JP3518216B2 - Heating method in furnace - Google Patents

Heating method in furnace

Info

Publication number
JP3518216B2
JP3518216B2 JP34751596A JP34751596A JP3518216B2 JP 3518216 B2 JP3518216 B2 JP 3518216B2 JP 34751596 A JP34751596 A JP 34751596A JP 34751596 A JP34751596 A JP 34751596A JP 3518216 B2 JP3518216 B2 JP 3518216B2
Authority
JP
Japan
Prior art keywords
heat storage
furnace
gas
heat
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34751596A
Other languages
Japanese (ja)
Other versions
JPH10185442A (en
Inventor
純也 尾前
雅康 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP34751596A priority Critical patent/JP3518216B2/en
Publication of JPH10185442A publication Critical patent/JPH10185442A/en
Application granted granted Critical
Publication of JP3518216B2 publication Critical patent/JP3518216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炉内ガスを再利用
する蓄熱式予熱器を備えた炉内の加熱方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating method for a furnace provided with a regenerative preheater for reusing gas in the furnace.

【0002】[0002]

【従来の技術】上記炉内の加熱方法として、例えば特開
平8−159664号公報に示す技術(以下、従来技術
と称する。)のように、連続鋳造用のタンデッシュや焼
鈍炉などを使用する場合に、炉内を無酸化雰囲気で加熱
する技術が知られている。
2. Description of the Related Art As a method for heating the inside of the furnace, for example, when a tundish for continuous casting or an annealing furnace is used as in the technology disclosed in Japanese Patent Laid-Open No. 8-159664 (hereinafter referred to as "prior art"). In addition, a technique of heating the inside of the furnace in a non-oxidizing atmosphere is known.

【0003】図4は従来技術の具体的な加熱装置を示し
たものであり、タンデッシュ1の蓋1aの開口1b、1
cに一対の蓄熱式予熱器2A、2Bが接続している。こ
れら蓄熱式予熱器2A、2Bは、切換弁3を介して直列
に接続している。
FIG. 4 shows a specific heating device of the prior art, which includes openings 1b and 1 of a lid 1a of a tundish 1.
A pair of heat storage type preheaters 2A and 2B are connected to c. These heat storage type preheaters 2A and 2B are connected in series via a switching valve 3.

【0004】一方の蓄熱式予熱器2Aは、蓄熱体を充填
した蓄熱室5A及び蓄熱体を加熱する燃焼室6Aと、こ
の燃焼室6Aに接続したバーナ7Aと、バーナ7Aに接
続した燃料供給ライン8A及び空気供給ライン9Aとを
備えている。また、他方の蓄熱式予熱器2Bも同様に、
蓄熱室5B、燃焼室6B、バーナ7B、燃料供給ライン
8B及び空気供給ライン9Bを備えている。
One of the heat storage type preheaters 2A is a heat storage chamber 5A filled with a heat storage body, a combustion chamber 6A for heating the heat storage body, a burner 7A connected to the combustion chamber 6A, and a fuel supply line connected to the burner 7A. 8A and an air supply line 9A. Also, the other heat storage type preheater 2B is also the same.
The heat storage chamber 5B, the combustion chamber 6B, the burner 7B, the fuel supply line 8B, and the air supply line 9B are provided.

【0005】また、切換弁3には、窒素ガスを一対の蓄
熱式予熱器2A、2Bに供給する窒素供給ライン10が
接続し、この窒素供給ライン10に、タンデッシュ1の
蓋1aに一端を差し込んだ吸引ライン13が接続してい
る。そして、この吸引ライン13には、循環用ファン1
2が介装されている。
Further, the switching valve 3 is connected to a nitrogen supply line 10 for supplying nitrogen gas to a pair of heat storage type preheaters 2A and 2B, and one end of the lid 1a of the tundish 1 is inserted into the nitrogen supply line 10. The suction line 13 is connected. Then, in the suction line 13, the circulation fan 1
2 is installed.

【0006】また、切換弁3は、窒素供給ライン10か
ら供給される窒素ガスを、一方の蓄熱式予熱器2A又は
他方の蓄熱式予熱器2B側へ切り換えて蓄熱室5A、5
へ送り込む経路と、タンデッシュ1内から蓄熱式予熱
器2A、2Bのいずれか一方を経由してきた窒素ガスを
排気ファン11を介して外部に排気する経路とに切換え
る。また、循環用ファン12を作動させるとタンデッシ
ュ1内の窒素ガスを吸引し、窒素供給ライン10から供
給されてくる低温の窒素ガスと混合して蓄熱式予熱器2
A、2Bのいずれか一方に供給する。
Further, the switching valve 3 switches the nitrogen gas supplied from the nitrogen supply line 10 to the heat storage type preheater 2A on one side or the heat storage type preheater 2B on the other side to store heat in the heat storage chambers 5A, 5A.
The route for sending to B is switched to the route for discharging the nitrogen gas from the tundish 1 that has passed through one of the heat storage type preheaters 2A and 2B to the outside through the exhaust fan 11. Further, when the circulation fan 12 is operated, the nitrogen gas in the tundish 1 is sucked and mixed with the low temperature nitrogen gas supplied from the nitrogen supply line 10, and the heat storage type preheater 2
Supply to either A or 2B.

【0007】そして、一対の蓄熱式予熱器2A、2Bを
所定時間毎に交互に切換えることにより、窒素ガス加熱
工程及び蓄熱体加熱工程を連続して行う。すなわち、蓄
熱体加熱工程は、バーナ7Bの燃焼により発生した燃焼
室6Bの燃焼ガスとタンデッシュ1内の窒素ガスを、排
気ファン11の作動により吸引排気しながら蓄熱体5B
の加熱を行う。また、窒素ガス加熱工程は、バーナ7A
の燃焼を停止して循環用ファン12を作動し、タンデッ
シュ1内の窒素ガスの一部を窒素供給ライン10に循環
窒素ガスとして送り込んで混合し、既に蓄熱している蓄
熱体5A内を通過させて窒素ガスの加熱を行う。
The nitrogen gas heating step and the regenerator heating step are continuously performed by alternately switching the pair of heat storage type preheaters 2A and 2B at predetermined intervals. That is, in the heat storage body heating step, the heat storage body 5B is sucked and exhausted by the operation of the exhaust fan 11 for the combustion gas in the combustion chamber 6B and the nitrogen gas in the tundish 1 generated by the combustion of the burner 7B.
Heating. Also, the nitrogen gas heating step is performed by the burner 7A.
Of the nitrogen gas in the tundish 1 is sent to the nitrogen supply line 10 as the circulating nitrogen gas for mixing and is passed through the regenerator 5A which has already accumulated heat. To heat the nitrogen gas.

【0008】これにより、タンデッシュ1内の窒素ガス
を再利用して窒素ガスを高効率に加熱しながらタンデッ
シュ1内を無酸化雰囲気に保持することができる。
As a result, the nitrogen gas in the tundish 1 can be reused and the nitrogen gas can be heated with high efficiency, and the tundish 1 can be maintained in the non-oxidizing atmosphere.

【0009】[0009]

【発明が解決しようとする課題】ところで、図4で示し
た従来の加熱装置は、窒素ガス加熱工程を行う蓄熱体
(例えば蓄熱体2A)に、タンデッシュ1内の循環窒素
ガスを混合した窒素ガスが流れ込むが、循環窒素ガス温
度が高い場合や循環窒素ガス量が多い場合には、蓄熱体
2Aに流れ込む窒素ガスが高温となるので、蓄熱体2A
が蓄えている熱量をほとんど奪わずに通過してしまう。
この蓄熱体2Aが窒素ガス加熱工程を終了して蓄熱体加
熱工程に切換わると、蓄熱体2Aの熱量を排ガスが奪っ
て高温の排ガスが系外に放出されることになる。また、
蓄熱体2Bが窒素ガス加熱工程から蓄熱体加熱工程に切
換わる際にも、同様に高温の排ガスが系外に放出されて
いく。
By the way, the conventional heating device shown in FIG. 4 is a nitrogen gas in which a circulating nitrogen gas in the tundish 1 is mixed with a heat storage body (for example, the heat storage body 2A) for performing the nitrogen gas heating step. However, when the circulating nitrogen gas temperature is high or the circulating nitrogen gas amount is large, the nitrogen gas flowing into the heat storage body 2A becomes high in temperature, so the heat storage body 2A
Passes through without taking away the amount of heat stored by.
When this heat storage body 2A finishes the nitrogen gas heating step and switches to the heat storage body heating step, the heat amount of the heat storage body 2A is taken by the exhaust gas and the high temperature exhaust gas is discharged to the outside of the system. Also,
Similarly, when the heat storage body 2B is switched from the nitrogen gas heating step to the heat storage body heating step, the high-temperature exhaust gas is released to the outside of the system.

【0010】このように、従来の加熱装置は、系外に放
出される排ガスの温度が高くなり排ガス熱損失が大きい
ので、バーナ7A、7Bの燃料使用量が増大するという
問題がある。
As described above, the conventional heating device has a problem in that the temperature of the exhaust gas discharged to the outside of the system becomes high and the exhaust gas heat loss is large, so that the fuel consumption of the burners 7A and 7B increases.

【0011】また、蓄熱式予熱器2Bが蓄熱体加熱工程
を行うときには、燃焼室6Bにタンデッシュ1内の窒素
ガスが流れ込むが、この窒素ガスが燃焼室6Bに発生し
た燃焼ガスの熱を希釈し、バーナ7Bの火炎温度を低下
させてしまうので、バーナ7Bの燃焼使用量を増大させ
ないと、蓄熱体5Bを十分に高温まで加熱することがで
きない。また、蓄熱式予熱器2Aが蓄熱体加熱工程を行
うときにも、同様の理由によりバーナ7Aの燃焼使用量
を増大させないと、蓄熱体5Aを十分に高温まで加熱す
ることができない。
Further, when the heat storage type preheater 2B performs the heat storage body heating step , the nitrogen in the tundish 1 is placed in the combustion chamber 6B.
Although the gas flows in, this nitrogen gas dilutes the heat of the combustion gas generated in the combustion chamber 6B and lowers the flame temperature of the burner 7B. Therefore, if the combustion usage amount of the burner 7B is not increased, the heat storage body 5B It cannot be heated to a sufficiently high temperature. Further, even when the regenerative preheater 2A performs the regenerator heating step, the regenerator 5A cannot be heated to a sufficiently high temperature unless the combustion usage amount of the burner 7A is increased for the same reason.

【0012】そこで、本発明は、上記従来装置の未解決
の課題に着目してなされたものであり、排ガスの熱損失
を大幅に改善して燃料使用量を低減することができる炉
内の加熱方法を提供することを目的とする。
Therefore, the present invention has been made by paying attention to the unsolved problem of the above-mentioned conventional apparatus, and it is possible to significantly improve the heat loss of exhaust gas and reduce the fuel consumption, thereby heating the furnace. The purpose is to provide a method.

【0013】[0013]

【課題を解決するための手段】本発明者等は、従来装置
の問題を解決するためには、系外へ放出する排ガスの
温度を下げること、系外へ放出する排ガス量を減少さ
せることにより排ガスの熱損失を改善できると考えた。
これに関連して、図3に示すように、バーナの燃焼によ
り燃焼室内で発生する燃焼排ガス量と、炉内から吸引し
て蓄熱体を通過するガス量(蓄熱体通過炉内ガス量)と
の割合に対するバーナの火炎温度について比較検討し
た。その結果、蓄熱体通過炉内ガス量が増大していく
と、このガスが燃焼室に発生した燃焼排ガスの熱を希釈
してバーナの火炎温度が低下することが明らかとなっ
た。すなわち、炉内から吸引するガス量を低減した状態
でバーナを燃焼させると、バーナの火炎温度が高くなっ
て燃料使用量が低減できるとの知見を得た。
In order to solve the problems of the conventional apparatus, the inventors of the present invention reduce the temperature of the exhaust gas discharged to the outside of the system and reduce the amount of exhaust gas discharged to the outside of the system. We thought that the heat loss of exhaust gas could be improved.
In this connection, as shown in FIG. 3, the combustion exhaust gas amount generated in the combustion chamber by the combustion of the burner and the gas amount sucked from the inside of the furnace and passing through the heat storage body (heat storage body passing furnace gas amount) The flame temperature of the burner with respect to the ratio was compared and examined. As a result, it became clear that as the amount of gas in the furnace passing through the regenerator increases, this gas dilutes the heat of the combustion exhaust gas generated in the combustion chamber and the flame temperature of the burner decreases. That is, it was found that when the burner is burned in a state where the amount of gas sucked from the furnace is reduced, the flame temperature of the burner rises and the amount of fuel used can be reduced.

【0014】そこで、本発明の請求項1記載の炉内の加
熱方法は、バーナの燃焼により燃焼排ガスを発生する燃
焼室と、この燃焼室に接続する蓄熱体とを有する少なく
とも2台の蓄熱式予熱器を備え、これら蓄熱式予熱器を
放熱動作と排熱回収動作とに交互に切り換え操作して炉
内の加熱を行う方法において、放熱動作を行う一方の蓄
熱式予熱器は、前記炉内に供給した炉内ガスの一部を再
度循環して炉内に供給するとともに、新たに供給した低
温のガスを前記蓄熱体に通過させて放熱動作を行い、該
蓄熱体を通過した高温のガスに前記炉内から循環してき
た炉内ガスを混合し、所定温度の高温ガスとして炉内に
供給するようにした。
Therefore, the method for heating the inside of the furnace according to claim 1 of the present invention comprises at least two heat storage systems having a combustion chamber for generating combustion exhaust gas by combustion of a burner and a heat storage body connected to the combustion chamber. In the method of heating the inside of the furnace by alternately switching the heat storage type preheater between the heat radiation operation and the exhaust heat recovery operation, the heat storage type preheater that performs the heat radiation operation is While recirculating a part of the furnace gas supplied to the inside of the furnace, the newly supplied low temperature gas is passed through the heat storage body to perform heat dissipation operation, and the high temperature gas that has passed through the heat storage body. Further, the furnace gas circulated from the inside of the furnace was mixed and supplied as high temperature gas of a predetermined temperature into the furnace.

【0015】また、請求項2記載の発明は、請求項1記
載の炉内の加熱方法において、排熱回収動作を行う他方
の蓄熱式予熱器は、排熱回収期間の前期に前記炉内から
排ガスのみを蓄熱体に通過させ、前記排熱回収期間の後
期に、前記バーナの燃焼により発生した燃焼排ガスを蓄
熱体に通過させた。
According to a second aspect of the present invention, in the method for heating the inside of the furnace according to the first aspect, the other heat storage type preheater for performing the exhaust heat recovery operation is operated from the inside of the furnace in the first half of the exhaust heat recovery period. Only the exhaust gas was passed through the heat storage body, and the combustion exhaust gas generated by the combustion of the burner was passed through the heat storage body in the latter part of the exhaust heat recovery period.

【0016】さらに、請求項3記載の発明は、請求項1
又は2記載の炉内の加熱方法において、排熱回収動作を
行っている他方の蓄熱式予熱器のバーナの燃焼が停止し
た直後に、蓄熱体空隙部の燃焼排ガスを系外へ追い出し
て炉内へ侵入しないようにするため、前記炉内から吸引
した炉内ガスを前記蓄熱体に通過させるようにした。
Further, the invention of claim 3 is the same as that of claim 1.
Or in the method for heating the inside of the furnace according to 2, immediately after the combustion of the burner of the other heat storage type preheater that is performing the exhaust heat recovery operation is stopped, the combustion exhaust gas in the voids of the heat storage body is expelled to the outside of the system. In order to prevent the gas from entering the inside of the furnace, the in-furnace gas sucked from the inside of the furnace is allowed to pass through the heat storage body.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1に示すものは、加熱炉22内に
高温窒素ガスを連続的に供給してスラブ(被加熱物)2
4を均一に加熱する加熱装置の概略構成図を示すもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The one shown in FIG. 1 is a slab (object to be heated) 2 which is obtained by continuously supplying high temperature nitrogen gas into the heating furnace 22.
4 is a schematic configuration diagram of a heating device for uniformly heating No. 4.

【0018】加熱炉22内には、紙面の表裏方向に搬送
されてくるスラブ24に対して、その上下面に高温の窒
素ガスを噴射供給する一対の窒素ガス噴流装置26a、
26bが配設されている。これら窒素ガス噴流装置26
a、26bは、供給ライン28を介して第1及び第2蓄
熱式予熱器30A、30Bから交互に高温の窒素ガスが
供給されてくる。
In the heating furnace 22, a pair of nitrogen gas jetting devices 26a for jetting and supplying high temperature nitrogen gas to the upper and lower surfaces of the slab 24 conveyed in the front and back direction of the paper surface.
26b is provided. These nitrogen gas jet devices 26
A high temperature nitrogen gas is alternately supplied to the a and 26b from the first and second heat storage type preheaters 30A and 30B via the supply line 28.

【0019】第1及び第2蓄熱式予熱器30A、30B
は、蓄熱媒体として例えばアルミナボールを充填した第
1及び第2蓄熱体32a、32bと、これら蓄熱体32
a、32bを加熱する第1及び第2燃焼室34a、34
bとをそれぞれ備えている。
First and second heat storage type preheaters 30A, 30B
Is the first and second heat storage bodies 32a and 32b filled with, for example, alumina balls as a heat storage medium, and these heat storage bodies 32.
First and second combustion chambers 34a, 34 for heating a, 32b
and b respectively.

【0020】また、各燃焼室34a、34bにはバーナ
36a、36bが内蔵されており、それぞれのバーナ3
6a、36bに、燃料供給ライン38a、38b及び空
気供給ライン40a、40bが接続している。そして、
燃料供給ライン38a、38bには燃料供給弁42a、
42bが介装されており、空気供給ライン40a、40
bには空気供給弁44a、44bが介装されている。
Burners 36a and 36b are built in the combustion chambers 34a and 34b, respectively.
Fuel supply lines 38a and 38b and air supply lines 40a and 40b are connected to 6a and 36b. And
Fuel supply lines 42a, 38b have fuel supply valves 42a,
42b is interposed, and the air supply lines 40a, 40
Air supply valves 44a and 44b are interposed in b.

【0021】また、第1及び第2蓄熱体32a、32b
間には、排気ライン46と窒素ガス供給ライン48とが
並列に接続している。排気ライン46には、排気ファン
50を介装した外部排気ライン52が接続しており、こ
の外部排気ライン52を接続した位置より第1蓄熱体3
2a側の排気ライン46に第1排気弁54aが介装さ
れ、第2蓄熱体32b側の排気ライン46に第2排気弁
54bが介装されている。
Further, the first and second heat storage bodies 32a, 32b.
An exhaust line 46 and a nitrogen gas supply line 48 are connected in parallel between them. An external exhaust line 52 with an exhaust fan 50 interposed is connected to the exhaust line 46. From the position where the external exhaust line 52 is connected, the first heat storage body 3 is connected.
The first exhaust valve 54a is installed in the exhaust line 46 on the 2a side, and the second exhaust valve 54b is installed in the exhaust line 46 on the second heat storage body 32b side.

【0022】また、メイン供給ライン56から窒素ガス
が供給される窒素ガス供給ライン28には、メイン供給
ライン56の接続位置より第1蓄熱体32a側に第1窒
素供給弁58aが介装され、第2蓄熱体32b側に第2
窒素供給弁58bが介装されている。
Further, in the nitrogen gas supply line 28 to which the nitrogen gas is supplied from the main supply line 56, a first nitrogen supply valve 58a is provided on the first heat storage body 32a side from the connection position of the main supply line 56, Second on the second heat storage body 32b side
A nitrogen supply valve 58b is provided.

【0023】さらに、第1及び第2燃焼室34a、34
b間には、炉内ガス通過ライン60と高温窒素供給ライ
ン62とが並列に接続している。そして、高温窒素供給
ライン62には前述した供給ライン28が接続してお
り、この供給ライン28の接続位置より第1燃焼室34
a側に第1供給制御弁64aが介装され、第2燃焼室3
4b側に第2供給制御弁64bが介装されている。
Further, the first and second combustion chambers 34a, 34a
A furnace gas passage line 60 and a high temperature nitrogen supply line 62 are connected in parallel between b. The above-mentioned supply line 28 is connected to the high-temperature nitrogen supply line 62, and the first combustion chamber 34 is connected from the connection position of this supply line 28.
The first supply control valve 64a is provided on the a side of the second combustion chamber 3
The second supply control valve 64b is provided on the 4b side .

【0024】また、炉内ガス通過ライン60には、加熱
炉22内の高温窒素ガスを循環ファン66により吸引す
る吸引ライン68が接続しており、この吸引ライン68
の接続位置より第1燃焼室34a側に第1循環制御弁7
0aが介装されているとともに、第2燃焼室34b側に
第2循環制御弁70bが介装されている。
A suction line 68 for sucking the high temperature nitrogen gas in the heating furnace 22 by a circulation fan 66 is connected to the in-furnace gas passage line 60. This suction line 68
Of the first circulation control valve 7 on the first combustion chamber 34a side from the connection position of
0a is installed, and the second circulation control valve 70b is installed on the second combustion chamber 34b side.

【0025】そして、加熱装置全体を統括するコントロ
ーラ(図示せず)は、燃料供給弁42a、42b、空気
遮断弁44a、44b、第1及び第2排気弁54a、5
4b、第1及び第2窒素供給弁58a、58b、第1及
び第2供給制御弁64a、64b及び第1及び第2循環
制御弁70a、70bの開閉切換え動作を、図2に示す
シーケンス制御に基づいて行う。なお、図2で示す時点
1 〜T4 及び時点T 4 〜T7 は同一時間に設定されて
いる。また、排気ファン50及び循環ファン66は、連
続的に作動しているものとする。
A control unit for controlling the entire heating device
Is a fuel supply valve 42a, 42b, air
Shutoff valves 44a, 44b, first and second exhaust valves 54a, 5
4b, first and second nitrogen supply valves 58a, 58b, first and second
And second supply control valves 64a, 64b and first and second circulation
The opening / closing switching operation of the control valves 70a and 70b is shown in FIG.
Performed based on sequence control. In addition, at the time shown in FIG.
T1~ TFourAnd time point T Four~ T7Are set to the same time
There is. Further, the exhaust fan 50 and the circulation fan 66 are connected to each other.
It is assumed to be operating continuously.

【0026】先ず、時点T1 前に、第1蓄熱式予熱器3
0Aの空気遮断弁44a及び燃料供給弁42aを閉状態
としてバーナ36aの燃焼を停止する。そして、時点T
1 において、第1窒素供給弁58aを開状態として窒素
ガスを供給可能とする。また、第1排気弁54aを閉状
態として外部排気ライン52との連通路を遮断する。さ
らに、第1供給制御弁64aを開状態として第1燃焼室
34a側と供給ライン28とを連通し、第1循環制御弁
70aを開状態として第1燃焼室34a側と吸引ライン
68を連通する。
First, before the time T 1 , the first heat storage type preheater 3
Combustion of the burner 36a is stopped by closing the 0A air cutoff valve 44a and the fuel supply valve 42a. And time T
In 1 , the nitrogen gas can be supplied by opening the first nitrogen supply valve 58a. Further, the first exhaust valve 54a is closed to shut off the communication path with the external exhaust line 52. Further, the first supply control valve 64a is opened to communicate the first combustion chamber 34a side with the supply line 28, and the first circulation control valve 70a is opened to communicate the first combustion chamber 34a side with the suction line 68. .

【0027】この状態を時点T1 〜T4 の間続行する
と、メイン供給ライン56から供給されてきた低温の窒
素ガスは、既に蓄熱されている第1蓄熱体32a内に流
れて熱量を回収し高温となる。そして、第1蓄熱体32
aを通過した窒素ガスは、吸引ライン68及び炉内ガス
通過ライン60を介して加熱炉22内から循環してきた
炉内へ供給するガス温度より低温の窒素ガスと混合し
て、所定温度の高温窒素ガスとして供給ライン28を介
して窒素ガス噴流装置26a、26bに供給されてい
く。(この工程を、放熱工程と称する。) 一方、第2蓄熱式予熱器30Bは、時点T1 において、
第2窒素供給弁58bを閉状態として窒素ガスの供給を
停止する。また、第2排気弁54bを開状態として第2
蓄熱体32b側と外部排気ライン52とを連通する。さ
らに、第2供給制御弁64bを閉状態として第2燃焼室
34a側と供給ライン28との連通路を遮断し、第2循
環制御弁70bを開状態として第2燃焼室34b側と吸
引ライン68を連通する。
When this state is continued for the time points T 1 to T 4 , the low temperature nitrogen gas supplied from the main supply line 56 flows into the first heat storage body 32a which has already stored heat to recover the heat quantity. It gets hot. Then, the first heat storage body 32
The nitrogen gas that has passed through a is mixed with nitrogen gas having a temperature lower than the gas temperature supplied to the inside of the furnace that has circulated from the heating furnace 22 via the suction line 68 and the in-furnace gas passage line 60, and has a predetermined high temperature. The nitrogen gas is supplied to the nitrogen gas jetting devices 26a and 26b via the supply line 28. (This step is referred to as heat radiation process.) On the other hand, the second regenerative preheater 30B, at time point T 1,
The second nitrogen supply valve 58b is closed to stop the supply of nitrogen gas. In addition, the second exhaust valve 54b is opened to the second
The heat storage body 32b side communicates with the external exhaust line 52. Further, the second supply control valve 64b is closed to cut off the communication path between the second combustion chamber 34a side and the supply line 28, and the second circulation control valve 70b is opened to the second combustion chamber 34b side and the suction line 68. To communicate.

【0028】この状態を時点T1 〜T2 の間続行する
と、加熱炉22内でスラブを加熱した窒素ガスが、吸引
ライン68及び炉内ガス通過ライン60を介して第2蓄
熱体32b側に流れていくので、高温窒素ガスの顕熱を
第2蓄熱体32bが回収する。(この工程を、排熱回収
工程と称する。) 次いで、時点T2 において、空気遮断弁44b及び燃料
供給弁42bを開状態としてバーナ36bの燃焼を開始
する。
When this state is continued from time T 1 to time T 2 , the nitrogen gas which has heated the slab in the heating furnace 22 is transferred to the second heat storage body 32b side through the suction line 68 and the furnace gas passage line 60. As it flows, the second heat storage body 32b recovers the sensible heat of the high-temperature nitrogen gas. (This step is referred to as waste heat recovery step.) Then, at time T 2, to initiate combustion of the burner 36b air shutoff valve 44b and the fuel supply valve 42b is opened condition.

【0029】この状態を時点T2 〜T3 の間続行する
と、第2燃焼室34b内で発生した高温の燃焼ガスが第
2蓄熱体32b側に流れていき、燃焼ガスの顕熱を第2
蓄熱体32bが回収する。(この工程を、蓄熱体の高温
化工程と称する。) 次いで、時点T3 において、空気遮断弁44b及び燃料
供給弁42bを閉状態としてバーナ36bの燃焼を停止
し、第2循環制御弁70bを開状態として第2燃焼室3
4b側と吸引ライン68とを連通し、この状態を時点T
4 まで続行する。これにより、加熱路22内で発生した
高温窒素ガスを、燃焼を停止した直後の第2燃焼室34
b及び第2蓄熱体32b内を通過させて外部排気ライン
52側に排気する。(この工程を、パージ工程と称す
る。) このように、時点T1 〜T4 において、第1蓄熱式予熱
器30Aが放熱工程を行い、第2蓄熱式予熱器30Bが
排熱回収工程を行うとともに、排熱回収工程の後期に蓄
熱体32aの高温化工程を行い、その直後にパージ工程
を行う。そして、図2に示すように、時点T4 〜T7
おいて、第2蓄熱式予熱器30Bが放熱工程に切換わ
り、第1蓄熱式予熱器30Aが排熱回収工程に切換わる
とともに、第1蓄熱式予熱器30Aの排熱回収工程の後
期に、蓄熱体の高温化工程及びパージ工程を行う。そし
て、第1及び第2蓄熱式予熱器30A、30Bが、所定
時間毎に放熱工程及び排熱回収工程に交互に切換わるこ
とによって、高温の窒素ガスを加熱路22内に連続的に
供給してスラブ24を均一に加熱する。
When this state is continued for the time points T 2 to T 3 , the high temperature combustion gas generated in the second combustion chamber 34b flows toward the second heat storage body 32b, and the sensible heat of the combustion gas is changed to the second heat storage gas.
The heat storage body 32b collects. (This step is referred to as a step of increasing the temperature of the heat storage body.) Next, at time T 3 , the air cutoff valve 44b and the fuel supply valve 42b are closed to stop the combustion of the burner 36b, and the second circulation control valve 70b is turned on. The second combustion chamber 3 in the open state
4b side and the suction line 68 are connected, and this state is set at time T
Continue to 4 . As a result, the high-temperature nitrogen gas generated in the heating passage 22 is discharged from the second combustion chamber 34 immediately after the combustion is stopped.
b and the inside of the 2nd heat storage body 32b, and it exhausts to the external exhaust line 52 side. (This step is referred to as a purging step.) As described above, at the time points T 1 to T 4 , the first heat storage type preheater 30A performs the heat radiation step and the second heat storage type preheater 30B performs the exhaust heat recovery step. At the same time, the step of raising the temperature of the heat storage body 32a is performed in the latter stage of the exhaust heat recovery step, and immediately after that, the purge step is performed. Then, as shown in FIG. 2, at the time points T 4 to T 7 , the second heat storage type preheater 30B switches to the heat radiation step, the first heat storage type preheater 30A switches to the exhaust heat recovery step, and In the latter stage of the exhaust heat recovery process of the heat storage type preheater 30A, the heat storage body temperature raising process and the purging process are performed. Then, the first and second heat storage type preheaters 30A and 30B alternately switch to the heat radiation step and the exhaust heat recovery step at predetermined time intervals, thereby continuously supplying high-temperature nitrogen gas into the heating passage 22. And heat the slab 24 uniformly.

【0030】上述した実施形態によると、以下に説明す
る作用効果を得ることができる。先ず、第1蓄熱式予熱
器30Aが放熱工程を行う際に、既に蓄熱されている第
1蓄熱体32aにメイン供給ライン456から供給され
てきた低温の窒素ガスのみが流れ込み、第1蓄熱体32
aを通過した窒素ガスに加熱炉22内から循環してきた
窒素ガスが混合する。このため、第1蓄熱体32aを通
過する低温の窒素ガスが第1蓄熱体32aの熱量のほと
んどを奪っており、第1蓄熱式予熱器30Aが放熱工程
を終了して排熱回収工程に切換わっても、第1蓄熱体3
2aはほとんどの熱量が回収されているので、第1蓄熱
体32aを通過して系外に放出される排ガスは低温とな
る。また、第2蓄熱式予熱器30Bが放熱工程を行う際
にも、既に蓄熱されている第2蓄熱体32bに低温の窒
素ガスのみが流れ込み、第2蓄熱体32bの熱量のほと
んどを奪うので、第2蓄熱式予熱器30Bが放熱工程を
終了して排熱回収工程に切換わっても、第2蓄熱体32
bを通過して系外に放出される排ガスは低温となる。し
たがって、本実施形態では、外部排気ライン52から系
外に放出される排ガスの温度を低くして排ガスの熱損失
を改善しているので、バーナ36a、36の燃料使用量
を低減することができる。
According to the above-mentioned embodiment, the following operational effects can be obtained. First, when the first heat storage type preheater 30A performs the heat radiation process, only the low-temperature nitrogen gas supplied from the main supply line 456 flows into the first heat storage body 32a that has already stored heat, and the first heat storage body 32
The nitrogen gas that has passed through a is mixed with the nitrogen gas that has circulated from inside the heating furnace 22. Therefore, the low-temperature nitrogen gas passing through the first heat storage body 32a takes most of the heat quantity of the first heat storage body 32a, and the first heat storage type preheater 30A completes the heat release step and switches to the exhaust heat recovery step. Even if it crosses, the 1st heat storage body 3
Since most of the heat quantity of 2a is recovered, the exhaust gas passing through the first heat storage body 32a and discharged to the outside of the system has a low temperature. Further, even when the second heat storage type preheater 30B performs the heat dissipation step, only low-temperature nitrogen gas flows into the second heat storage body 32b that has already stored heat, and most of the heat amount of the second heat storage body 32b is taken away, Even if the second heat storage type preheater 30B ends the heat radiation process and switches to the exhaust heat recovery process, the second heat storage body 32
The exhaust gas passing through b and discharged to the outside of the system has a low temperature. Therefore, in the present embodiment, since the temperature of the exhaust gas discharged from the external exhaust line 52 to the outside of the system is lowered to improve the heat loss of the exhaust gas, the fuel consumption of the burners 36a, 36 can be reduced. .

【0031】また、第2蓄熱式予熱器30Bが排熱回収
工程を行う際に、この工程の前期に加熱炉22内の窒素
ガスを蓄熱体32bに通過させ、その工程の後期に、バ
ーナ36bの燃焼を開始して第2燃焼室34b内で発生
した高温の燃焼排ガスを第2蓄熱体32b側に流して蓄
熱体32bの高温化工程を行っている。この際、第2燃
焼室34b内の燃焼排ガスは加熱炉22の窒素ガスに希
釈されにくいので、バーナ36bの火炎温度が低下しな
い。また、第1蓄熱式予熱器30Aが排熱回収工程を行
う際にも、第1燃焼室34a内の燃焼排ガスが加熱炉2
2の窒素ガスに希釈されにくいので、バーナ36aの火
炎温度が低下しない。
Further, when the second heat storage type preheater 30B performs the exhaust heat recovery step, the nitrogen gas in the heating furnace 22 is passed through the heat storage body 32b in the first half of this step, and the burner 36b is passed in the latter half of the step. Is started and the high temperature combustion exhaust gas generated in the second combustion chamber 34b is caused to flow toward the second heat storage body 32b to perform the step of raising the temperature of the heat storage body 32b. At this time, the combustion exhaust gas in the second combustion chamber 34b is hard to be diluted with the nitrogen gas in the heating furnace 22, so that the flame temperature of the burner 36b does not decrease. Further, even when the first heat storage type preheater 30A performs the exhaust heat recovery process, the combustion exhaust gas in the first combustion chamber 34a remains in the heating furnace 2.
The flame temperature of the burner 36a does not decrease because it is hard to be diluted with the nitrogen gas of 2.

【0032】したがって、第1及び第2蓄熱式予熱器3
0A、30Bが排熱回収工程を行うときには、バーナ3
6a、36bの燃料使用量を低減しながら蓄熱体32
a、32bを十分に蓄熱することができる。しかも、蓄
熱体32a、32bから供給されるガス温度が高くなる
程、加熱炉22内から循環されるガス量の割合も増すこ
とができるので、外部排気ライン52から系外に放出さ
れる排ガス量が減少し、排ガスの熱損失を改善すること
ができる。
Therefore, the first and second heat storage type preheater 3
When 0A and 30B perform the exhaust heat recovery process, the burner 3
The heat storage body 32 while reducing the fuel consumption of 6a and 36b
The a and 32b can sufficiently store heat. Moreover, as the temperature of the gas supplied from the heat storage bodies 32a and 32b becomes higher, the proportion of the amount of gas circulated from inside the heating furnace 22 can be increased, so that the amount of exhaust gas discharged from the external exhaust line 52 to the outside of the system. Can be reduced and the heat loss of exhaust gas can be improved.

【0033】また、第2蓄熱式予熱器30Bが蓄熱体の
高温化工程を行った直後に、加熱路22内で発生した窒
素ガスを第2燃焼室34b及び第2蓄熱体32bを介し
て外部排気ライン52側に排気するパージ工程を行って
いるので、次に第2蓄熱式予熱器30Bが放熱工程を行
う際に、燃焼排ガスが加熱炉22内に流れ込んでスラブ
24の加熱に悪影響を与えるおそれがない。また、第1
蓄熱式予熱器30Aも蓄熱体の高温化工程を行った直後
にパージ工程を行っているので、次に第1蓄熱式予熱器
30Aが放熱工程を行う際に、燃焼排ガスが加熱炉22
内に流れ込んでスラブ24の加熱に悪影響を与えるおそ
れがない。
Immediately after the second heat storage type preheater 30B carries out the step of raising the temperature of the heat storage body, the nitrogen gas generated in the heating passage 22 is transferred to the outside via the second combustion chamber 34b and the second heat storage body 32b. Since the purge process of exhausting to the exhaust line 52 side is performed, the combustion exhaust gas flows into the heating furnace 22 and adversely affects the heating of the slab 24 when the second heat storage type preheater 30B next performs the heat release process. There is no fear. Also, the first
Since the heat storage type preheater 30A also performs the purging step immediately after the heat storage body temperature raising step, when the first heat storage type preheater 30A next performs the heat radiation step, the combustion exhaust gas is heated by the heating furnace 22.
There is no possibility that it will flow into the interior and adversely affect the heating of the slab 24.

【0034】なお、上記実施形態で説明した蓄熱体の高
温化工程が、請求項2記載の発明に相当し、パージ工程
が、請求項3記載の発明に相当する。また、上記実施形
態においては、2台の蓄熱式予熱器30A、30Bを使
用した加熱装置について説明したが、さらに複数台の蓄
熱式予熱器を設置しても、同様の作用効果を得ることが
できる。
The step of raising the temperature of the heat storage body described in the above embodiment corresponds to the invention described in claim 2, and the purging step corresponds to the invention described in claim 3. Moreover, in the said embodiment, although the heating apparatus which used two heat storage type preheaters 30A and 30B was demonstrated, even if a plurality of heat storage type preheaters are installed, the same effect can be obtained. it can.

【0035】また、スラブ24を加熱するガスとして窒
素ガスを使用したが、アルゴンガス等の他のガスも適用
することができる。また、本実施形態では、スラブ22
を連続的に加熱する装置について説明したが、連続鋳造
用のタンデッシュや焼鈍炉などを使用する場合に、炉内
を無酸化雰囲気で加熱する装置に適用しても、同様の作
用効果を得ることができる。
Although nitrogen gas is used as a gas for heating the slab 24, other gas such as argon gas can be applied. Further, in the present embodiment, the slab 22
The continuous heating device was described, but when using a tundish or an annealing furnace for continuous casting, even if it is applied to a device that heats the furnace in a non-oxidizing atmosphere, the same effect can be obtained. You can

【0036】[0036]

【発明の効果】以上説明したように、請求項1記載の炉
内の加熱方法によると、基本的には炉内ガスを循環する
方法を行っているので、系外に出るガス量を減少するこ
とができる。したがって、系外に放出される排ガス量を
減少して排ガスの熱損失を改善しているので、バーナの
燃料使用量を低減することができる。
As described above, according to the method for heating the inside of the furnace according to the first aspect, since the method of circulating the gas inside the furnace is basically performed, the amount of gas that goes out of the system is reduced. be able to. Therefore, the amount of exhaust gas discharged to the outside of the system is reduced to improve the heat loss of the exhaust gas, so that the fuel consumption of the burner can be reduced.

【0037】また、請求項2記載の発明によると、請求
項1記載の炉内の加熱方法の効果を得ることができると
ともに、排熱回収動作を行う他方の蓄熱式予熱器は、排
熱回収期間の前期に前記炉内から排ガスのみを蓄熱体に
通過させ、前記排熱回収期間の後期に、前記バーナの燃
焼により発生した燃焼排ガスを蓄熱体に通過させるよう
にしており、炉内の排ガスが燃焼排ガスを希釈しないの
で、バーナの火炎温度が低下しない。したがって、本発
明は、蓄熱式予熱器が排熱回収工程を行うときには、バ
ーナの燃料使用量を低減しながら蓄熱体を十分に高温に
蓄熱することができる。このため、炉内へのガス温度を
高温にすることができ、熱バランス上循環させることの
できる割合が増えるので、系外に放出される排ガス量が
減少し、排ガスの熱損失を改善することができる。
According to the second aspect of the invention, the effect of the heating method for the furnace according to the first aspect can be obtained, and the other heat storage type preheater for performing the exhaust heat recovery operation is the exhaust heat recovery. Only the exhaust gas from the inside of the furnace is passed to the heat storage body in the first half of the period, and in the latter half of the exhaust heat recovery period, the combustion exhaust gas generated by the combustion of the burner is passed to the heat storage body, and the exhaust gas in the furnace is discharged. Does not dilute the combustion exhaust gas, so the flame temperature of the burner does not decrease. Therefore, according to the present invention, when the heat storage type preheater performs the exhaust heat recovery process, it is possible to store the heat storage body at a sufficiently high temperature while reducing the fuel usage amount of the burner. Therefore, the temperature of the gas inside the furnace can be raised and the ratio of the gas that can be circulated in terms of heat balance increases, so the amount of exhaust gas released to the outside of the system decreases and the heat loss of exhaust gas is improved. You can

【0038】さらに、請求項3記載の発明によると、請
求項1又は2記載の炉内の加熱方法の効果を得ることが
できるとともに、排熱回収動作を行っている他方の蓄熱
式予熱器のバーナの燃焼が停止した直後に、前記炉内か
ら吸引した炉内ガスを前記蓄熱体に通過させるようにし
ているので、他方の蓄熱式予熱器が排熱回収動作から放
熱工程に切り替わっても、燃焼排ガスが炉内に流れ込ん
で被加熱物の加熱に悪影響を与えるおそれがない。
Further, according to the invention described in claim 3, the effect of the method for heating the inside of the furnace according to claim 1 or 2 can be obtained, and at the same time, in the other heat storage type preheater performing the exhaust heat recovery operation. Immediately after combustion of the burner is stopped, since the furnace gas sucked from the furnace is made to pass through the heat storage body, even if the other heat storage type preheater is switched from the exhaust heat recovery operation to the heat dissipation step, There is no possibility that the combustion exhaust gas will flow into the furnace and adversely affect the heating of the object to be heated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の炉内の加熱方法に係わる蓄熱式予熱器
を備えた加熱装置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a heating device provided with a heat storage type preheater according to a heating method for a furnace of the present invention.

【図2】本発明の炉内の加熱方法を適用した2台の蓄熱
式予熱器の切換え操作タイムチャートである。
FIG. 2 is a switching operation time chart of two heat storage type preheaters to which the method for heating the inside of the furnace of the present invention is applied.

【図3】バーナの燃焼により燃焼室内で発生する燃焼排
ガス量と、炉内から吸引して蓄熱体を通過するガス量と
の割合に対するバーナの火炎温度の変化を示す図表であ
る。
FIG. 3 is a chart showing changes in flame temperature of a burner with respect to a ratio of a combustion exhaust gas amount generated in a combustion chamber due to combustion of a burner and a gas amount sucked from a furnace and passing through a heat storage body.

【図4】従来の炉内の加熱方法に係わる炉内を無酸化雰
囲気で加熱する装置を示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing an apparatus for heating the inside of a furnace in a non-oxidizing atmosphere according to a conventional method for heating the inside of a furnace.

【符号の説明】[Explanation of symbols]

22 加熱炉 24 スラブ(被加熱物) 30A、30B 蓄熱式予熱器 32a、32b 蓄熱体 34a、34b 燃焼室 36a、36b バーナ 42a、42b 燃料供給弁 44a、44b 空気遮断弁 46 排気ライン 48 窒素ガス供給ライン 52 外部排気ライン 54a、54b 排気弁 56 メイン供給ライン 58a、58b 窒素供給弁 60 炉内ガス通過ライン 64a、64b 供給制御弁 70a、70b 循環制御弁 22 heating furnace 24 slab (heated object) 30A, 30B Heat storage type preheater 32a, 32b heat storage body 34a, 34b Combustion chamber 36a, 36b burner 42a, 42b Fuel supply valve 44a, 44b Air cutoff valve 46 Exhaust line 48 Nitrogen gas supply line 52 External exhaust line 54a, 54b Exhaust valve 56 Main supply line 58a, 58b Nitrogen supply valve 60 Furnace gas passage line 64a, 64b Supply control valve 70a, 70b Circulation control valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F27B 9/36 F27B 9/36 (56)参考文献 特開 平8−159664(JP,A) 特開 平8−155599(JP,A) 特開 平9−53886(JP,A) 特開 平9−295110(JP,A) 特開 平9−295125(JP,A) 特開 平9−295126(JP,A) 特開 平9−295127(JP,A) 実開 昭62−198490(JP,U) (58)調査した分野(Int.Cl.7,DB名) F27B 9/10 B22D 11/10 310 C21D 1/52 C21D 1/76 C21D 9/00 101 F27B 9/36 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI F27B 9/36 F27B 9/36 (56) References JP-A-8-159664 (JP, A) JP-A-8-155599 (JP , A) JP 9-53886 (JP, A) JP 9-295110 (JP, A) JP 9-295125 (JP, A) JP 9-295126 (JP, A) JP 9-295127 (JP, A) Actual development Sho 62-198490 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F27B 9/10 B22D 11/10 310 C21D 1/52 C21D 1 / 76 C21D 9/00 101 F27B 9/36

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 バーナの燃焼により燃焼排ガスを発生す
る燃焼室と、この燃焼室に接続する蓄熱体とを有する少
なくとも2台の蓄熱式予熱器を備え、これら蓄熱式予熱
器を放熱動作と排熱回収動作とに交互に切り換え操作し
て炉内の加熱を行う方法において、 放熱動作を行う一方の蓄熱式予熱器は、前記炉内に供給
した炉内ガスの一部を再度循環して炉内に供給するとと
もに、新たに供給した低温のガスを前記蓄熱体に通過さ
せて放熱動作を行い、該蓄熱体を通過した高温のガスに
前記炉内から循環してきた炉内ガスを混合し、所定温度
の高温ガスとして炉内に供給するようにしたことを特徴
とする炉内の加熱方法。
1. A heat storage type preheater having at least two heat storage type preheaters each having a combustion chamber for generating combustion exhaust gas by combustion of a burner and a heat storage body connected to the combustion chamber. In the method of heating the inside of the furnace by alternately switching to the heat recovery operation, one of the heat storage type preheaters that performs the heat radiation operation recirculates a part of the furnace gas supplied into the furnace to reheat the furnace. While supplying the inside, the newly supplied low-temperature gas is passed through the heat storage body to perform the heat radiation operation, and the high-temperature gas that has passed through the heat storage body is mixed with the furnace gas circulated from the inside of the furnace, A heating method for a furnace, characterized in that the gas is supplied as a high-temperature gas of a predetermined temperature into the furnace.
【請求項2】 排熱回収動作を行う他方の蓄熱式予熱器
は、排熱回収期間の前期に前記炉内から排ガスのみを蓄
熱体に通過させ、前記排熱回収期間の後期に、前記バー
ナの燃焼により発生した燃焼排ガスを蓄熱体に通過させ
ることを特徴とする請求項1記載の炉内の加熱方法。
2. The other heat storage type preheater for performing the exhaust heat recovery operation allows only the exhaust gas from the inside of the furnace to pass through the heat storage body in the first half of the exhaust heat recovery period, and the burner in the latter half of the exhaust heat recovery period. The method for heating an inside of a furnace according to claim 1, wherein the combustion exhaust gas generated by the combustion of the above is passed through a heat storage body.
【請求項3】 排熱回収動作を行っている他方の蓄熱式
予熱器のバーナの燃焼が停止した直後に、前記炉内から
吸引した炉内ガスを前記蓄熱体に通過させることを特徴
とする請求項1又は2記載の炉内の加熱方法。
3. The in-furnace gas sucked from the inside of the furnace is allowed to pass through the regenerator immediately after the combustion of the burner of the other regenerative preheater performing the exhaust heat recovery operation is stopped. The method for heating the inside of the furnace according to claim 1 or 2.
JP34751596A 1996-12-26 1996-12-26 Heating method in furnace Expired - Fee Related JP3518216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34751596A JP3518216B2 (en) 1996-12-26 1996-12-26 Heating method in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34751596A JP3518216B2 (en) 1996-12-26 1996-12-26 Heating method in furnace

Publications (2)

Publication Number Publication Date
JPH10185442A JPH10185442A (en) 1998-07-14
JP3518216B2 true JP3518216B2 (en) 2004-04-12

Family

ID=18390752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34751596A Expired - Fee Related JP3518216B2 (en) 1996-12-26 1996-12-26 Heating method in furnace

Country Status (1)

Country Link
JP (1) JP3518216B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328253A (en) * 2014-10-08 2015-02-04 甘肃酒钢集团宏兴钢铁股份有限公司 Special thick plate stacking slow-cooling method

Also Published As

Publication number Publication date
JPH10185442A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP3719616B2 (en) Airflow furnace
EP0664874A1 (en) Method and apparatus for smokeless burnout of regenerative thermal oxidizer systems
JP3518216B2 (en) Heating method in furnace
JPH09229354A (en) Heating furnace, method and apparatus for controlling combustion of the same
JP3462394B2 (en) Combustion control method of regenerative burner device and burner device
JP4385454B2 (en) Atmospheric gas heating temperature adjustment method and heating temperature adjustment device
JPH10318528A (en) Operation of radiant tube burner furnace and apparatus therefor
JP3608695B2 (en) Regenerative indirectly heated fluidized bed furnace
JPH07120171A (en) Method of operating heating oven including heat storage alternate combustion burner system
JP3044286B2 (en) Continuous annealing furnace
JP3302062B2 (en) Heat storage regeneration type burner system and operation method thereof
JP3387376B2 (en) Modification method of heating furnace and heating furnace
JPH10318529A (en) Operation of radiant tube burner furnace and apparatus therefor
JPH08128621A (en) Regenerative combustion device
JP3558184B2 (en) Adjustment structure of air flow rate in regenerative combustion burner
JP3978871B2 (en) Raw gas combustion method
JPH11323432A (en) Heating furnace device
JP2002303415A (en) Method for removing high boiling point substance in regenerative combustion type gas treating apparatus
KR101020358B1 (en) Waste heat recovery Apparatus for reheating furnace
JP3414942B2 (en) heating furnace
JP3480354B2 (en) Tundish heating device
JP2656002B2 (en) Skid mark removal device in walking beam type continuous heating furnace
JP2002003939A (en) Method for operating direct-firing heating furnace and direct-firing heating furnace
JPH07318050A (en) Combustion system using heat storage burner
JP2001065822A (en) Regenerative burner apparatus equipped with preheating mechanism for fuel gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees