5-251542 特開2002−296269号公報JP 2002-296269 A

特許文献3に記載の水質評価方法では、試料水である超純水を採取容器の基板出入口からオーバーフローさせることで、試料水を採取容器に通水し、シリコン基板に接触させている。すなわち、上述の方法では、蓋によって閉鎖され、搬送時には密閉状態となっている採取容器の基板出入口を試料水採取時に開放する作業が必要となる。しがたって、より正確な分析を行うためには、採取容器を清浄度の高い雰囲気中に設置して、上述の作業を行う必要がある。しかしながら、試料水(超純水)のユースポイントにおいては、採取容器が設置された清浄度の高い雰囲気を保持した状態で上述の作業を行うことは困難であり、そのため、試料水以外からの不純物が基板に付着してしまい、正確な分析を行えないことが問題であった。   In the water quality evaluation method described in Patent Document 3, the sample water is passed through the collection container and brought into contact with the silicon substrate by overflowing ultrapure water as sample water from the substrate inlet / outlet of the collection container. That is, in the above-described method, it is necessary to open the substrate inlet / outlet of the collection container which is closed by the lid and is in a sealed state at the time of transportation when the sample water is collected. Therefore, in order to perform more accurate analysis, it is necessary to install the collection container in an atmosphere with high cleanliness and perform the above-described operation. However, at the point of use of sample water (ultra-pure water), it is difficult to perform the above-described operation in a state where the collection container is installed and a clean atmosphere is maintained. Is attached to the substrate and cannot be accurately analyzed.

そこで、本発明の目的は、超純水などの高純度な試料水を基板に接触させる際に、試料水以外に起因する不純物の付着を抑制することで、試料水中に含まれる不純物による基板への影響を正確に評価することができる水質評価装置および水質評価方法を提供することである。   Accordingly, an object of the present invention is to suppress adhesion of impurities originating from other than sample water when contacting high purity sample water such as ultrapure water with the substrate, thereby allowing the substrate to contain impurities due to impurities contained in the sample water. Is to provide a water quality evaluation apparatus and a water quality evaluation method capable of accurately evaluating the influence of water.

上述した目的を達成するために、本発明の水質評価装置は、基板を収容するとともに試料水を貯留する密閉空間が内部に形成された持ち運び可能な採取容器を有し、密閉空間で基板を試料水に浸漬させて試料水中の不純物を基板上に採取することによって試料水の水質を評価する水質評価装置であって、採取容器が、基板出入口を備えた容器本体と、基板出入口を閉鎖して、容器本体と共に密閉空間を形成する蓋部材と、密閉空間に試料水と清浄空気とを流通させる流体流通手段と、を有し、流体流通手段が、密閉空間に試料水を流入させる第1の流通口と、密閉空間に流入した試料水を流出させ、清浄空気を密閉空間に流入させる第2の流通口と、第1の流通口および第2の流通口にそれぞれ設けられた開閉手段であって、開放時に密閉空間と外部とを連通し、閉鎖時に密閉空間と外部との連通を遮断して、密閉空間の密閉状態を保持する開閉手段を有し、第2の流通口が、密閉空間に収容された位置での基板の上端よりも鉛直方向上方で、密閉空間に開口しているIn order to achieve the above-described object, the water quality evaluation apparatus of the present invention has a portable collection container in which a sealed space for storing a sample water is stored, and the substrate is sampled in the sealed space. A water quality evaluation apparatus that evaluates the quality of sample water by immersing it in water and collecting impurities in the sample water on a substrate, wherein the collection container closes the substrate main body and the substrate inlet / outlet with the substrate inlet / outlet And a lid member that forms a sealed space together with the container body, and a fluid circulation means for circulating the sample water and the clean air in the sealed space, wherein the fluid circulation means allows the sample water to flow into the sealed space. A circulation port, a second circulation port for allowing the sample water flowing into the sealed space to flow out, and a clean air to flow into the sealed space; and an opening / closing means provided at each of the first circulation port and the second circulation port. Te, sealed empty at the open In the communication with the outside, and cuts off the communication between the sealed space and the outside when closed, has an opening and closing means for holding the sealed state of the closed space, the second flow port is housed in the sealed space located Opening into the sealed space is vertically above the upper end of the substrate .

また、上記に記載の水質評価装置を用いた本発明の水質評価方法は、清浄度の高い雰囲気中で、採取容器の密閉空間に基板を収容する工程と、基板を収容した採取容器を試料水のユースポイントに搬送し、流体流通手段によって密閉空間に試料水を貯留しながら流出入させて、基板上に試料水中の不純物を採取する工程と、密閉空間への試料水の流出入を停止した後、流体流通手段によって密閉空間に清浄空気を導入しながら、密閉空間に貯留した試料水を排出する工程と、試料水を排出した採取容器を清浄度の高い雰囲気中に搬送し、採取容器から基板を回収し、基板上に採取された不純物を分析する工程と、を含んでいる。   Further, the water quality evaluation method of the present invention using the water quality evaluation apparatus described above includes a step of storing a substrate in a sealed space of a sampling container in an atmosphere with a high cleanliness, and a sampling container storing the substrate as a sample water. The sample water is stored in the sealed space and stored in the sealed space by the fluid circulation means, and the process of collecting impurities in the sample water on the substrate and the flow of the sample water into the sealed space are stopped. After that, while introducing clean air into the sealed space by the fluid circulation means, the process of discharging the sample water stored in the sealed space, and transporting the sampling container from which the sample water has been discharged to a clean atmosphere, Recovering the substrate and analyzing impurities collected on the substrate.

このような水質評価装置および水質評価方法では、密閉空間と外部との連通を許容および遮断する開閉手段を備えた流体流通手段によって、密閉空間の密閉状態を実質的に保持したまま、採取容器内に試料水や清浄空気を流通させる操作が可能となる。これにより、分析すべき試料水と清浄空気以外の流体が、基板を収容する密閉空間に流入する虞がなくなる。その結果、試料水以外から密閉空間内に不純物が侵入するのを抑制することができ、試料水中に含まれる不純物による基板への影響を正確に評価することが可能となる。   In such a water quality evaluation apparatus and water quality evaluation method, the fluid circulation means having the opening / closing means for allowing and blocking communication between the sealed space and the outside keeps the sealed state of the sealed space substantially in the collection container. It is possible to operate sample water and clean air through the water. This eliminates the possibility that fluids other than the sample water and clean air to be analyzed will flow into the sealed space that accommodates the substrate. As a result, impurities can be prevented from entering the sealed space from other than the sample water, and the influence of the impurities contained in the sample water on the substrate can be accurately evaluated.

以上説明したように、本発明によれば、超純水などの高純度な試料水を基板に接触させる際に、試料水以外に起因する不純物の付着を抑制することで、試料水中に含まれる不純物による基板への影響を正確に評価することができる水質評価装置および水質評価方法を提供することができる。   As described above, according to the present invention, when high-purity sample water such as ultrapure water is brought into contact with the substrate, it is contained in the sample water by suppressing the adhesion of impurities originating from other than the sample water. A water quality evaluation apparatus and a water quality evaluation method capable of accurately evaluating the influence of impurities on a substrate can be provided.

本発明の一実施形態における水質評価装置を概略的に示す正面図および側面図である。It is the front view and side view which show roughly the water quality evaluation apparatus in one Embodiment of this invention.

次に、図面を参照しながら、本発明の実施の形態について説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態における水質評価装置の概略図であり、図1(a)が正面図、図1(b)が側面図である。   FIG. 1 is a schematic view of a water quality evaluation apparatus according to an embodiment of the present invention, in which FIG. 1 (a) is a front view and FIG. 1 (b) is a side view.

本実施形態の水質評価装置1は、基板2を超純水などの高純度な試料水に浸漬させ、試料水中の不純物を基板2上に付着させて採取するための、持ち運び可能な採取容器10を有している。   The water quality evaluation apparatus 1 of the present embodiment is a portable collection container 10 for immersing a substrate 2 in high purity sample water such as ultrapure water and collecting impurities by attaching the impurities in the sample water onto the substrate 2. have.

採取容器10は、基板出入口11を備えた容器本体12と、基板出入口11を閉鎖する容器蓋(蓋部材)13とを有している。採取容器10の内部には、基板2を複数枚(本実施形態では3枚)収容するとともに、基板2を浸漬させるように試料水を貯留する密閉空間3が設けられている。密閉空間3は、容器蓋13が容器本体12の基板出入口11を閉鎖することによって形成されている。   The collection container 10 includes a container main body 12 having a substrate entrance 11 and a container lid (lid member) 13 that closes the substrate entrance 11. Inside the collection container 10, a plurality of substrates 2 (three in this embodiment) are accommodated, and a sealed space 3 in which sample water is stored so that the substrate 2 is immersed is provided. The sealed space 3 is formed by the container lid 13 closing the substrate entrance 11 of the container body 12.

密閉空間3には、密閉空間3に収容した基板2を固定するための基板固定部(固定手段)14a,14bが設けられている。基板固定部14a,14bは、容器本体12側に設けられた丸棒状の4本の基板固定棒14aと、容器蓋13側に設けられた丸棒状の基板固定棒14bとを有している。容器本体12側の基板固定棒14aは、容器本体12に基板を保持するために設けられており、容器蓋13側の基板固定棒14bは、容器蓋13が基板出入口11を閉鎖する際、すなわち、採取容器10の搬送時と試料水採取時に基板2を固定するために設けられている。   The sealed space 3 is provided with substrate fixing portions (fixing means) 14 a and 14 b for fixing the substrate 2 accommodated in the sealed space 3. The substrate fixing portions 14a and 14b have four round bar-like substrate fixing bars 14a provided on the container body 12 side, and a round bar-like substrate fixing bar 14b provided on the container lid 13 side. The substrate fixing rod 14a on the container body 12 side is provided to hold the substrate on the container body 12, and the substrate fixing rod 14b on the container lid 13 side is used when the container lid 13 closes the substrate entrance / exit 11, that is, It is provided to fix the substrate 2 when the collection container 10 is transported and when sample water is collected.

また、採取容器10は、密閉空間3に試料水や清浄空気を流通させるための流体流通手段20を有している。流体流通手段20は、密閉空間3に試料水を流入させる試料水入口(第1の流通口)30と、この試料水入口30から密閉空間3に流入した試料水を流出させる試料水出口(第2の流通口)40とを有している。試料水入口30および試料水出口40にはそれぞれ、開放時に密閉空間3と外部とを連通し、閉鎖時に密閉空間3と外部との連通を遮断して、密閉空間3の密閉状態を保持するバルブ(開閉手段)31,41が設けられている。したがって、本実施形態の採取容器10では、密閉空間3と外部との連通を許容および遮断するバルブ31,41がそれぞれ設けられた試料水入口30および試料水出口40によって、基板2を収容した密閉空間3の密閉状態を実質的に保持したまま、密閉空間3への試料水と清浄空気との流出入が可能となる。そのため、試料水以外からの不純物が基板2に付着するのを抑制することができ、試料水中に含まれる不純物による基板への影響を正確に評価することが可能となる。   The collection container 10 also has a fluid circulation means 20 for circulating sample water and clean air in the sealed space 3. The fluid circulation means 20 includes a sample water inlet (first circulation port) 30 that allows sample water to flow into the sealed space 3 and a sample water outlet (first flow port) that allows the sample water flowing from the sample water inlet 30 to flow into the sealed space 3. 2 distribution ports) 40. Each of the sample water inlet 30 and the sample water outlet 40 communicates between the sealed space 3 and the outside when opened, and shuts off the communication between the sealed space 3 and the outside when closed, thereby maintaining the sealed state of the sealed space 3. (Opening / closing means) 31 and 41 are provided. Therefore, in the collection container 10 of the present embodiment, the sealed housing that accommodates the substrate 2 by the sample water inlet 30 and the sample water outlet 40 provided with valves 31 and 41 for allowing and blocking communication between the sealed space 3 and the outside, respectively. The sample water and clean air can flow into and out of the sealed space 3 while substantially maintaining the sealed state of the space 3. Therefore, it is possible to suppress impurities from other than the sample water from adhering to the substrate 2, and it is possible to accurately evaluate the influence of the impurities contained in the sample water on the substrate.

試料水入口30および試料水出口40は、基板2が浸漬される試料水が密閉空間3に貯留しながら流出入するように、採取容器10に配置されている。すなわち、採取容器10内に収容された位置での基板2に対して、試料水出口40は、その上端よりも鉛直方向上方で、密閉空間3に開口しており、試料水入口30は、その下端よりも鉛直方向下方で、密閉空間3に開口している。これにより、試料水入口30および試料水出口40によって密閉空間3に試料水が流出入する際に、その液面は採取容器10内での基板2の上端よりも上方に位置することになり、基板2は試料水に浸漬した状態で密閉空間3に収容されることになる。なお、試料水入口30は、密閉空間3内で、複数の噴出口33を備えた試料水噴出管32に接続されており、噴出口33から試料水を密閉空間3に流入させるようになっている。また、試料水出口40には、密閉空間3から試料水出口40を通じて流出する試料水の瞬時流量や積算流量を計測する流量計42が設けられている。   The sample water inlet 30 and the sample water outlet 40 are arranged in the collection container 10 so that the sample water in which the substrate 2 is immersed flows in and out while being stored in the sealed space 3. That is, with respect to the substrate 2 at the position accommodated in the collection container 10, the sample water outlet 40 is open to the sealed space 3 vertically above the upper end, and the sample water inlet 30 is It opens into the sealed space 3 below the lower end in the vertical direction. Thereby, when the sample water flows into and out of the sealed space 3 by the sample water inlet 30 and the sample water outlet 40, the liquid level is located above the upper end of the substrate 2 in the collection container 10, The board | substrate 2 is accommodated in the sealed space 3 in the state immersed in sample water. The sample water inlet 30 is connected to a sample water ejection pipe 32 having a plurality of ejection ports 33 in the sealed space 3, and allows sample water to flow into the sealed space 3 from the ejection ports 33. Yes. The sample water outlet 40 is provided with a flow meter 42 for measuring the instantaneous flow rate and integrated flow rate of the sample water flowing out from the sealed space 3 through the sample water outlet 40.

さらに採取容器10は、密閉空間3に貯留した試料水を排出する試料水ドレイン(排出口)50を有している。試料水ドレイン50には、試料水入口30および試料水出口40と同様に、密閉空間3と外部との連通を許容および遮断するバルブ51が設けられており、このバルブ51を閉鎖することで、密閉空間3の密閉状態を保持するようになっている。試料水ドレイン50は、密閉空間3の底面に開口していることが好ましく、特に、本実施形態のように、基板2の形状に合わせて半円形に形成された、密閉空間3の底面の最低部に開口していることがより好ましい。これにより、密閉空間3に貯留した試料水を容易に排出することが可能となる。   Further, the collection container 10 has a sample water drain (discharge port) 50 for discharging the sample water stored in the sealed space 3. Similar to the sample water inlet 30 and the sample water outlet 40, the sample water drain 50 is provided with a valve 51 that allows and blocks communication between the sealed space 3 and the outside. By closing the valve 51, The sealed state of the sealed space 3 is maintained. The sample water drain 50 is preferably open to the bottom surface of the sealed space 3, and in particular, the lowest of the bottom surface of the sealed space 3 formed in a semicircular shape according to the shape of the substrate 2 as in this embodiment. It is more preferable to open to the part. Thereby, the sample water stored in the sealed space 3 can be easily discharged.

次に、引き続き図1を参照して、本実施形態の水質評価装置を用いた、試料水の水質評価方法について説明する。   Next, with reference to FIG. 1, the water quality evaluation method of sample water using the water quality evaluation apparatus of this embodiment is demonstrated.

(ステップ1)まず、採取容器10を清浄度の高い雰囲気中に設置して、容器本体12から容器蓋13を取り外し、容器本体12の基板出入口11から、1枚または複数枚の基板2を容器本体12内に収容する。このとき、基板2は、容器本体12側の基板固定棒14aに固定される。その後、容器本体12の基板出入口11を容器蓋8で閉鎖して、採取容器10内の密閉空間3を密閉状態とする。   (Step 1) First, the collection container 10 is placed in a clean atmosphere, the container lid 13 is removed from the container body 12, and one or more substrates 2 are placed in the container from the substrate entrance 11 of the container body 12. Housed in the main body 12. At this time, the substrate 2 is fixed to the substrate fixing rod 14a on the container body 12 side. Thereafter, the substrate entrance / exit 11 of the container body 12 is closed with the container lid 8, and the sealed space 3 in the collection container 10 is sealed.

なお、ここでいう清浄度の高い雰囲気は、空気中の不純物(浮遊微粒子やガス状汚染物)が除去された環境を意味し、本実施形態では、日本工業規格(JIS)B9920に準拠したクラス5よりも清浄な環境を意味する。ここでいうクラスは、クリーンルームおよびこれに関連する制御された環境の空気清浄度の浮遊微粒子濃度を示す指標であり、対象粒径に対する上限濃度(空気1m3当たりの粒子数)を表している。例えば、クラス5は、空気1m3当たりに0.5μmの微粒子が3520個未満存在する状態を表している。したがって、クラスの値が小さいほど、空気の清浄度が高いことを示している。 In addition, the atmosphere with a high cleanliness here means the environment from which impurities (airborne particulates and gaseous contaminants) in the air are removed, and in this embodiment, the class conforming to the Japanese Industrial Standard (JIS) B9920. Means an environment cleaner than 5. The class here is an index indicating the concentration of suspended fine particles of air cleanliness in a clean room and a controlled environment related thereto, and represents the upper limit concentration (number of particles per 1 m 3 of air) with respect to the target particle size. For example, class 5 represents a state where there are less than 3520 0.5 μm fine particles per 1 m 3 of air. Therefore, the smaller the class value, the higher the cleanliness of the air.

上述のJIS B9920によれば、空気清浄度は浮遊微粒子のみによって規定されるが、本実施形態における清浄度の高い雰囲気として、ケミカルフィルタを用いて空気中のガス状汚染物も除去された環境が好ましいことは言うまでもない。   According to the above-mentioned JIS B9920, the air cleanliness is defined only by airborne particles, but as an atmosphere with a high cleanliness in this embodiment, there is an environment in which gaseous contaminants in the air are also removed using a chemical filter. Needless to say, it is preferable.

(ステップ2)次に、基板2を収容した採取容器10を試料水(超純水)のユースポイントに搬送し、ユースポイントに連結した試料水導入管(図示せず)と採取容器10の試料水入口30とを接続する。その後、試料水入口30のバルブ31を開放し、試料水導入管を流れる試料水を、試料水入口30に接続された試料水噴出管32の複数の噴出口33から採取容器10内の密閉空間3に流入させる。それと同時に、試料水出口40のバルブ41を開放することで、密閉空間3に流入した試料水を試料水出口40を通じて外部に流出させる。こうして、試料水を密閉空間3に貯留させながら流出入させることで、密閉空間3に収容された基板2に試料水を接触させ、試料水中の不純物を基板2上に採取する。試料水が密閉空間3に流出入している間、試料水出口40から流出する試料水の流量(積算量)を流量計42によって測定する。   (Step 2) Next, the collection container 10 containing the substrate 2 is transported to a use point of sample water (ultra pure water), and a sample water introduction pipe (not shown) connected to the use point and the sample of the collection container 10 are used. A water inlet 30 is connected. Thereafter, the valve 31 of the sample water inlet 30 is opened, and the sample water flowing through the sample water introduction pipe is sealed in the collection container 10 from the plurality of jet outlets 33 of the sample water jet pipe 32 connected to the sample water inlet 30. 3 is allowed to flow. At the same time, by opening the valve 41 of the sample water outlet 40, the sample water flowing into the sealed space 3 flows out through the sample water outlet 40. Thus, the sample water is caused to flow in and out while being stored in the sealed space 3, thereby bringing the sample water into contact with the substrate 2 accommodated in the sealed space 3, and collecting impurities in the sample water on the substrate 2. While the sample water flows into and out of the sealed space 3, the flow rate (integrated amount) of the sample water flowing out from the sample water outlet 40 is measured by the flow meter 42.

(ステップ3)基板2に試料水を所定時間接触させた後、試料水入口30のバルブ31と試料水出口40のバルブ41とを閉鎖して、試料水の密閉空間3への流出入を停止する。そして、この時点で密閉空間3に貯留している試料水を、密閉空間3に清浄空気を導入しながら、試料水ドレイン50から排出する。具体的には、浮遊微粒子を除去するエアフィルタ、例えば、ULPA(Ultra Low Penetration Air)フィルタなどの清浄空気の供給源を試料水出口40に接続し、試料水出口40のバルブ41を開放することで、清浄空気を密閉空間3に流入させる。これと同時に、試料水ドレイン50のバルブ51を開放して、密閉空間3に貯留している試料水を試料水ドレイン50から排出する。なお、ここでいう清浄空気は、上述のクラス5よりも清浄な環境における空気を意味する。また、試料水出口40に清浄空気の供給源を接続する代わりに、採取容器10全体をULPAフィルタやケミカルフィルタを用いたブースなどの清浄度の高い雰囲気中に設置して、その清浄度の高い雰囲気を密閉空間3に流入させるようになっていてもよい。   (Step 3) After the sample water is brought into contact with the substrate 2 for a predetermined time, the valve 31 of the sample water inlet 30 and the valve 41 of the sample water outlet 40 are closed to stop the flow of sample water into and out of the sealed space 3. To do. Then, the sample water stored in the sealed space 3 at this time is discharged from the sample water drain 50 while introducing clean air into the sealed space 3. Specifically, a clean air supply source such as an air filter that removes suspended particulates, for example, an ULPA (Ultra Low Penetration Air) filter, is connected to the sample water outlet 40 and the valve 41 of the sample water outlet 40 is opened. Then, clean air is allowed to flow into the sealed space 3. At the same time, the valve 51 of the sample water drain 50 is opened, and the sample water stored in the sealed space 3 is discharged from the sample water drain 50. In addition, the clean air here means the air in a cleaner environment than the above-mentioned class 5. Further, instead of connecting a clean air supply source to the sample water outlet 40, the entire collection container 10 is installed in a highly clean atmosphere such as a booth using a ULPA filter or a chemical filter, and the cleanliness is high. The atmosphere may be allowed to flow into the sealed space 3.

試料水の排出が完了したら、試料水出口40のバルブ41を閉鎖して、密閉空間3への清浄空気の導入を停止するとともに、試料水ドレイン50のバルブ51を閉鎖して、密閉空間3を再び密閉状態とする。   When the discharge of the sample water is completed, the valve 41 of the sample water outlet 40 is closed to stop the introduction of clean air into the sealed space 3, and the valve 51 of the sample water drain 50 is closed to close the sealed space 3. Seal again.

(ステップ4)次に、採取容器10を清浄度の高い雰囲気中に搬送する。この雰囲気中で、自然乾燥法やクリーンエアーを基板2に接触させる方法などを用いて基板2を乾燥させた後、容器本体12から容器蓋13を取り外し、採取容器10から基板2を回収する。そして、基板2に付着した試料水中の不純物の分析を行い、それにより、試料水の水質評価を行う。   (Step 4) Next, the collection container 10 is transported into an atmosphere of high cleanliness. In this atmosphere, after drying the substrate 2 using a natural drying method or a method of bringing clean air into contact with the substrate 2, the container lid 13 is removed from the container body 12, and the substrate 2 is collected from the collection container 10. And the impurity in the sample water adhering to the board | substrate 2 is analyzed, Thereby, the water quality evaluation of sample water is performed.

このように、本実施形態の水質評価装置および水質評価方法では、それぞれ密閉空間と外部との連通を許容および遮断するように開閉可能な試料水入口および試料水出口によって、密閉空間の密閉状態を実質的に保持したまま、採取容器の密閉空間への試料水の流出入を行うことができる。これにより、密閉空間に試料水を流通させる際に、密閉空間への試料水以外からの不純物の侵入を防ぐことが可能となる。また、密閉空間に貯留した試料水の排水時にも、試料水出口から密閉空間に清浄空気を導入することで、密閉空間の内部が清浄度の低い雰囲気にさらされることを抑制することができる。その結果、分析すべき試料水と清浄空気以外の流体が、基板を収容する密閉空間に流入する虞がなくなり、試料水中に含まれる不純物による基板への影響を正確に評価することが可能となる。   Thus, in the water quality evaluation apparatus and the water quality evaluation method of this embodiment, the sealed state of the sealed space is set by the sample water inlet and the sample water outlet that can be opened and closed so as to allow and block communication between the sealed space and the outside. The sample water can flow into and out of the sealed space of the collection container while being substantially held. Thereby, when sample water is circulated through the sealed space, it is possible to prevent impurities from entering the sealed space from other than the sample water. Further, even when the sample water stored in the sealed space is drained, it is possible to prevent the inside of the sealed space from being exposed to an atmosphere having a low cleanliness by introducing clean air from the sample water outlet to the sealed space. As a result, there is no possibility that fluids other than sample water and clean air to be analyzed flow into the sealed space containing the substrate, and it is possible to accurately evaluate the influence of impurities contained in the sample water on the substrate. .

なお、採取容器の内面の材質、すなわち試料水を貯留する密閉空間の壁面の材質は、分析対象となる試料水中の不純物に応じて適宜選択することができる。本実施形態において分析対象となる不純物としては、金属類、有機物、イオン類および微粒子などが挙げられる。   In addition, the material of the inner surface of the collection container, that is, the material of the wall surface of the sealed space for storing the sample water can be appropriately selected according to the impurities in the sample water to be analyzed. Examples of impurities to be analyzed in this embodiment include metals, organic substances, ions, and fine particles.

例えば、Na、K、Ca、Mg、Fe、Al、Cu、Znなど金属類の影響を測定する場合、採取容器は、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエーテルケトン、ポリブチレンテレフタレート、ポリプロピレンなどの樹脂製が好ましい。また、塩化物イオン、硝酸イオン、硫酸イオン、リン酸イオンなどのイオン類の影響を測定する場合、採取容器は、高純度石英などのガラス製であることが好ましく、アルコール類、芳香族類、シロキサン類などの有機物の影響を測定する場合、採取容器は、不動態化した金属製であることが好ましい。このように、採取容器の、少なくとも密閉空間の壁面の材質としては、測定すべき不純物を溶出しにくく、その測定に影響を与えないような材質を選択することが好ましい。   For example, when measuring the influence of metals such as Na, K, Ca, Mg, Fe, Al, Cu, Zn, the collection container is polyvinyl chloride, polytetrafluoroethylene, polyether ketone, polybutylene terephthalate, polypropylene, etc. The resin is preferably used. Further, when measuring the influence of ions such as chloride ion, nitrate ion, sulfate ion, phosphate ion, the collection container is preferably made of glass such as high purity quartz, alcohols, aromatics, When measuring the influence of organic substances such as siloxanes, the collection container is preferably made of a passivated metal. Thus, as the material of at least the wall surface of the closed space of the sampling container, it is preferable to select a material that does not easily elute impurities to be measured and does not affect the measurement.

同様に、不純物の具体的な分析方法についても、分析対象となる不純物に応じて適宜選択することができる。   Similarly, a specific analysis method for impurities can be selected as appropriate according to the impurity to be analyzed.

金属類の分析には、VPD(Vapor Phase Decomposition)+化学分析法を用いることが好ましい。VPD+化学分析法とは、ウェーハ表面の全面を回収液の液滴でスキャンして、液滴中に回収された不純物(金属類)をフレームレス原子吸光法(AAS)、誘導結合型質量分析装置(ICP−MS)で検出する方法である。その他の方法としては、基板上に付着した金属類を溶解せずに、全反射蛍光X線装置などの表面分析装置で検出する方法もある。   For analysis of metals, it is preferable to use VPD (Vapor Phase Decomposition) + chemical analysis. VPD + chemical analysis is a method in which the entire surface of a wafer is scanned with a droplet of a recovered liquid, and impurities (metals) recovered in the droplet are subjected to flameless atomic absorption (AAS), inductively coupled mass spectrometer. This is a method of detecting by (ICP-MS). As another method, there is a method in which a metal attached on the substrate is detected by a surface analysis device such as a total reflection X-ray fluorescence device without dissolving it.

また、有機物の分析には、基板表面への有機物の吸着機構として化学吸着と物理吸着があり、吸着する有機物の成分にも低分子量成分と高分子成分などがあるため、目的の成分や吸着機構に応じた分析方法が用いられる。例えば、ガスクロマトグラフ法、熱脱離−ガスクロマト質量分析法、液体クロマトグラフ法、飛行時間型質量分析装置などを使用して、基板表面の有機物の測定を行うことができる。   In addition, in the analysis of organic matter, there are chemical adsorption and physical adsorption as the organic matter adsorption mechanism on the substrate surface, and there are low molecular weight components and high molecular components in the adsorbed organic matter components, so the target component and adsorption mechanism An analysis method according to the method is used. For example, organic substances on the substrate surface can be measured using a gas chromatograph method, thermal desorption-gas chromatograph mass spectrometry, liquid chromatograph method, time-of-flight mass spectrometer or the like.

また、イオン類の分析には、基板上の不純物(イオン類)を抽出液中に抽出し、その後、その抽出液をイオンクロマトグラフ法で測定するなどの方法を用いることができる。   Further, for analysis of ions, a method of extracting impurities (ions) on the substrate into an extract and then measuring the extract by ion chromatography can be used.

また、微粒子の分析には、鏡面ウェーハ表面検査装置などで基板上の微粒子を測定する方法を用いることができる。   For analysis of fine particles, a method of measuring fine particles on a substrate with a mirror surface inspection apparatus or the like can be used.

なお、試料水に接触させる基板の種類については、清浄で平らな面を有するものであれば特に限定されず、試料水(超純水)が与える影響を評価したい基板を適宜用いることができる。このような基板としては、シリコンウェーハ、化合物半導体基板、ガラス基板、金属板、グラシーカーボン板、セラミック板などが挙げられる。しかしながら、上述の金属類の影響を測定する場合には、清浄度が高く、高感度な分析方法(例えば、VPD+化学分析法)に対して有効な基板を使用することが好ましく、特に、シリコンウェーハを使用することが好ましい。   Note that the type of the substrate to be brought into contact with the sample water is not particularly limited as long as it has a clean and flat surface, and a substrate for which the influence of the sample water (ultra pure water) is to be evaluated can be appropriately used. Examples of such a substrate include a silicon wafer, a compound semiconductor substrate, a glass substrate, a metal plate, a glassy carbon plate, and a ceramic plate. However, when measuring the influence of the above-described metals, it is preferable to use a substrate having a high cleanliness and an effective analysis method (for example, VPD + chemical analysis method). Is preferably used.

また、本実施形態では、密閉空間10に縦置きで収容された複数枚の基板2に対して、試料水入口30から試料水出口40に向かって、試料水が下方から上方へ流れるようになっている。このことは、試料水の基板への影響に対する評価を、実際の半導体製造での試料水(超純水)による基板洗浄により近い環境で行うことができ、評価精度をより向上させることができる点で利点となる。   In the present embodiment, the sample water flows from the sample water inlet 30 toward the sample water outlet 40 from below to the sample water outlet 40 with respect to the plurality of substrates 2 accommodated vertically in the sealed space 10. ing. This is because the evaluation of the influence of the sample water on the substrate can be performed in an environment closer to the substrate cleaning with the sample water (ultra pure water) in actual semiconductor manufacturing, and the evaluation accuracy can be further improved. It will be an advantage.

(実施例)
図1に示す構成の水質評価装置を用いて、本発明の効果を確認した。具体的には、実施例として、上述のステップ1〜4とほぼ同様の手順で、超純水の水質評価を行った。ステップ1では、採取容器への基板の収容を、清浄度の高い雰囲気としてのクリーンベンチ(クラス4)内で行い、基板には、自然酸化膜付シリコンウェーハを用いた。ステップ2では、採取容器への試料水の導入を、試料水のユースポイントとしての、クリーンルーム外にある超純水製造装置で行った。試料水として、鉄の不純物濃度が1ng/L(1pg/cm3)以下の超純水を用い、したがって、分析対象となる不純物は鉄とした。ステップ3では、採取容器10全体をULFAフィルタとケミカルフィルタとを用いたクリーンブース内に収容し、そこで試料水の排出を行うことで、密閉空間3へ清浄空気を導入した。すなわち、試料排出時に導入する清浄空気としてクラス4のクリーンブース内の空気を用いた。ステップ4では、採取容器からの基板の回収、および基板の乾燥と分析を、ステップ1と同様に、クリーンベンチ(クラス4)内で行った。基板の乾燥には、自然乾燥法を用い、基板に付着した鉄の回収には、VPD法を用いた。回収した鉄の測定には、誘導結合プラズマ質量分析装置を用いた。
(Example)
The effect of the present invention was confirmed using the water quality evaluation apparatus having the configuration shown in FIG. Specifically, as an example, water quality evaluation of ultrapure water was performed in substantially the same procedure as in steps 1 to 4 described above. In Step 1, the substrate was accommodated in the collection container in a clean bench (Class 4) as a clean atmosphere, and a silicon wafer with a natural oxide film was used as the substrate. In Step 2, the sample water was introduced into the collection container using an ultrapure water production apparatus outside the clean room as a sample water use point. As sample water, ultrapure water having an impurity concentration of iron of 1 ng / L (1 pg / cm 3 ) or less was used. Therefore, the impurity to be analyzed was iron. In step 3, the entire collection container 10 was accommodated in a clean booth using a ULFA filter and a chemical filter, and clean water was introduced into the sealed space 3 by discharging the sample water there. That is, air in a class 4 clean booth was used as clean air to be introduced when the sample was discharged. In Step 4, the substrate was collected from the collection container, and the substrate was dried and analyzed in the clean bench (Class 4) as in Step 1. A natural drying method was used for drying the substrate, and a VPD method was used for collecting the iron adhering to the substrate. An inductively coupled plasma mass spectrometer was used to measure the recovered iron.

また、比較例として、特許文献3に記載の水質評価装置と同様の構成の水質評価装置を用いて、特許文献3の段落[0028]に記載の手順で、超純水の水質評価を行った。なお、試料水としては、実施例と同様の超純水を用い、鉄の分析については、実施例と同様の条件で行った。   In addition, as a comparative example, water quality evaluation of ultrapure water was performed according to the procedure described in paragraph [0028] of Patent Document 3, using a water quality evaluation apparatus having the same configuration as the water quality evaluation apparatus described in Patent Document 3. . In addition, as sample water, the ultrapure water similar to an Example was used, and about the analysis of iron, it carried out on the conditions similar to an Example.

実施例および比較例において、上述の超純水を採取容器に1時間通水し、シリコンウェーハの回収濃度を比較した。実際には、複数枚(実施例では3枚、比較例では5枚)のシリコンウェーハの回収濃度の平均値と変動係数とを比較した。その結果を、表1に示す。   In Examples and Comparative Examples, the above-described ultrapure water was passed through a collection container for 1 hour, and the recovery concentrations of silicon wafers were compared. Actually, the average value and the coefficient of variation of the recovery concentrations of a plurality of silicon wafers (three in the example and five in the comparative example) were compared. The results are shown in Table 1.

Figure 0005661348
Figure 0005661348

実施例では、比較例と比べて、回収濃度の平均値および変動係数が共に減少したことが確認された。回収濃度の変動係数の減少は、測定値のばらつきがより小さくなったことを意味しており、したがって、実施例では、回収濃度がより正確に評価されていることが確認された。このことを考慮すると、比較例での回収濃度の平均値は、シリコンウェーハへの試料水以外からの不純物の影響を含んでおり、実施例では、その影響が抑制されたため、回収濃度の平均値が減少したものと考えられる。   In the examples, it was confirmed that both the average value of recovery concentration and the coefficient of variation were reduced as compared with the comparative example. The reduction in the coefficient of variation of the collected concentration means that the variation in the measured value has become smaller. Therefore, in the examples, it was confirmed that the collected concentration was evaluated more accurately. In consideration of this, the average value of the recovery concentration in the comparative example includes the influence of impurities other than the sample water on the silicon wafer, and in the example, the influence was suppressed, so the average value of the recovery concentration Is thought to have decreased.

1 水質評価装置
2 基板
3 密閉空間
10 採取容器
11 基板出入口
12 容器本体
13 蓋部材
14a,14b 基板固定棒
20 流体流通手段
30 試料水入口
31 バルブ
40 試料水出口
41 バルブ
50 試料水ドレイン
51 バルブ
DESCRIPTION OF SYMBOLS 1 Water quality evaluation apparatus 2 Substrate 3 Sealed space 10 Sampling container 11 Substrate entrance / exit 12 Container body 13 Lid member 14a, 14b Substrate fixing rod 20 Fluid flow means 30 Sample water inlet 31 Valve 40 Sample water outlet 41 Valve 50 Sample water drain 51 Valve

Claims (10)

基板を収容するとともに試料水を貯留する密閉空間が内部に形成された持ち運び可能な採取容器を有し、前記密閉空間で前記基板を試料水に浸漬させて試料水中の不純物を前記基板上に採取することによって試料水の水質を評価する水質評価装置であって、
前記採取容器が、基板出入口を備えた容器本体と、前記基板出入口を閉鎖して、前記容器本体と共に前記密閉空間を形成する蓋部材と、前記密閉空間に試料水と清浄空気とを流通させる流体流通手段と、を有し、
前記流体流通手段が、前記密閉空間に試料水を流入させる第1の流通口と、前記密閉空間に流入した試料水を流出させ、清浄空気を前記密閉空間に流入させる第2の流通口と、前記第1の流通口および前記第2の流通口にそれぞれ設けられた開閉手段であって、開放時に前記密閉空間と外部とを連通し、閉鎖時に前記密閉空間と外部との連通を遮断して、前記密閉空間の密閉状態を保持する開閉手段と、を有し、
前記第2の流通口が、前記密閉空間に収容された位置での前記基板の上端よりも鉛直方向上方で、前記密閉空間に開口している
水質評価装置。
A portable collection container having a sealed space for containing the substrate and storing the sample water is formed therein, and the substrate is immersed in the sample water in the sealed space to collect impurities in the sample water on the substrate. A water quality evaluation apparatus for evaluating the quality of sample water by
The collection container includes a container main body having a substrate inlet / outlet, a lid member that closes the substrate inlet / outlet to form the sealed space together with the container main body, and a fluid that allows sample water and clean air to flow through the sealed space. Distribution means,
A first circulation port through which the fluid circulation means flows sample water into the sealed space; a second circulation port through which sample water that flows into the sealed space flows out and clean air flows into the sealed space; Opening / closing means provided at each of the first flow port and the second flow port , wherein the closed space communicates with the outside when opened, and the closed space communicates with the outside when closed. , have a opening and closing means for holding the sealed state of the enclosed space,
The second circulation port is open to the sealed space vertically above the upper end of the substrate at the position accommodated in the sealed space .
Water quality evaluation device.
前記第1の流通口が、前記密閉空間に収容された位置での前記基板の下端よりも鉛直方向下方で、前記密閉空間に開口している、請求項に記載の水質評価装置。 The water quality evaluation apparatus according to claim 1 , wherein the first circulation port is open to the sealed space at a position vertically below a lower end of the substrate at a position accommodated in the sealed space. 前記採取容器が、前記密閉空間に貯留した試料水を排出する排出口を有し、
前記排出口が、開放時に前記密閉空間と外部とを連通し、閉鎖時に前記密閉空間と外部との連通を遮断して、前記密閉空間の密閉状態を保持する開閉手段を有する、請求項1または2に記載の水質評価装置。
The collection container has a discharge port for discharging the sample water stored in the sealed space;
It said outlet communicates with said closed space and the outside upon opening, to shut off the communication between the sealed space and the outside when closed, has an opening and closing means for holding the sealed state of the enclosed space, according to claim 1 or 2. The water quality evaluation apparatus according to 2.
前記排出口が、前記密閉空間の底面に開口している、請求項に記載の水質評価装置。 The water quality evaluation apparatus according to claim 3 , wherein the discharge port is open to a bottom surface of the sealed space. 前記採取容器が、前記密閉空間に前記基板を固定する固定手段を有する、請求項1からのいずれか1項に記載の水質評価装置。 The water quality evaluation apparatus according to any one of claims 1 to 4 , wherein the collection container includes a fixing unit that fixes the substrate to the sealed space. 前記密閉空間の壁面が、フッ素樹脂、高純度石英、または不動態化した金属から形成されている、請求項1からのいずれか1項に記載の水質評価装置。 The water quality evaluation apparatus according to any one of claims 1 to 5 , wherein a wall surface of the sealed space is formed of a fluororesin, high-purity quartz, or a passivated metal. 請求項1からのいずれか1項に記載の水質評価装置を用いた水質評価方法であって、
清浄度の高い雰囲気中で、前記採取容器の前記密閉空間に前記基板を収容する工程と、
前記基板を収容した前記採取容器を試料水のユースポイントに搬送し、前記流体流通手段によって前記密閉空間に試料水を貯留しながら流出入させて、前記基板上に試料水中の不純物を採取する工程と、
前記密閉空間への試料水の流出入を停止した後、前記流体流通手段によって前記密閉空間に清浄空気を導入しながら、前記密閉空間に貯留した試料水を排出する工程と、
試料水を排出した前記採取容器を清浄度の高い雰囲気中に搬送し、前記採取容器から前記基板を回収し、前記基板上に採取された不純物を分析する工程と、
を含む、水質評価方法。
A water quality evaluation method using the water quality evaluation apparatus according to any one of claims 1 to 6 ,
Storing the substrate in the sealed space of the sampling container in an atmosphere of high cleanliness;
Transporting the sampling container containing the substrate to a sample water use point, and collecting and collecting impurities in the sample water on the substrate by allowing the fluid circulation means to flow in and out while storing the sample water in the sealed space When,
After stopping the flow of sample water into and out of the sealed space, discharging the sample water stored in the sealed space while introducing clean air into the sealed space by the fluid circulation means;
Transporting the sampling container from which the sample water has been discharged into a clean atmosphere, collecting the substrate from the sampling container, and analyzing the impurities collected on the substrate;
Water quality evaluation method.
前記密閉空間の壁面がフッ素樹脂から形成され、
前記不純物を採取する工程が、前記基板上に試料水中の金属類を採取することを含む、請求項に記載の水質評価方法。
The wall surface of the sealed space is formed of a fluororesin,
The water quality evaluation method according to claim 7 , wherein the step of collecting the impurities includes collecting metals in the sample water on the substrate.
前記密閉空間の壁面が高純度石英から形成され、
前記不純物を採取する工程が、前記基板上に試料水中のイオン類を採取することを含む、請求項に記載の水質評価方法。
The wall surface of the sealed space is formed from high-purity quartz,
The water quality evaluation method according to claim 7 , wherein the step of collecting the impurities includes collecting ions in the sample water on the substrate.
前記密閉空間の壁面が不動態化した金属から形成され、
前記不純物を採取する工程が、前記基板上に試料水中の有機物を採取することを含む、請求項に記載の水質評価方法。
The wall of the sealed space is formed from a passivated metal,
The water quality evaluation method according to claim 7 , wherein the step of collecting the impurities includes collecting organic substances in the sample water on the substrate.
JP2010147459A 2010-06-29 2010-06-29 Water quality evaluation apparatus and water quality evaluation method Expired - Fee Related JP5661348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147459A JP5661348B2 (en) 2010-06-29 2010-06-29 Water quality evaluation apparatus and water quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147459A JP5661348B2 (en) 2010-06-29 2010-06-29 Water quality evaluation apparatus and water quality evaluation method

Publications (2)

Publication Number Publication Date
JP2012013430A JP2012013430A (en) 2012-01-19
JP5661348B2 true JP5661348B2 (en) 2015-01-28

Family

ID=45600066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147459A Expired - Fee Related JP5661348B2 (en) 2010-06-29 2010-06-29 Water quality evaluation apparatus and water quality evaluation method

Country Status (1)

Country Link
JP (1) JP5661348B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085326B2 (en) * 2017-09-13 2022-06-16 オルガノ株式会社 Liquid particle collection device and collection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693268B2 (en) * 2001-04-02 2011-06-01 オルガノ株式会社 Sample water quality evaluation method
JP5044956B2 (en) * 2006-03-24 2012-10-10 栗田工業株式会社 Water quality evaluation method and water quality evaluation member used therefor

Also Published As

Publication number Publication date
JP2012013430A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
KR100959388B1 (en) ??? chamber and door on/off apparatus for auto scanning system
KR101271181B1 (en) Apparatus for measuring contamination degree of conveying enclosure and measuring method for using the same
TW201932815A (en) Airborne molecular contamination monitoring apparatus and environmental monitoring system
CN105842725B (en) The assay method of the specific activity of tritiated water vapour in a kind of air
CN108352345B (en) Method and system for measuring contaminants of transport containers for atmospheric transport and storage of substrates
CN101501817A (en) Method and device for removing pollution from a confined environment
WO2006006370A1 (en) Method of rating water quality, ultrapure water rating apparatus utilizing the method and system for ultrapure water production
KR101565091B1 (en) Wafer Transfer Apparatus for Monitoring Contamination of Semiconductor Processes
KR102165770B1 (en) Calibrated particle analysis apparatus and method
US20130199269A1 (en) Analysis of molecular contamination in vacuum environments
KR101217037B1 (en) Water quality assessment method and substrate contact apparatus used in the same
TW423067B (en) Collector for an automated on-line bath analysis system
JP4693268B2 (en) Sample water quality evaluation method
JP5661348B2 (en) Water quality evaluation apparatus and water quality evaluation method
JP5645601B2 (en) Water quality evaluation method
JP2004340685A (en) Method for evaluating semiconductor wafer housing container
JP2007273697A (en) Substrate transfer vessel and gas replacing method for space inside the same
KR101864711B1 (en) Chemical auto sampling apparatus
JP2004109072A (en) Analysis method for metal impurity in solution
JP3414976B2 (en) Impurity analysis sample container and sample storage member used therein
JP2010066251A (en) Device and method for analyzing chlorosilanes
US7332346B2 (en) Method of collecting chemically contaminating impurity constituents contained in air
JP2012511150A (en) Apparatus and method for analyzing outgassing of molecular contaminants from a sample
JP4512505B2 (en) Method for evaluating the contamination state of the space inside the substrate transfer container
JP2002340751A (en) Method for evaluating quality of sample water, and apparatus for sampling impurity in sample water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees