JPH07120171A - Method of operating heating oven including heat storage alternate combustion burner system - Google Patents

Method of operating heating oven including heat storage alternate combustion burner system

Info

Publication number
JPH07120171A
JPH07120171A JP5266202A JP26620293A JPH07120171A JP H07120171 A JPH07120171 A JP H07120171A JP 5266202 A JP5266202 A JP 5266202A JP 26620293 A JP26620293 A JP 26620293A JP H07120171 A JPH07120171 A JP H07120171A
Authority
JP
Japan
Prior art keywords
furnace
temperature
combustion
heat storage
combustion burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5266202A
Other languages
Japanese (ja)
Other versions
JP2936449B2 (en
Inventor
Hiroaki Sato
博明 佐藤
Yoshimoto Fujii
良基 藤井
Ryoichi Tanaka
良一 田中
Mamoru Matsuo
護 松尾
Atsushi Sudo
淳 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
JFE Engineering Corp
Original Assignee
Nippon Furnace Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17427685&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07120171(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Furnace Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Furnace Co Ltd
Priority to JP5266202A priority Critical patent/JP2936449B2/en
Publication of JPH07120171A publication Critical patent/JPH07120171A/en
Application granted granted Critical
Publication of JP2936449B2 publication Critical patent/JP2936449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE:To prevent condensation from being produced and shorten the start-up time of an oven without deteriorating the advantage of a heat storage alternate combustion burner system. CONSTITUTION:In a heating oven 1 including a heat storage alternate combustion burner system 100 wherein a pair of burners 9 are alternately burned and heat of combustion waste gas is recovered by a heat storage structure through a non-combustion burner keeping the temperature of the gas at a high temperature for use in a preheating source of combustion air, upon the system being started when the oven is interrupted and the oven is again started, temperature rise is performed in an ordinary continuous combustion system until predetermined oven temperature is attained. All combustion waste gas produced thereupon is exhausted through a flue 8 not including a heat storage structure provided in the oven, and after the predetermined temperature is attained, the temperature rise is achieved by a heat storage alternate combustion system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄熱式交番燃焼バーナ
システムを備えた加熱炉において炉の昇温立ち上げ時に
発生する排ガスの結露を防止し、かつ立ち上げ時間を短
縮できる操炉方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace operation method capable of preventing dew condensation of exhaust gas generated at the time of temperature rising start-up of a heating furnace equipped with a regenerative alternating combustion burner system and shortening the start-up time. .

【0002】[0002]

【従来の技術】近年開発された蓄熱式交番燃焼バーナシ
ステムは、一対のバーナを交互に燃焼させてその燃焼排
ガスの熱を非燃焼バーナを通して高温のまま蓄熱体で回
収し、燃焼用空気の予熱源に使用するので、従来の加熱
バーナシステムに比べて熱効率が非常に高くなる。即
ち、蓄熱体出口から系外へ排出される燃焼排ガスの温度
を100〜150℃程度のかなり低い温度にすることが
可能であり、その結果、排ガス熱損失が小さくなる。
2. Description of the Related Art A heat storage type alternating combustion burner system developed in recent years has a structure in which a pair of burners are alternately burned and the heat of the combustion exhaust gas is recovered as a high temperature through a non-combustion burner by a heat storage body to preheat combustion air. Being used as a source, the thermal efficiency is much higher than that of the conventional heating burner system. That is, the temperature of the combustion exhaust gas discharged from the heat storage outlet to the outside of the system can be set to a considerably low temperature of about 100 to 150 ° C., and as a result, exhaust gas heat loss is reduced.

【0003】しかしながら、熱効率の面で優れたこの特
性が、炉の立ち上げ時に問題を生じる。ここで、炉の立
ち上げとは、炉を停止した後、しばらく時間が経過し、
再び炉の操業を開始しようとするとき、炉が冷えた状態
から目標の炉温まで、炉に設置されたバーナにより昇温
する工程をいう。この立ち上げ時は、炉内が冷えた状態
(長時間停止した場合は室温近くになる)にあるため、
燃焼排ガスの温度が降下しやすく、蓄熱体に吸引される
燃焼排ガスの温度は通常操業時よりかなり低下する。ま
た、炉体と同様に蓄熱体そのものも冷えているため、蓄
熱体内を流れる燃焼排ガスの冷却熱量も通常より大きく
なり、温度は低下傾向となる。更に、蓄熱体そのものが
燃焼排ガスの顕熱を充分に吸収するように設計されてお
り、前述の2点の影響とあわせた相乗効果で燃焼排ガス
の蓄熱体出口温度は、定常状態の操業中の温度(100
〜150℃程度)をかなり下回るようになる。このた
め、排ガス中の水分が凝縮する温度の露点以下となり、
結露する可能性が極めて高くなる。
However, this property, which is excellent in terms of thermal efficiency, causes a problem when starting the furnace. Here, the startup of the furnace means that some time has passed after the furnace was stopped,
When starting the operation of the furnace again, it means a step of raising the temperature from a cold state to a target furnace temperature by a burner installed in the furnace. At the time of this start-up, the inside of the furnace is in a cold state (when it is stopped for a long time, it will be near room temperature),
The temperature of the combustion exhaust gas is likely to drop, and the temperature of the combustion exhaust gas sucked into the heat storage body is considerably lower than that during normal operation. Further, since the heat storage body itself is also cooled like the furnace body, the amount of cooling heat of the combustion exhaust gas flowing in the heat storage body becomes larger than usual and the temperature tends to decrease. Further, the heat storage body itself is designed to sufficiently absorb the sensible heat of the combustion exhaust gas, and the synergistic effect combined with the above-mentioned two effects makes the heat storage body outlet temperature of the combustion exhaust gas during steady-state operation. Temperature (100
Temperature is much lower than about 150 ° C). Therefore, the temperature is below the dew point of the temperature at which the water in the exhaust gas condenses,
Condensation is very likely to occur.

【0004】配管内で結露すると、凝縮した水分により
配管や弁の内面の金属が酸化され、スケールが発生す
る。このスケール片が弁の可動部の隙間などに詰まっ
て、噛み込み状態となり、弁の正常な作動が困難とな
る。この状態が進行すると、弁が作動しなくなったり、
弁体の損傷が生ずるようになる。また、スケールの発生
が局部的に集中すると、配管の損傷が著しくなり、配管
に亀裂や穴が発生してしまう。
When dew condensation occurs in the pipe, the condensed water oxidizes the metal on the inner surfaces of the pipe and the valve to generate scale. This scale piece is clogged in the gap of the movable portion of the valve, etc., and becomes caught, making normal operation of the valve difficult. If this condition progresses, the valve will not operate,
The valve body will be damaged. In addition, if the scale is locally concentrated, the pipe is significantly damaged, and cracks or holes are generated in the pipe.

【0005】このような問題は、硫黄、窒素分の比較的
多い燃料を用いる場合、影響が大きくなる。即ち、燃焼
排ガス中の酸化硫黄、酸化窒素と水分が、結露した際に
反応して酸液を生成する。この酸液が、配管、弁内面の
金属を急速に腐食する。この酸液による腐食の速度は、
水分だけによる腐食速度よりはるかに大きく、損傷の進
行は早まることになる。特に、炉が長時間停止する場合
は、結露した水分がドレインとして配管、弁に溜まり易
く、影響が更に大きくなる。
This problem is greatly affected when a fuel containing a relatively large amount of sulfur and nitrogen is used. That is, the sulfur oxide, the nitrogen oxide and the water in the combustion exhaust gas react with each other when dew condensation occurs to generate an acid liquid. This acid solution rapidly corrodes the metal inside the pipe and valve. The rate of corrosion by this acid solution is
The rate of damage is much faster than the rate of corrosion by water alone, and the damage progresses faster. In particular, when the furnace is stopped for a long time, the condensed water is likely to be accumulated in the pipes and valves as a drain, and the influence is further increased.

【0006】そこで、このような問題への対策として、
従来は炉の操業停止中に、間歇的にバーナを燃焼させて
ドレインの発生を抑制する方法や、例えば特開昭62ー
155922号公報に開示されているように、生成ドレ
インを物理的に系外へ除去する方法を採用し、問題の解
決を図っている。
Therefore, as a countermeasure against such a problem,
Conventionally, a method of intermittently burning a burner to suppress the generation of drain during the shutdown of the furnace or a system in which the generated drain is physically connected as disclosed in, for example, Japanese Patent Laid-Open No. 62-155922 is disclosed. We are trying to solve the problem by adopting a method of removing it to the outside.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、操業停
止中の間歇運転は、応急的な対策でドレインの発生を完
全に防止することは無理であるばかりでなく、間歇運転
そのものも常時可能であるとは限らない。
However, in the intermittent operation while the operation is stopped, it is not possible to completely prevent the occurrence of drain by an emergency measure, and the intermittent operation itself is always possible. Not necessarily.

【0008】また、ドレインの系外への除去について
も、全てのドレインを排出することは不可能であるし、
ドレイン抜き弁そのものの詰まり、腐食などの問題もあ
る。
Further, it is impossible to discharge all the drains even when the drains are removed from the system.
There are also problems such as clogging and corrosion of the drain valve itself.

【0009】いずれにしても、従来の排ガス結露対策で
は問題の解決が不充分であり、燃焼排ガスが流れる系統
の配管補修、弁の取換えなどを短い周期で行わざるを得
なかった。
In any case, the conventional countermeasures against exhaust gas dew condensation have not been sufficient to solve the problem, so that the repair of the piping of the system through which the combustion exhaust gas flows and the replacement of valves have to be carried out in a short period.

【0010】本発明は、叙上の点に鑑み、蓄熱式交番燃
焼バーナシステムの利点を損なうことなしに、結露を生
じさせず、かつ炉の立ち上げ時間の短縮化が図れる蓄熱
式交番燃焼バーナシステムを備えた加熱炉の操炉方法を
提供することを目的とする。
In view of the above points, the present invention is a regenerative alternating combustion burner which does not cause dew condensation and shortens the furnace start-up time without impairing the advantages of the regenerative alternating combustion burner system. An object of the present invention is to provide a method of operating a heating furnace equipped with a system.

【0011】[0011]

【課題を解決するための手段】本発明の蓄熱式交番燃焼
バーナシステムを備えた加熱炉の操炉方法は、下記の構
成からなるものである。すなわち、一対のバーナを交互
に燃焼させてその燃焼排ガスの熱を非燃焼バーナを通し
て高温のまま蓄熱体で回収し燃焼用空気の予熱源に使用
する蓄熱式交番燃焼バーナシステムを備えた加熱炉にお
いて炉を停止し、再び炉の操業を開始する場合に、予め
炉温を所定温度まで昇温立ち上げてから操業を開始する
操炉方法において、昇温立ち上げ時に、所定炉温に達す
るまでは、通常の連続燃焼方式で昇温を行い、このとき
に発生する全ての燃焼排ガスを炉体に設けられた蓄熱体
を備えていない煙道から排出し、所定炉温に達した以降
は、蓄熱交番燃焼方式により昇温を行うものである。
A method of operating a heating furnace having a regenerative alternating combustion burner system according to the present invention has the following constitution. That is, in a heating furnace equipped with a regenerative alternating combustion burner system in which a pair of burners are alternately burned and the heat of the combustion exhaust gas is recovered as a high temperature through a non-combustion burner in a regenerator and used as a preheat source for combustion air. When the furnace is stopped and the operation of the furnace is started again, in the furnace operation method in which the furnace temperature is raised to a predetermined temperature and started before starting the operation, at the time of rising the temperature, until the predetermined furnace temperature is reached. , The temperature is raised by the normal continuous combustion method, and all the combustion exhaust gas generated at this time is discharged from the flue that is not equipped with the heat storage body provided in the furnace body, and the heat is stored after reaching the predetermined furnace temperature. The temperature is raised by an alternating combustion method.

【0012】また、昇温立ち上げ時には、加熱炉に設置
された全てのバーナを連続燃焼させるものとする。
At the time of raising the temperature, all burners installed in the heating furnace are continuously burned.

【0013】また、加熱炉としては、複数のゾーンを有
する連続式加熱炉を使用し、連続燃焼方式による昇温に
より所定炉温に達したゾーンから順次、蓄熱交番燃焼方
式に切換えていくものとする。
Further, as the heating furnace, a continuous heating furnace having a plurality of zones is used, and the zone where the predetermined furnace temperature is reached by the temperature increase by the continuous combustion method is sequentially switched to the heat storage alternating combustion method. To do.

【0014】[0014]

【作用】本発明においては、昇温立ち上げ時に、所定炉
温(例えば燃焼排ガスの結露が生じない下限の温度)に
達するまでは通常の連続燃焼方式で昇温を行い、このと
きに発生する全ての燃焼排ガスを炉体に設けられた蓄熱
体を備えていない煙道から排出し、定炉温に達した以降
は、蓄熱交番燃焼方式により昇温を行うようにしている
ので、熱効率の面で優れた蓄熱式交番燃焼バーナシステ
ムの利点を損なうことなく、結露の発生を防止すること
ができる。
In the present invention, when the temperature is raised, the temperature is raised by the normal continuous combustion method until the temperature reaches a predetermined furnace temperature (for example, the lower limit temperature at which dew condensation of combustion exhaust gas does not occur). All combustion exhaust gas is discharged from the flue that does not have a heat storage body provided in the furnace body, and after reaching the constant furnace temperature, the temperature is raised by the heat storage alternating combustion method, so that the thermal efficiency is improved. It is possible to prevent the occurrence of dew condensation without impairing the advantages of the excellent heat storage type alternating combustion burner system.

【0015】また、本発明においては、昇温立ち上げ時
に、加熱炉に設置された全てのバーナを連続燃焼させる
ようにしているので、原理上、炉に設置されたバーナ総
数の中で最大半分のバーナしか燃焼させることができな
い蓄熱交番燃焼方式に比べて燃焼するバーナの個数を増
やすことができる(最大2倍にできる)。このため、所
定炉温までの昇熱時間を短縮でき、これによって総昇熱
時間も短縮できる。
Further, in the present invention, since all burners installed in the heating furnace are made to continuously burn when the temperature is raised, in principle, a maximum of half of the total number of burners installed in the furnace is set. It is possible to increase the number of burners to be burned (maximum can be doubled) as compared with the heat storage alternating combustion method in which only the burner of No. 1 can burn. Therefore, the heating time up to the predetermined furnace temperature can be shortened, and thus the total heating time can also be shortened.

【0016】また、本発明において、加熱炉として、複
数のゾーンを有する連続式加熱炉を使用し、連続燃焼方
式による昇温により所定炉温に達したゾーンから順次、
蓄熱交番燃焼方式に切換えていくことの理由は、昇温立
ち上げ時に、燃焼排ガスを炉体に設けられた煙道から排
出することにより、例えば燃焼排ガスを全て連続式加熱
炉の一端側の炉尻付近(被加熱物の装入部付近)へ流す
ことができるので、各ゾーン間でのガス流が発生しにく
い蓄熱式交番燃焼バーナシステムを使用した連続式加熱
炉であっても、従来のバーナシステム(蓄熱式交番燃焼
バーナシステムでない)からなる連続式加熱炉と同様
に、燃焼排ガスが流れる距離あるいは時間を比較的長く
とることができること、および所定炉温に達した後に蓄
熱交番燃焼方式に切換えることにより、熱効率の面で優
れた蓄熱式交番燃焼バーナシステムの利点が活かされる
ことによる効果が大きいからである。したがって、蓄熱
式交番燃焼バーナシステムを備えた加熱炉であれば、単
一炉方式の加熱炉やバッチ式の加熱炉にも本発明の操炉
方法を適用することができる。
Further, in the present invention, a continuous heating furnace having a plurality of zones is used as the heating furnace, and from the zone where a predetermined furnace temperature is reached by the temperature rise by the continuous combustion method,
The reason for switching to the heat storage alternating combustion method is that when the temperature is raised, the combustion exhaust gas is discharged from the flue provided in the furnace body so that, for example, the combustion exhaust gas is entirely at one end of the continuous heating furnace. Since it can flow near the butt (near the charging part of the object to be heated), even if it is a continuous heating furnace that uses a regenerative alternating combustion burner system that does not easily generate gas flow between each zone, Similar to a continuous heating furnace consisting of a burner system (not a regenerative alternating combustion burner system), the distance or time for the combustion exhaust gas to flow can be set to be relatively long, and the regenerative alternating combustion method can be used after reaching a predetermined furnace temperature. This is because by switching, the effect of utilizing the advantage of the heat storage type alternating combustion burner system which is excellent in terms of thermal efficiency is great. Therefore, as long as the heating furnace is equipped with the regenerative alternating combustion burner system, the furnace operating method of the present invention can be applied to a single furnace heating furnace or a batch heating furnace.

【0017】[0017]

【実施例】以下、図示実施例に基づき本発明を説明す
る。図1は本発明の一実施例による蓄熱式交番燃焼バー
ナシステムを備えた加熱炉の操炉方法を説明するための
連続式加熱炉の概略構成を示すブロック図である。ま
た、図2及び図3はその連続式加熱炉の単位炉毎に装備
された蓄熱式交番燃焼バーナシステムを示す概略構成図
であり、図2は単位炉の側面断面図、図3は単位炉の正
面図である。
The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a block diagram showing a schematic configuration of a continuous heating furnace for explaining a method of operating a heating furnace equipped with a regenerative alternating combustion burner system according to an embodiment of the present invention. 2 and 3 are schematic configuration diagrams showing a regenerative alternating combustion burner system provided for each unit furnace of the continuous heating furnace, FIG. 2 is a side sectional view of the unit furnace, and FIG. 3 is a unit furnace. FIG.

【0018】連続式加熱炉1は、被加熱物Wの装入口3
と搬出口4を有する単位炉2を複数個連結して構成した
ものである。本実施例では4個の単位炉2からなってお
り、したがって被加熱物を連続的に加熱する4個のゾー
ンを有する。単位炉2には、炉体の上部及び下部に、並
びに各部の左右に、それぞれ一対の蓄熱式燃焼バーナ9
が炉長方向に対向して設置されている。そして各バーナ
9は、図2、図3に示すように、バーナ本体に設けた蓄
熱体11を通して供給された燃焼用予熱空気と、燃料と
を混合する空間10を有し、さらに各々一対のバーナ9
は周期的に交互に燃焼と排気を行うようになっており、
一方のバーナ9が燃焼を停止し、一つの四方弁14で排
気ガスをそのバーナの蓄熱体11を通して炉から引き出
している間に、他方のバーナ9が燃焼を開始し、高温の
燃焼ガスを炉内部に向けて吹き出すようになっている。
なお、図3において、12は押込みファン15により燃
焼用空気を供給する空気供給系、13は誘引ファン16
により排気ガスの排出を行う排気ガス排気系で、空気供
給系12と排気ガス排気系13に四方弁14を設けてい
る。18はスライドスプール形の方向制御弁17を介し
て燃料を供給する燃料供給系である。方向制御弁17
は、図4乃至図6に示す如く、スプール17aが3段階
に切換えられるようになっている。つまり、一対のバー
ナ9の双方に燃料を供給する位置(図4)と、一対のバ
ーナ9のうちの一方に燃料を供給する位置(図5)と、
一対のバーナ9のうちの他方に燃料を供給する位置(図
6)とに切換え可能となっている。また、図1、図2に
おいて、5は単位炉2毎に設けた炉圧制御手段で、集合
煙突8に連通するダクト7に設けたダンパー6の開度を
調節し、通常操業時においては各ゾーンの炉圧を一定に
制御するとともに、炉の立ち上げ時には連続式加熱炉1
の炉尻付近のダンパー6のみを開にして、燃焼排ガスが
全て炉内を炉尻付近へ流れるように制御するものであ
る。
The continuous heating furnace 1 has a charging port 3 for the object W to be heated.
And a plurality of unit furnaces 2 each having a carry-out port 4 are connected. In this embodiment, it is composed of four unit furnaces 2 and therefore has four zones for continuously heating the object to be heated. The unit furnace 2 includes a pair of regenerative combustion burners 9 on the upper and lower parts of the furnace body and on the left and right of each part.
Are installed facing each other in the furnace length direction. As shown in FIGS. 2 and 3, each burner 9 has a space 10 for mixing the combustion preheated air supplied through the heat storage body 11 provided in the burner body with the fuel, and each pair of burners 9 has a space. 9
Is designed to perform combustion and exhaust alternately in a cycle.
One of the burners 9 stops burning, and one of the four-way valves 14 draws the exhaust gas from the furnace through the heat storage body 11 of the burner, while the other burner 9 starts burning and the hot combustion gas is burned. It is designed to blow out toward the inside.
In FIG. 3, reference numeral 12 is an air supply system for supplying combustion air by a pushing fan 15, and 13 is an induction fan 16.
A four-way valve 14 is provided in the air supply system 12 and the exhaust gas exhaust system 13 in the exhaust gas exhaust system for exhausting the exhaust gas. Reference numeral 18 denotes a fuel supply system for supplying fuel via a slide spool type directional control valve 17. Direction control valve 17
As shown in FIGS. 4 to 6, the spool 17a can be switched in three stages. That is, a position for supplying fuel to both the pair of burners 9 (FIG. 4), and a position for supplying fuel to one of the pair of burners 9 (FIG. 5),
It is possible to switch to a position (FIG. 6) for supplying fuel to the other of the pair of burners 9. Further, in FIGS. 1 and 2, reference numeral 5 is a furnace pressure control means provided for each unit furnace 2, which adjusts the opening degree of a damper 6 provided in a duct 7 communicating with the stack chimney 8 and is adjusted during normal operation. The furnace pressure in the zone is controlled to be constant, and the continuous heating furnace 1 is used when the furnace is started up.
Only the damper 6 near the bottom of the furnace is opened to control all the combustion exhaust gas to flow in the vicinity of the bottom of the furnace.

【0019】以上のように構成された蓄熱式交番燃焼バ
ーナシステム100を少なくとも一対以上、単位炉2毎
に設置して、図1に示すように連続式加熱炉1を構成す
る。したがって、連続式加熱炉1の各ゾーンは単位炉2
毎に構成され、蓄熱交番燃焼方式による燃焼時には蓄熱
式交番燃焼バーナ9により前後の隣接ゾーンへ排気ガス
が流出することがほとんどないものとなる。また、各ゾ
ーンの蓄熱式交番燃焼バーナシステム100毎に、バー
ナ9に供給する燃料を制御する燃料流量制御装置101
が設けられている。燃料流量制御装置101は、燃料投
入設定手段102からの燃焼パターン信号に基づき、蓄
熱式交番燃焼バーナシステム100に燃料流量制御信号
を出力するとともに、炉圧制御手段5に対し、現在の燃
料投入パターンが連続燃焼パターン(炉の立ち上げ)で
あるか蓄熱交番燃焼パターン(通常操業)であるかを知
らせるよう構成されている。
At least one pair of the heat storage type alternating combustion burner system 100 configured as described above is installed in each unit furnace 2 to configure the continuous heating furnace 1 as shown in FIG. Therefore, each zone of the continuous heating furnace 1 has a unit furnace 2
The exhaust gas does not almost flow out to the front and rear adjacent zones by the heat storage type alternating combustion burner 9 during combustion by the heat storage alternating combustion system. Further, for each heat storage type alternating combustion burner system 100 of each zone, a fuel flow rate control device 101 for controlling the fuel supplied to the burner 9.
Is provided. The fuel flow rate control device 101 outputs a fuel flow rate control signal to the regenerative alternating combustion burner system 100 based on the combustion pattern signal from the fuel injection setting means 102, and also outputs the current fuel injection pattern to the reactor pressure control means 5. Is a continuous combustion pattern (furnace startup) or a heat storage alternating combustion pattern (normal operation).

【0020】燃料投入設定手段102は、立ち上げ判定
手段103と、燃料投入パターン演算手段104とから
構成される。立ち上げ判定手段103は、各ゾーン毎に
設けた図示しない温度センサからの各炉内温度情報10
5と切換え温度設定値(例えば燃焼排ガスの結露が生じ
ない下限の温度)とを順次比較し、炉内温度が切換え温
度設定値より低い場合には立ち上げと判定し、燃料投入
パターン演算手段104に対してそのゾーンの番号と立
ち上げであることを知らせる信号を出力するとともに、
炉内温度が切換え温度設定値より高い場合には、燃料投
入パターン演算手段104に対してそのゾーンの番号と
交番燃焼許可信号を出力するものである。燃料投入パタ
ーン演算手段104は、立ち上げ判定手段103から立
ち上げであることを知らせる信号と対応するゾーンの番
号が入力すると、そのゾーン内の蓄熱式交番燃焼バーナ
システム100の燃料流量制御装置101に対して燃料
投入パターンを通常の連続燃焼パターンとするよう設定
するとともに、立ち上げ判定手段103から交番燃焼許
可信号と対応するゾーンの番号が入力すると、そのゾー
ン内の蓄熱式交番燃焼バーナシステム100の燃料流量
制御装置101に対して燃料投入パターンを蓄熱交番燃
焼パターンとするよう設定するものである。
The fuel injection setting means 102 comprises a startup determination means 103 and a fuel injection pattern calculation means 104. The start-up determination means 103 uses the temperature information (not shown) provided in each zone for each furnace temperature information 10 from each temperature sensor.
5 is sequentially compared with the switching temperature set value (for example, the lower limit temperature at which dew condensation of combustion exhaust gas does not occur), and when the furnace temperature is lower than the switching temperature set value, it is determined to be started, and the fuel injection pattern calculation means 104. To the zone number and a signal notifying that it is starting up,
When the furnace temperature is higher than the switching temperature set value, the zone number and the alternate combustion permission signal are output to the fuel injection pattern calculation means 104. When the number of the zone corresponding to the signal notifying the start-up is input from the start-up determination means 103, the fuel injection pattern calculation means 104 causes the fuel flow rate control device 101 of the regenerative combustion burner system 100 in the zone to be input. On the other hand, when the fuel injection pattern is set to be a normal continuous combustion pattern and the zone number corresponding to the alternating combustion permission signal is input from the start-up determination means 103, the heat storage type alternating combustion burner system 100 in the zone is input. The fuel flow rate control device 101 is set so that the fuel injection pattern is a heat storage alternating combustion pattern.

【0021】したがって、本実施例において、炉を停止
し、暫く時間が経過した後、再び炉の操業を開始する場
合には、昇温立ち上げであることが立ち上げ判定手段1
03によって自動的に判定され、その判定結果に基づい
て燃料投入パターン演算手段104が各蓄熱式交番燃焼
バーナシステム100の燃料流量制御装置101に対し
てそれぞれの燃料投入パターンを通常の連続燃焼パター
ンとするよう設定する。そして燃料流量制御装置101
の制御により蓄熱式交番燃焼バーナシステム100のバ
ーナ9に供給する燃料が制御され、通常の連続燃焼方式
による昇温が開始される。この際、本実施例では全ての
バーナ9を連続燃焼させるように設定して、燃焼排ガス
の結露が生じない下限の温度までの昇熱時間をできるだ
け短縮できるようにしているが、これに限るものでな
く、一部のバーナ9あるいは一部のゾーンのバーナ9を
連続燃焼させるようにしてもよい。要するに、昇温立ち
上げ時は燃焼排ガスを非燃焼バーナを通して系外へ排出
しないようにすることが重要であり、所期の目的は達成
される。
Therefore, in this embodiment, when the furnace is stopped and the operation of the furnace is started again after a lapse of a certain time, it is the startup determination means 1 that the heating is startup.
03, and based on the determination result, the fuel injection pattern calculation means 104 determines the fuel injection pattern for the fuel flow rate control device 101 of each regenerative combustion burner system 100 as a normal continuous combustion pattern. Set to. And the fuel flow control device 101
The fuel supplied to the burner 9 of the regenerative alternating combustion burner system 100 is controlled by the control described above, and the temperature rise by the normal continuous combustion method is started. At this time, in this embodiment, all the burners 9 are set to burn continuously so that the heating time to the lower limit temperature at which dew condensation of the combustion exhaust gas does not occur can be shortened as much as possible, but this is not the only option. Instead, some of the burners 9 or some of the burners 9 in the zones may be burned continuously. In short, it is important to prevent the combustion exhaust gas from being discharged to the outside of the system through the non-combustion burner when the temperature is raised, and the intended purpose is achieved.

【0022】通常の連続燃焼方式による昇温が開始され
ると、これに同期して炉圧制御手段5は、集合煙突8に
連通する各ダクト7に設けたダンパー6のうち、連続式
加熱炉1の炉尻付近のダンパー6のみを開にし、それ以
外のダンパー6を全て閉にし、燃焼排ガスが全てのゾー
ンを通過して炉尻付近へ流れるように制御する。これに
より、燃焼排ガスが流れる距離あるいは時間が比較的長
くとれ、更に昇温立ち上げ時の炉体内部は冷えていて、
炉体内を通過する燃焼排ガスからの熱吸収効率が極めて
よいため、効率よく昇温が行われる。また、燃焼排ガス
は炉尻付近のダンパー6から蓄熱体を備えていない集合
煙突8を経て高温のまま排出されるので、集合煙突8内
での結露の発生も防止される。
When the temperature rise by the normal continuous combustion system is started, in synchronization with this, the furnace pressure control means 5 controls the continuous heating furnace among the dampers 6 provided in the ducts 7 communicating with the collective chimney 8. Only the damper 6 in the vicinity of the furnace bottom of No. 1 is opened, all the other dampers 6 are closed, and the combustion exhaust gas is controlled so as to flow through all the zones to the vicinity of the furnace bottom. As a result, the distance or time during which the combustion exhaust gas flows can be made relatively long, and the inside of the furnace body at the time of temperature rise and start-up is cold,
Since the efficiency of heat absorption from the combustion exhaust gas passing through the furnace body is extremely high, the temperature can be raised efficiently. Further, the combustion exhaust gas is discharged from the damper 6 near the furnace bottom at a high temperature through the collective chimney 8 having no heat storage body, so that the occurrence of dew condensation in the collective chimney 8 is also prevented.

【0023】立ち上げ判定手段103は、常に各ゾーン
毎の炉内温度情報105と切換え温度設定値とを比較し
てみているので、連続燃焼方式による昇温で炉内温度が
切換え温度設定値より高くなったか否かを各ゾーン毎に
判定でき、炉内温度が切換え温度設定値より高くなった
と判定されたゾーンから順次、燃料投入パターン演算手
段104に対して知らせることができる。燃料投入パタ
ーン演算手段104は、立ち上げ判定手段103の判定
結果に基づいて順次、切換え温度設定値に達したゾーン
の蓄熱式交番燃焼バーナシステム100の燃料流量制御
装置101に設定する燃料投入パターンを通常の連続燃
焼パターンから蓄熱交番燃焼パターンに切換えさせる。
そして燃料流量制御装置101の制御により蓄熱式交番
燃焼バーナシステム100のバーナ9に供給する燃料が
制御され、切換え温度設定値に達したゾーンから順次、
燃焼方式が蓄熱交番燃焼方式に切換えられる。このよう
にして、燃焼方式が通常の連続燃焼方式から順次、蓄熱
交番燃焼方式に切換えられ、最後のゾーンが切換え温度
設定値に達したら、全ゾーンが蓄熱交番燃焼方式による
昇熱状態となり、熱効率の面で優れた蓄熱式交番燃焼バ
ーナシステムの利点が活かされ、従来に比し総昇熱時間
も短縮される。
Since the start-up determination means 103 is constantly comparing the furnace temperature information 105 for each zone with the switching temperature set value, the furnace temperature is higher than the switching temperature set value due to the temperature increase by the continuous combustion method. Whether or not the temperature has become higher can be determined for each zone, and it is possible to sequentially notify the fuel injection pattern calculation means 104 from the zone in which it has been determined that the furnace temperature has become higher than the switching temperature set value. The fuel injection pattern calculation means 104 sequentially sets the fuel injection pattern to be set in the fuel flow rate control device 101 of the heat storage type alternating combustion burner system 100 in the zone where the switching temperature set value is reached based on the determination result of the startup determination means 103. The normal continuous combustion pattern is switched to the heat storage alternating combustion pattern.
Then, the fuel supplied to the burner 9 of the heat storage type alternating combustion burner system 100 is controlled by the control of the fuel flow rate control device 101, and sequentially from the zone where the switching temperature set value is reached,
The combustion method is switched to the heat storage alternating combustion method. In this way, the combustion method is sequentially switched from the normal continuous combustion method to the heat storage alternating combustion method, and when the last zone reaches the switching temperature set value, all zones are heated by the heat storage alternating combustion method and the thermal efficiency is increased. In this respect, the advantage of the excellent heat storage type alternating combustion burner system is utilized, and the total heat-up time is shortened compared to the conventional one.

【0024】また、昇温立ち上げ時に一部のゾーンのバ
ーナ9を連続燃焼させるようにしている場合は、燃焼ゾ
ーンの炉温が切換え温度設定値に達し、この燃焼ゾーン
の燃焼方式が連続燃焼方式から蓄熱交番燃焼方式に切換
えられた時点で、非燃焼ゾーンの一部を点火して通常の
連続燃焼方式で燃焼させ、この方式で順次、切換え、点
火を行っていき、最後のゾーンが切換え温度設定値に達
したとき、全ゾーンが蓄熱交番燃焼方式による昇熱状態
となるようにしてもよい。
When the burners 9 in some zones are made to continuously burn at the time of rising the temperature, the furnace temperature in the combustion zone reaches the switching temperature set value, and the combustion method in this combustion zone is continuous burning. When the system is switched to the heat storage alternating combustion system, a part of the non-combustion zone is ignited and burned in the normal continuous combustion system, and this system is sequentially switched and ignited, and the last zone is switched. When the temperature set value is reached, all zones may be brought into a heat-up state by the heat storage alternating combustion method.

【0025】ところで、前述した実施例では本発明の操
炉方法を連続式加熱炉に用いたものを示したが、蓄熱式
交番燃焼バーナシステムを備えた加熱炉であればそれ以
外の方式の加熱炉、例えば単一炉方式の加熱炉やバッチ
式の加熱炉にも本発明の操炉方法を適用することができ
る。この場合、昇温立ち上げ時の連続燃焼方式による燃
焼排ガスが流れる距離は長くとれないが、燃焼量を低減
すれば燃焼排ガスの容量が小さくなるので、炉内通過時
間が増大し、熱交換量を増すことができる。その結果、
熱効率の改善が期待できる。即ち、昇熱時間の短縮を図
りながら熱効率の調節も可能となる訳で、両者の優先比
重をある範囲で任意に選択できる。また、熱効率が劣る
ことになったとしても、ある定められた炉温(切換え温
度設定値)までの昇熱の範囲だけであり、最終目標炉温
までの全体の昇熱を対象とした熱効率は実質的に従来の
加熱方式(全昇熱が蓄熱式交番燃焼によるもの)と差が
ないものとなる。
By the way, in the above-mentioned embodiment, the one in which the furnace operating method of the present invention is used in the continuous heating furnace is shown. However, if the heating furnace is equipped with the regenerative alternating combustion burner system, the heating method of other methods is used. The furnace operation method of the present invention can also be applied to a furnace, for example, a single furnace type heating furnace or a batch type heating furnace. In this case, the distance that the combustion exhaust gas flows by the continuous combustion method at the time of temperature rise startup cannot be taken long, but if the combustion amount is reduced, the capacity of the combustion exhaust gas decreases, so the passage time in the furnace increases and the heat exchange amount increases. Can be increased. as a result,
Improvement of thermal efficiency can be expected. That is, the heat efficiency can be adjusted while shortening the heat-up time, and the priority specific gravity of both can be arbitrarily selected within a certain range. Even if the thermal efficiency becomes poor, it is only within the range of heating up to a certain furnace temperature (switching temperature setting value), and the thermal efficiency for the overall heating up to the final target furnace temperature is Substantially no difference from the conventional heating method (total heating is due to heat storage type alternating combustion).

【0026】最終目標炉温に達するまでに本発明の操炉
方法を適用した場合と従来の加熱方式による場合とでど
のくらいの時間を要したかを具体的に比較して示したの
が図7である。図7は縦軸に炉温を、横軸に時間を取っ
たもので、本発明の操炉方法によるものを実線で、従来
の加熱方式によるものを破線で示してある。また、切換
え温度設定値を600℃、最終目標炉温を1200℃に
設定し、本発明の操炉方法では切換え温度設定値までの
立ち上げ時に各ゾーンの全てのバーナを連続燃焼させ、
従来の加熱方式では最終目標炉温に達するまでの全昇熱
を各ゾーンの全てのバーナを蓄熱式交番燃焼させること
により行ったものである。図から明らかなように、最終
目標炉温(1200℃)に達するまでに、従来の加熱方
式では8時間必要としていたのに対し、本発明の操炉方
法を用いた場合には7時間となり、10%強の時間短縮
効果が得られた。
FIG. 7 shows a concrete comparison of how long it took to apply the furnace operation method of the present invention and the conventional heating method until the final target furnace temperature was reached. Is. FIG. 7 shows the furnace temperature on the vertical axis and the time on the horizontal axis. The solid line shows the furnace operating method of the present invention, and the broken line shows the conventional heating method. Further, the switching temperature set value is set to 600 ° C. and the final target furnace temperature is set to 1200 ° C., and in the furnace operating method of the present invention, all burners in each zone are continuously burned at the time of starting up to the switching temperature set value,
In the conventional heating method, all the heat rising until the final target furnace temperature is reached is performed by regenerative combustion of all the burners in each zone. As is clear from the figure, the conventional heating method required 8 hours to reach the final target furnace temperature (1200 ° C.), whereas the furnace operating method of the present invention required 7 hours. A time saving effect of more than 10% was obtained.

【0027】[0027]

【発明の効果】以上述べたように、本発明によれば、昇
温立ち上げ時に、所定炉温に達するまでは通常の連続燃
焼方式で昇温を行い、このときに発生する全ての燃焼排
ガスを炉体に設けられた蓄熱体を備えていない煙道から
排出し、定炉温に達した以降は、蓄熱交番燃焼方式によ
り昇温を行うようにしたので、熱効率の面で優れた蓄熱
式交番燃焼バーナシステムの利点を損なうことなく、結
露の発生を防止することができる。
As described above, according to the present invention, when the temperature is raised, the temperature is raised by the normal continuous combustion method until the temperature reaches the predetermined furnace temperature, and all combustion exhaust gas generated at this time is raised. Is discharged from the flue that does not have a heat storage body provided in the furnace body, and after reaching the constant furnace temperature, the temperature is raised by the heat storage alternating combustion method, so a heat storage method that is excellent in terms of thermal efficiency Condensation can be prevented without compromising the advantages of the alternating combustion burner system.

【0028】また、本発明によれば、昇温立ち上げ時
に、加熱炉に設置された全てのバーナを連続燃焼させる
ようにしたので、原理上、炉に設置されたバーナ総数の
中で最大半分のバーナしか燃焼させることができない蓄
熱交番燃焼方式に比べて燃焼するバーナの個数を増やす
ことができる(最大2倍にできる)とともに、所定炉温
までの昇熱時間を短縮でき、これによって総昇熱時間も
短縮することができる。
Further, according to the present invention, all the burners installed in the heating furnace are made to burn continuously when the temperature is raised, so that, in principle, the maximum half of the total number of burners installed in the furnace is set. It is possible to increase the number of burners to burn (maximum double) as compared with the heat storage alternating combustion method, which can burn only the burner, and to shorten the heating time to the predetermined furnace temperature. The heating time can also be shortened.

【0029】また、本発明によれば、加熱炉として、複
数のゾーンを有する連続式加熱炉を使用し、連続燃焼方
式による昇温により所定炉温に達したゾーンから順次、
蓄熱交番燃焼方式に切換えていくようにしたので、昇温
立ち上げ時の連続燃焼による燃焼排ガスを、例えば連続
式加熱炉の一端側の炉尻付近(被加熱物の装入部付近)
へ流すことができ、各ゾーン間でのガス流が発生しにく
い蓄熱式交番燃焼バーナシステムを使用した連続式加熱
炉であっても、従来のバーナシステム(蓄熱式交番燃焼
バーナシステムでない)からなる連続式加熱炉と同様
に、燃焼排ガスが流れる距離あるいは時間を比較的長く
とることができるとともに、熱効率の面で優れた蓄熱式
交番燃焼バーナシステムの利点を活かすことができる。
Further, according to the present invention, a continuous heating furnace having a plurality of zones is used as the heating furnace, and the zones in which a predetermined furnace temperature is reached by the temperature increase by the continuous combustion system are sequentially
Since the system switches to the heat storage alternating combustion method, the combustion exhaust gas generated by continuous combustion when the temperature rises and rises, for example, near the bottom of the continuous heating furnace (near the charging part of the object to be heated).
Even if it is a continuous heating furnace that uses a regenerative alternating combustion burner system that can flow to each other and does not easily generate a gas flow between each zone, it consists of a conventional burner system (not a regenerative alternating combustion burner system). Similar to the continuous heating furnace, the distance or time for the combustion exhaust gas to flow can be set relatively long, and the advantages of the heat storage type alternating combustion burner system, which is excellent in terms of thermal efficiency, can be utilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による蓄熱式交番燃焼バーナ
システムを備えた加熱炉の操炉方法を説明するための連
続式加熱炉の概略構成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of a continuous heating furnace for explaining a method of operating a heating furnace having a regenerative alternating combustion burner system according to an embodiment of the present invention.

【図2】図1の連続式加熱炉の単位炉の断面側面図であ
る。
FIG. 2 is a sectional side view of a unit furnace of the continuous heating furnace of FIG.

【図3】図2の単位炉の正面図である。FIG. 3 is a front view of the unit furnace shown in FIG.

【図4】図2の単位炉の燃料供給系内に配置された方向
制御弁を拡大して示す断面図である。
4 is an enlarged cross-sectional view showing a directional control valve arranged in a fuel supply system of the unit furnace of FIG.

【図5】図4の方向制御弁の異なる態様を示す断面図で
ある。
5 is a cross-sectional view showing another mode of the directional control valve of FIG.

【図6】図4の方向制御弁の異なる態様を示す断面図で
ある。
6 is a cross-sectional view showing a different aspect of the directional control valve of FIG.

【図7】最終目標炉温に達するまでに要する時間を本発
明の操炉方法によるものと従来の加熱方式によるものと
で比較して示す線図である。
FIG. 7 is a diagram showing a comparison of the time required to reach the final target furnace temperature between the furnace operating method of the present invention and the conventional heating method.

【符号の説明】[Explanation of symbols]

1 連続式加熱炉 6 ダンパー 7 ダクト 8 集合煙突 9 蓄熱式燃焼バーナ 11 蓄熱体 100 蓄熱式交番燃焼バーナシステム 101 燃料流量制御装置 102 燃料投入設定手段 103 立ち上げ判定手段 104 燃料投入パターン演算手段 DESCRIPTION OF SYMBOLS 1 Continuous heating furnace 6 Damper 7 Duct 8 Stack chimney 9 Heat storage type combustion burner 11 Heat storage body 100 Heat storage type alternating combustion burner system 101 Fuel flow rate control device 102 Fuel injection setting means 103 Startup determination means 104 Fuel injection pattern calculation means

フロントページの続き (72)発明者 田中 良一 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内 (72)発明者 松尾 護 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内 (72)発明者 須藤 淳 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内Front Page Continuation (72) Inventor Ryoichi Tanaka 2-3-1, Shirute, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industry Co., Ltd. Within Japan Furnace Industry Co., Ltd. (72) Inventor Atsushi Sudo 2-53, Shirate, Tsurumi-ku, Yokohama-shi, Kanagawa Inside Furnace Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一対のバーナを交互に燃焼させてその燃
焼排ガスの熱を非燃焼バーナを通して高温のまま蓄熱体
で回収し燃焼用空気の予熱源に使用する蓄熱式交番燃焼
バーナシステムを備えた加熱炉において炉を停止し、再
び炉の操業を開始する場合に、予め炉温を所定温度まで
昇温立ち上げてから操業を開始する操炉方法において、 昇温立ち上げ時に、所定炉温に達するまでは、通常の連
続燃焼方式で昇温を行い、このときに発生する全ての燃
焼排ガスを炉体に設けられた蓄熱体を備えていない煙道
から排出し、 所定炉温に達した以降は、蓄熱交番燃焼方式により昇温
を行うことを特徴とする蓄熱式交番燃焼バーナシステム
を備えた加熱炉の操炉方法。
1. A regenerative alternating combustion burner system is provided, wherein a pair of burners are burned alternately and the heat of the combustion exhaust gas is recovered as a high temperature through a non-combustion burner by a regenerator and used as a preheat source for combustion air. When stopping the furnace in the heating furnace and restarting the operation of the furnace again, in the furnace operation method that raises the furnace temperature to a predetermined temperature and starts it before starting the operation, Until the temperature is reached, the temperature is raised by the normal continuous combustion method, and all the combustion exhaust gas generated at this time is exhausted from the flue provided with no heat storage body in the furnace body, and after reaching the predetermined furnace temperature. Is a method of operating a heating furnace equipped with a heat storage type alternating combustion burner system, wherein the temperature is raised by a heat storage type alternating combustion system.
【請求項2】 昇温立ち上げ時に、加熱炉に設置された
全てのバーナを連続燃焼させることを特徴とする請求項
1記載の蓄熱式交番燃焼バーナシステムを備えた加熱炉
の操炉方法。
2. The method of operating a heating furnace equipped with a regenerative alternating combustion burner system according to claim 1, wherein all the burners installed in the heating furnace are burned continuously when the temperature is raised.
【請求項3】 加熱炉として、複数のゾーンを有する連
続式加熱炉を使用し、連続燃焼方式による昇温により所
定炉温に達したゾーンから順次、蓄熱交番燃焼方式に切
換えていくことを特徴とする請求項1または請求項2記
載の蓄熱式交番燃焼バーナシステムを備えた加熱炉の操
炉方法。
3. A continuous heating furnace having a plurality of zones is used as the heating furnace, and the heat storage alternating combustion method is sequentially switched from the zone where a predetermined furnace temperature is reached by the temperature increase by the continuous combustion method. A method of operating a heating furnace comprising the regenerative alternating combustion burner system according to claim 1 or 2.
JP5266202A 1993-10-25 1993-10-25 Furnace operation method of heating furnace provided with regenerative alternating combustion burner system Expired - Lifetime JP2936449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5266202A JP2936449B2 (en) 1993-10-25 1993-10-25 Furnace operation method of heating furnace provided with regenerative alternating combustion burner system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5266202A JP2936449B2 (en) 1993-10-25 1993-10-25 Furnace operation method of heating furnace provided with regenerative alternating combustion burner system

Publications (2)

Publication Number Publication Date
JPH07120171A true JPH07120171A (en) 1995-05-12
JP2936449B2 JP2936449B2 (en) 1999-08-23

Family

ID=17427685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5266202A Expired - Lifetime JP2936449B2 (en) 1993-10-25 1993-10-25 Furnace operation method of heating furnace provided with regenerative alternating combustion burner system

Country Status (1)

Country Link
JP (1) JP2936449B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215674A (en) * 2007-03-01 2008-09-18 Sumitomo Metal Ind Ltd Temperature adjusting method of continuous heating furnace
JP2008214670A (en) * 2007-03-01 2008-09-18 Chugai Ro Co Ltd Continuous heating furnace
JP2008255396A (en) * 2007-04-03 2008-10-23 Nippon Steel Engineering Co Ltd Operating method for heating furnace having regenerative burner
JP2009063198A (en) * 2007-09-05 2009-03-26 Dowa Thermotech Kk Burner furnace and heating method of burner furnace
JP2016142441A (en) * 2015-01-30 2016-08-08 大阪瓦斯株式会社 Alternate combustion burner device and heating furnace
JP2017101841A (en) * 2015-11-30 2017-06-08 Jfeスチール株式会社 Furnace temperature control method for heating furnace and furnace temperature control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215674A (en) * 2007-03-01 2008-09-18 Sumitomo Metal Ind Ltd Temperature adjusting method of continuous heating furnace
JP2008214670A (en) * 2007-03-01 2008-09-18 Chugai Ro Co Ltd Continuous heating furnace
JP2008255396A (en) * 2007-04-03 2008-10-23 Nippon Steel Engineering Co Ltd Operating method for heating furnace having regenerative burner
JP2009063198A (en) * 2007-09-05 2009-03-26 Dowa Thermotech Kk Burner furnace and heating method of burner furnace
JP2016142441A (en) * 2015-01-30 2016-08-08 大阪瓦斯株式会社 Alternate combustion burner device and heating furnace
JP2017101841A (en) * 2015-11-30 2017-06-08 Jfeスチール株式会社 Furnace temperature control method for heating furnace and furnace temperature control device

Also Published As

Publication number Publication date
JP2936449B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JPH09126665A (en) Recovering method of waste heat of steel heating furnace and facility therefor
CN106051774A (en) Intelligent continuous heat-accumulating combustion device and control method thereof
JPH07120171A (en) Method of operating heating oven including heat storage alternate combustion burner system
JP3267140B2 (en) Heating furnace, combustion control method thereof, and combustion control device
JPH1060536A (en) Continuous type heating furnace
KR20060021018A (en) Combustion waste gas heat recovery system in reheating furnace
JP2005501966A (en) How to improve furnace temperature profile
JP7115995B2 (en) Furnace pressure control method for continuous heating furnace, furnace pressure control device, and continuous heating furnace
JPH09287013A (en) Device for utilizing heat in hot stove
JP3095964B2 (en) Combustion control method for regenerative combustion burner system
JP5320926B2 (en) Regenerative burner method for heating furnace burners
JP3235700B2 (en) Waste gas temperature control device of regenerative burner device
CN205979793U (en) Continuous heat accumulation burner of intelligent
JP3799841B2 (en) Operating method of heating furnace
CN112944932B (en) Regenerative heating furnace and smoke discharge control method and control system thereof
JPH08319520A (en) Continuous annealing furnace
JP3341542B2 (en) Heating furnace, regenerative combustion device and combustion method
JPH09101022A (en) Operating method of heat storage type burner furnace
JP3417789B2 (en) Continuous annealing furnace
KR101020358B1 (en) Waste heat recovery Apparatus for reheating furnace
JP3425705B2 (en) Method of controlling regenerative burner group
JP4009989B2 (en) Heating furnace operating method with narrow pitch heat storage burner group
JP2009127934A (en) Heat storage type combustion apparatus
JPH09111350A (en) Continuous heating furnace and operation thereof
JPH06228620A (en) Method for controlling combustion in hot air stove