JP4009989B2 - Heating furnace operating method with narrow pitch heat storage burner group - Google Patents
Heating furnace operating method with narrow pitch heat storage burner group Download PDFInfo
- Publication number
- JP4009989B2 JP4009989B2 JP2002022083A JP2002022083A JP4009989B2 JP 4009989 B2 JP4009989 B2 JP 4009989B2 JP 2002022083 A JP2002022083 A JP 2002022083A JP 2002022083 A JP2002022083 A JP 2002022083A JP 4009989 B2 JP4009989 B2 JP 4009989B2
- Authority
- JP
- Japan
- Prior art keywords
- burner
- furnace
- combustion
- group
- heat storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Air Supply (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、狭ピッチで配列された蓄熱式バーナ群を備えた加熱炉の操炉方法に係り、特に千鳥対向する火炎が炉の中央部で干渉して炉中央部の温度が高くなる中高温度分布の発生を抑制できる狭ピッチ蓄熱式バーナ群を備えた加熱炉の操炉方法に関するものである。
【0002】
【従来の技術】
近年、金属片などの被加熱物を加熱する方法として、省エネルギ性に優れた蓄熱式交番燃焼バーナシステムが採用されるようになってきた。蓄熱式交番燃焼バーナシステムは、一対のバーナを交互に燃焼させてその燃焼排ガスの熱を非燃焼バーナを通して高温のまま蓄熱体で回収し、燃焼用空気の予熱源に使用するので、従来の加熱バーナシステムに比べて熱効率が非常に高くなる。
【0003】
図4はこのような蓄熱式交番燃焼バーナシステムを示す構成図で、加熱炉Xには、少なくも一対の燃焼バーナ111,112が炉幅方向で対向して設置されている。各燃焼バーナ111,112には、それぞれ燃料遮断弁1,11、排ガス遮断弁2,22、空気遮断弁3,33、蓄熱体4,44が備えられている。また、燃焼用空気の配管系、排ガスの配管系、及び燃料の配管系には、それぞれ流量調節弁5,6,7が設けられている。
【0004】
このようなものにおいて、一方の燃焼バーナ111が燃焼状態にあるときには、燃料遮断弁1が開、排ガス遮断弁2が閉、空気遮断弁3が開であり、燃焼用空気が、高温に耐えるセラミック製の蓄熱体4を経て予熱され、炉内に供給されて燃料と混合し燃焼する。発生した排ガスの大部分は、蓄熱状態にある他方の非燃焼バーナ112に吸引され、その排ガスの熱を非燃焼バーナ112を通して高温のまま蓄熱体44で回収され、系外に排気される。
【0005】
従来の蓄熱式交番燃焼バーナシステムを備えた加熱炉、例えば複数のゾーンを有する連続式加熱炉では、通常、各ゾーン内に、それぞれ複数の蓄熱式バーナが炉長方向に配置されており、これらの蓄熱式バーナ群は、加熱炉の左右炉壁上に互いに対向させて設置されている。そして各蓄熱式バーナ個々に、ある時間には炉内ガスを吸引してその顕熱を蓄熱体に蓄え(蓄熱状態)、別の時間には蓄えた顕熱を燃焼用空気に与えて高温の予熱空気を得て燃焼する(燃焼状態)いわゆる蓄熱燃焼を繰り返す。このため、高温の燃焼排ガスの顕熱を効率よく回収して高温の予熱空気を得ることができる。したがって、加熱炉に用いると大きな省エネルギ効果が得られるため、近年、急速に適用拡大が進んでいる。
【0006】
一方、蓄熱式バーナでは、既述したように高温の予熱空気を得て燃焼するため、NOx発生量が増加する問題があり、高温空気燃焼と呼ばれる火炎容積が大きくなる燃焼法が採用される。そのため、蓄熱式交番燃焼バーナシステムを備えた加熱炉では、互いに対向燃焼しないように切り換え燃焼制御されるのが一般的である。具体的には、例えば図5に示すように対向する左右炉壁にそれぞれ設置された蓄熱式バーナ群を千鳥燃焼させる操炉方法がとられる。すなわち、ある時間にはバーナ112,121,132,141が燃焼し、バーナ111,122,131,142が蓄熱する(図5中の状態(A))。一定時間経過後、今度はバーナ112,121,132,141が蓄熱し、バーナ111,122,131,142が燃焼する(図5中の状態(B))。これを繰り返して蓄熱燃焼が実現される。
【0007】
【発明が解決しようとする課題】
ところで、既設の加熱炉を部分改造(例えば連続式加熱炉の特定ゾーンの改造など)して蓄熱式バーナを設置するときには、既設設備の配置制約で炉長方向隣り合うバーナの間の距離(これを以後バーナピッチという)を狭くせざるを得ない場合がある。その場合、図5のように千鳥燃焼するバーナの火炎が炉の中央部で干渉する。そして、炉幅方向温度分布は、炉幅方向中央部の温度が高くなる、所謂、中高温度分布となる。新規に設備を構築する場合には、バーナピッチを適切な距離以上とれるように設計することで、千鳥燃焼するバーナの火炎の干渉の発生を防止でき、炉幅方向温度分布を平坦化できる。
【0008】
すなわち、既設の加熱炉を部分改造によってバーナピッチを狭くせざるを得ない場合、バーナピッチを適切な距離以上とれるものと同じ燃料流量とすると、このときの炉幅方向平均温度より、炉幅方向中央部の温度が高くなり、左右炉壁側の温度が低くなる。このため、被加熱物の加熱不足が生じる。
【0009】
この左右炉壁側の温度低下の問題は、バーナピッチを適切な距離以上とれるものよりも燃料流量を増量することで解決し得るが、この場合にはエネルギの浪費が多くなるだけでなく、炉幅方向中央部の温度が高くなり過ぎて、過度の加熱による被加熱物の品質の悪化が避けられないという新たな問題が発生する。
【0010】
なお、狭ピッチによる火炎の干渉の問題は、ゾーン内の同一炉壁上の全ての蓄熱式バーナを1つのグループとして、左右で切り替える操炉方法を採用すれば、完全に解消することができる。しかし、この場合には、多数の蓄熱式バーナを同時に切り替える必要が生じ、給気・排気配管の切替時における流量変動が大きくなり、流量制御弁の制御範囲を逸脱し、適切な流量制御(燃焼制御)が不可能になる。
【0011】
本発明の技術的課題は、バーナピッチが小さい場合でも中高温度分布の発生を抑制できて、炉幅方向温度分布を平坦化できるようにすることにある。
【0013】
【課題を解決するための手段】
本発明の狭ピッチ蓄熱式バーナ群を備えた加熱炉の操炉方法は、炉幅方向で対向する一対のバーナを交互に燃焼させてその燃焼排ガスの熱を非燃焼バーナを通して高温のまま蓄熱体で回収し燃焼用空気の予熱源に使用する蓄熱式交番燃焼バーナシステムを、あるゾーン内で少なくとも4組以上、炉長方向に配置するとともに、前記ゾーン内の炉長方向で隣り合う各バーナ組相互の炉長方向ピッチPを、炉幅WFに対し、P<0.18*WFとなるように設定してなる加熱炉の操炉にあたり、前記ゾーン内の各バーナを、同一炉壁上で隣り合うバーナの少なくとも2台以上を一組とする複数のバーナ群に分け、同一のバーナ群内ではすべてのバーナを同時に燃焼あるいは蓄熱させるものとし、かつこれらバーナ群の燃焼にあたっては、対向する一方のバーナ群が燃焼状態にあるときには、これらと対向する他方のバーナ群が蓄熱状態となるように、しかも前記一方のバーナ群と炉長方向に隣り合うバーナ群が蓄熱状態となり、前記他方のバーナ群と炉長方向に隣り合うバーナ群が燃焼状態となるように、各バーナ群を交互に燃焼あるいは蓄熱させることを特徴としている。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態に係る狭ピッチ蓄熱式バーナ群を備えた加熱炉の操炉方法について図1乃至図3に基づき説明する。図1は本実施形態に係る加熱炉の操炉方法を示す説明図、図2はその操炉方法による炉幅方向温度分布を従来例と比較して示すグラフであり、縦軸にガス温度(℃)を、横軸に炉幅方向距離(m)をとったものである。図3は蓄熱式バーナにより形成される火炎の様子を模式的に示す図である。なお、各図中、従来例に相当する部分には同一符号を付してある。
【0015】
蓄熱式バーナにより形成される火炎(図3)は、本発明者らの観察によれば、ほぼ20°の広がり角度を持って拡散燃焼する。従って、千鳥対向するバーナの火炎が、炉幅中央で干渉しない条件は、炉幅をWF(単位:m)、バーナピッチをP(単位:m)としたとき、
P>2*tan(10°)*(WF/2)‥‥‥‥‥‥(1)
であり、tan(10°)≒0.176であるから、(1)式は次のように書きかえられる。
P>0.18*WF‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥(2)
【0016】
すなわち、バーナピッチPを(2)式を満足できるように設定できれば、千鳥燃焼するバーナ火炎の干渉を防止できる。しかし、現実の加熱炉の設計においては、(2)式を満足できない場合が生じる。例えば加熱炉を部分改造して図1のようにゾーン内で4組の蓄熱式バーナ111,112,121,122,131,132,141,142を炉長方向に設置する場合など、既設設備の配置制約でバーナピッチを狭くせざるを得ない場合がある。そのような場合、改造する部位(ゾーン)に設置する各蓄熱式バーナのバーナピッチPを、炉幅WFに対し、P<0.18*WFとなるように設定する。
【0017】
そして、このような狭ピッチ蓄熱式バーナ群を備えた加熱炉の操炉にあたっては、図1のようにゾーン内の左側炉壁上のバーナ111,121をグループA1、バーナ131,141をグループA2とし、右側炉壁上のバーナ112,122をグループB1、バーナ132,142をグループB2とし、グループ単位で燃焼制御する。すなわち、図1において、ある時間にはグループA1,B2が燃焼し、グループA2,B1が蓄熱する(図1中の状態(A))。一定時間経過後、今度はグループA1,B2が蓄熱し、グループA2,B1が燃焼する(図1中の状態(B))。これを繰り返して蓄熱燃焼が実現される。これにより、炉幅中央部での火炎干渉個所を減らし、炉幅方向中高の温度分布発生を軽減することができる。
【0018】
炉幅10mの加熱炉で、本発明の操炉方法によりグループ燃焼させた場合の炉幅方向ガス温度分布と、従来の操炉方法により千鳥燃焼させた場合の炉幅方向ガス温度分布とを図2に比較して示す。図2において、四角(□)でプロットして示す線は、バーナピッチを1.4mとして本発明の操炉方法(図1)によりグループ燃焼させた場合の炉幅方向ガス温度分布を、三角(△)でプロットして示す線は、本発明と同じ燃料流量でバーナピッチを1.4mとして千鳥燃焼(図5)させた場合の炉幅方向ガス温度分布を、黒丸(●)でプロットして示す線は、燃料流量を前記2例(□と△の線)のものよりも増量し、左右炉壁側の温度が本発明のもの(□の線)と同じ温度となるようにして、バーナピッチを1.4mとして千鳥燃焼(図5)させた場合の炉幅方向ガス温度分布を、白丸(○)でプロットして示す線は、単位炉長当たりの燃料流量を本発明のもの(□の線)と同じくし、バーナピッチを1.8mとして千鳥燃焼(図5)させた場合の炉幅方向ガス温度分布を、それぞれ示す。
【0019】
図2から明らかなように、本発明の操炉方法によれば(□の線)、バーナピッチが1.4mと狭ピッチであるにもかかわらず炉幅方向中央部での中高温度は20℃に軽減されており、被加熱物をほぼ均一に加熱することができる。
【0020】
△の線の例では、炉幅方向中央部での温度がその炉幅方向平均温度より60℃高く、左右炉壁側の温度がその炉幅方向平均温度より低くなり、被加熱物の加熱不足が生じる。なお、この例における炉幅方向平均温度は、本発明の操炉方法のもの(□の線の例)とほぼ同じであった。
【0021】
●の線の例では、エネルギの浪費が多くなるだけでなく、炉幅方向中央部の温度が本発明の操炉方法による炉幅方向平均温度より80℃高く、過度の加熱による被加熱物の品質の悪化が避けられない。
【0022】
○の線の例では、バーナピッチが1.8mと適切な距離以上に設定されているため、炉幅方向にほぼ平坦な温度分布が形成され、本発明の操炉方法によるものと遜色がなかった。
【0023】
【発明の効果】
以上述べたように、本発明によれば、炉幅方向で対向する一対のバーナを交互に燃焼させてその燃焼排ガスの熱を非燃焼バーナを通して高温のまま蓄熱体で回収し燃焼用空気の予熱源に使用する蓄熱式交番燃焼バーナシステムを、あるゾーン内で少なくとも4組以上、炉長方向に配置するとともに、前記ゾーン内の炉長方向で隣り合う各バーナ組相互の炉長方向ピッチPを、炉幅WFに対し、P<0.18*WFとなるように設定してなる加熱炉の操炉にあたり、前記ゾーン内の各バーナを、同一炉壁上で隣り合うバーナの少なくとも2台以上を一組とする複数のバーナ群に分け、同一のバーナ群内ではすべてのバーナを同時に燃焼あるいは蓄熱させるものとし、かつこれらバーナ群の燃焼にあたっては、対向する一方のバーナ群が燃焼状態にあるときには、これらと対向する他方のバーナ群が蓄熱状態となるように、しかも前記一方のバーナ群と炉長方向に隣り合うバーナ群が蓄熱状態となり、前記他方のバーナ群と炉長方向に隣り合うバーナ群が燃焼状態となるように、各バーナ群を交互に燃焼あるいは蓄熱させるようにしたので、バーナピッチが狭ピッチであるにもかかわらず、炉幅中央部での火炎干渉個所を減らすことができて、従来のような炉幅方向の大きな温度分布の発生がなくなり、炉幅方向の温度分布が平坦となった。その結果、被加熱物をほぼ均一に加熱することが可能となり、被加熱物を過度に加熱することによる加熱エネルギの浪費を防止できて、被加熱物の品質のばらつきをなくすることが可能となった。また、ゾーン内の同一炉壁上の全ての蓄熱式バーナを1つのグループとして、左右で切り替える操炉方法におけるような給気・排気配管の切替時の大きな流量変動がおこらず、適切な流量制御(燃焼制御)が可能になった。
【図面の簡単な説明】
【図1】 本発明の狭ピッチ蓄熱式バーナ群を備えた加熱炉の操炉方法の説明図である。
【図2】本発明の操炉方法による炉幅方向温度分布を従来例と比較して示すグラフである。
【図3】蓄熱式バーナにより形成される火炎の模式図である。
【図4】蓄熱式交番燃焼バーナシステムの構成図である。
【図5】従来の操炉方法の説明図である。
【符号の説明】
WF 炉幅
P バーナピッチ
X 加熱炉(ゾーン)
111〜142 蓄熱式バーナ
4,44 蓄熱体
A1,A2,B1,B2 グループ(バーナ群)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of operating a heating furnace provided with a regenerative burner group arranged at a narrow pitch, and in particular, a medium to high temperature at which the temperature at the center of the furnace increases due to interference between staggered flames at the center of the furnace. The present invention relates to a method of operating a heating furnace provided with a narrow-pitch regenerative burner group capable of suppressing the occurrence of distribution.
[0002]
[Prior art]
In recent years, as a method of heating an object to be heated such as a metal piece, a regenerative alternating combustion burner system excellent in energy saving has been adopted. A regenerative alternating combustion burner system burns a pair of burners alternately, recovers the heat of the flue gas through a non-combustion burner at a high temperature, and uses it as a preheating source for combustion air. Thermal efficiency is very high compared to the burner system.
[0003]
FIG. 4 is a block diagram showing such a regenerative type alternating combustion burner system. In the heating furnace X, at least a pair of
[0004]
In such a case, when one
[0005]
In a heating furnace equipped with a conventional regenerative alternating combustion burner system, for example, a continuous heating furnace having a plurality of zones, a plurality of regenerative burners are usually arranged in each zone in the furnace length direction. The regenerative burner group is installed on the left and right furnace walls of the heating furnace so as to face each other. And each regenerative burner individually sucks the gas in the furnace and stores the sensible heat in the regenerator (heat storage state) at a certain time, and gives the stored sensible heat to the combustion air at another time. The preheated air is obtained and burned (combustion state), so-called regenerative combustion is repeated. For this reason, high-temperature preheated air can be obtained by efficiently recovering the sensible heat of the high-temperature combustion exhaust gas. Therefore, since a large energy saving effect can be obtained when used in a heating furnace, the application has been rapidly expanded in recent years.
[0006]
On the other hand, the regenerative burner has a problem in that the amount of NOx generated increases because high-temperature preheated air is obtained and burned as described above, and a combustion method called a high-temperature air combustion that increases the flame volume is adopted. For this reason, in a heating furnace equipped with a regenerative alternating combustion burner system, switching combustion control is generally performed so that they do not face each other. Specifically, for example, as shown in FIG. 5, a furnace operation method is used in which the regenerative burner groups installed on the left and right furnace walls facing each other are staggered. That is, the
[0007]
[Problems to be solved by the invention]
By the way, when installing a regenerative burner by partially remodeling an existing heating furnace (for example, remodeling a specific zone of a continuous heating furnace), the distance between adjacent burners in the furnace length direction (this) (Hereinafter referred to as burner pitch) may have to be narrowed. In that case, the flame of the burner which staggers as shown in FIG. 5 interferes at the center of the furnace. The furnace width direction temperature distribution is a so-called medium-high temperature distribution in which the temperature in the center of the furnace width direction is high. When constructing a new facility, by designing the burner pitch so that it can take an appropriate distance or more, it is possible to prevent the occurrence of staggered burner flame interference and to flatten the furnace width direction temperature distribution.
[0008]
In other words, if the burner pitch must be narrowed by remodeling the existing heating furnace, and if the burner pitch is the same fuel flow rate as that which can be taken more than the appropriate distance, the furnace width direction average temperature from the furnace width direction at this time The temperature in the center increases and the temperature on the left and right furnace walls decreases. For this reason, insufficient heating of the article to be heated occurs.
[0009]
This temperature decrease problem on the left and right furnace walls can be solved by increasing the fuel flow rate rather than a burner pitch that can be taken over an appropriate distance. In this case, however, not only is energy wasted, but the furnace The temperature of the central portion in the width direction becomes too high, and a new problem arises that the quality of the heated object cannot be avoided due to excessive heating.
[0010]
Note that the problem of flame interference due to a narrow pitch can be completely eliminated by adopting a furnace operation method in which all the regenerative burners on the same furnace wall in the zone are grouped into one group and switched left and right. However, in this case, it is necessary to switch a large number of regenerative burners at the same time, and the flow rate fluctuation at the time of switching between the supply and exhaust pipes increases, deviates from the control range of the flow control valve, and appropriate flow control (combustion) Control) becomes impossible.
[0011]
The technical problem of the present invention is to be able to suppress the occurrence of medium-high temperature distribution even when the burner pitch is small and to flatten the furnace width direction temperature distribution.
[0013]
[Means for Solving the Problems]
The method of operating a heating furnace provided with the narrow pitch heat storage type burner group of the present invention comprises a pair of burners opposed in the furnace width direction that are alternately burned, and the heat of the combustion exhaust gas remains at a high temperature through the non-combustion burner. At least four or more sets of regenerative alternating combustion burner systems that are recovered in step 1 and used as a preheating source for combustion air are arranged in the furnace length direction within a certain zone, and each burner group adjacent in the furnace length direction in the zone. mutual furnace length direction pitch P, to chamber width WF, Upon P <0.18 * set to a WF was formed by heating furnace furnace operation of each burner in the zone adjacent the same furnace on the walls The burner group is divided into a plurality of burner groups each including at least two burners. In the same burner group, all the burners are simultaneously burned or stored. When the burner group is in the combustion state, the other burner group opposite to the burner group is in the heat storage state, and the burner group adjacent to the one burner group in the furnace length direction is in the heat storage state, and the other burner group and Rochow as burner group adjacent to the direction is the combustion state, is characterized by burning or heat accumulation each bar burner groups alternately.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for operating a heating furnace including a narrow-pitch regenerative burner group according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. 1 is an explanatory view showing the furnace operation method of a heating furnace according to the present embodiment, FIG. 2 is a graph comparing the furnace width direction temperature distribution caused by the furnace operation method of the conventional example, the vertical axis gas temperature ( ° C), and the horizontal axis represents the furnace width direction distance (m). FIG. 3 is a diagram schematically showing the state of a flame formed by a regenerative burner. In addition, in each figure, the same code | symbol is attached | subjected to the part corresponded to a prior art example.
[0015]
According to the observation by the present inventors, the flame formed by the regenerative burner is diffusely burned with a spread angle of approximately 20 °. Therefore, the condition that the flame of the staggered burner does not interfere at the center of the furnace width is that when the furnace width is WF (unit: m) and the burner pitch is P (unit: m),
P> 2 * tan (10 °) * (WF / 2) (1)
Since tan (10 °) ≈0.176, equation (1) can be rewritten as follows.
P> 0.18 * WF …………………………………………………………………………………………………… (2)
[0016]
That is, if the burner pitch P can be set so as to satisfy the expression (2), the interference of the burner flame that staggers can be prevented. However, in the actual design of the heating furnace, there are cases where the expression (2) cannot be satisfied. For example, when the heating furnace is partially modified and four sets of
[0017]
When operating the heating furnace having such a narrow pitch heat storage type burner group, as shown in FIG. 1, the
[0018]
Fig. 2 shows the gas temperature distribution in the furnace width direction when group combustion is performed by the operation method of the present invention in a heating furnace having a furnace width of 10 m, and the gas temperature distribution in the furnace width direction when staggered combustion is performed by the conventional operation method. It shows in comparison with 2. In FIG. 2, a line plotted by a square (□) indicates the gas temperature distribution in the furnace width direction when the burner pitch is 1.4 m and group combustion is performed by the furnace operating method of the present invention (FIG. 1). A line plotted by Δ indicates the gas temperature distribution in the furnace width direction when the burner pitch is 1.4 m at the same fuel flow rate as in the present invention (FIG. 5), plotted by black circles (●). The lines shown indicate that the fuel flow rate is increased from that of the two examples (□ and Δ lines), and the temperature on the left and right furnace walls is the same as that of the present invention (□ lines). The line indicating the furnace temperature direction gas temperature distribution plotted with white circles (◯) when staggered with a pitch of 1.4 m (FIG. 5) indicates the fuel flow rate per unit furnace length (□ The burner pitch is set to 1.8m and staggered combustion (Fig. 5) The chamber width direction gas temperature distribution in the case, respectively.
[0019]
As is clear from FIG. 2, according to the furnace operating method of the present invention (square line), the medium-high temperature in the center portion in the furnace width direction is 20 ° C. despite the narrow burner pitch of 1.4 m. The object to be heated can be heated almost uniformly.
[0020]
In the example of the line △, the temperature at the center in the furnace width direction is 60 ° C. higher than the average temperature in the furnace width direction, the temperature on the left and right furnace walls is lower than the average temperature in the furnace width direction, and the heating of the object to be heated is insufficient Occurs. The average temperature in the furnace width direction in this example was substantially the same as that in the furnace operating method of the present invention (example of the square line).
[0021]
In the example of line ●, not only is energy wasted, but the temperature in the center of the furnace width direction is 80 ° C. higher than the average temperature in the furnace width direction by the furnace operating method of the present invention, Quality deterioration is inevitable.
[0022]
In the example of the circle, the burner pitch is set to an appropriate distance of 1.8 m or more, so a substantially flat temperature distribution is formed in the furnace width direction, which is not inferior to that by the furnace operating method of the present invention. It was.
[0023]
【The invention's effect】
As described above, according to the present invention, a pair of burners opposed in the furnace width direction are alternately burned, and the heat of the combustion exhaust gas is recovered by the heat accumulator while being kept at a high temperature through the non-combustion burner. At least four or more sets of regenerative alternating combustion burner systems used for the source are arranged in the furnace length direction in a certain zone, and the furnace length direction pitch P between each burner set adjacent in the furnace length direction in the zone is set. , to oven width WF, Upon P <0.18 * set to a WF was formed by heating furnace furnace operation of each burner in the zone of the burner adjacent the same furnace on the walls of at least two or more of an It is divided into a plurality of burner groups, and all burners in the same burner group are burned or stored at the same time, and when burning these burner groups, one opposing burner group is in a combustion state Sometimes, the burner group adjacent to the one burner group in the furnace length direction is in a heat storage state so that the other burner group opposed to these is in the heat storage state, and is adjacent to the other burner group in the furnace length direction. as burner group is combustion state, since the respective bar burner groups were as burning or thermal storage alternately, even though the burner pitch is narrow pitch, reducing the flame interference location in Rohaba central portion As a result, generation of a large temperature distribution in the furnace width direction as in the prior art is eliminated, and the temperature distribution in the furnace width direction becomes flat. As a result, the object to be heated can be heated almost uniformly, and waste of heating energy due to excessive heating of the object to be heated can be prevented, and variations in the quality of the object to be heated can be eliminated. became. In addition, all regenerative burners on the same furnace wall in the zone are combined into one group, and there is no large flow rate fluctuation when switching between supply and exhaust pipes as in the furnace operation method that switches between left and right. (Combustion control) became possible.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a method for operating a heating furnace provided with a narrow-pitch regenerative burner group according to the present invention.
FIG. 2 is a graph showing a furnace width direction temperature distribution obtained by the furnace operating method of the present invention in comparison with a conventional example.
FIG. 3 is a schematic view of a flame formed by a regenerative burner.
FIG. 4 is a configuration diagram of a regenerative alternating combustion burner system.
FIG. 5 is an explanatory diagram of a conventional furnace operating method.
[Explanation of symbols]
WF Furnace width P Burner pitch X Heating furnace (zone)
111-142
Claims (1)
前記ゾーン内の各バーナを、同一炉壁上で隣り合うバーナの少なくとも2台以上を一組とする複数のバーナ群に分け、同一のバーナ群内ではすべてのバーナを同時に燃焼あるいは蓄熱させるものとし、かつこれらバーナ群の燃焼にあたっては、対向する一方のバーナ群が燃焼状態にあるときには、これらと対向する他方のバーナ群が蓄熱状態となるように、しかも前記一方のバーナ群と炉長方向に隣り合うバーナ群が蓄熱状態となり、前記他方のバーナ群と炉長方向に隣り合うバーナ群が燃焼状態となるように、各バーナ群を交互に燃焼あるいは蓄熱させることを特徴とする狭ピッチ蓄熱式バーナ群を備えた加熱炉の操炉方法。A regenerative alternating combustion burner system in which a pair of burners facing each other in the furnace width direction are alternately burned and the heat of the combustion exhaust gas is recovered as a high-temperature heat storage body through a non-combustion burner and used as a preheating source of combustion air, At least four or more sets in a zone are arranged in the furnace length direction, and the furnace length direction pitch P between each burner set adjacent in the furnace length direction in the zone is P <0.18 * WF with respect to the furnace width WF. Upon furnace operation of the furnace formed by setting so that,
Each burner in the zone is divided into a plurality of burner groups each including at least two burners adjacent to each other on the same furnace wall, and all the burners in the same burner group are burned or stored simultaneously. In the combustion of these burner groups, when one of the opposed burner groups is in a combustion state, the other burner group opposed to these burner groups is in a heat storage state, and in addition to the one burner group in the furnace length direction. pitch group adjacent burner becomes heat storage state, the other burner group and Rochow burner group adjacent to the direction such that the combustion state, which is characterized in that burning or thermal storage of each bar burner group alternately A method of operating a heating furnace provided with a regenerative burner group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002022083A JP4009989B2 (en) | 2002-01-30 | 2002-01-30 | Heating furnace operating method with narrow pitch heat storage burner group |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002022083A JP4009989B2 (en) | 2002-01-30 | 2002-01-30 | Heating furnace operating method with narrow pitch heat storage burner group |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003222326A JP2003222326A (en) | 2003-08-08 |
JP4009989B2 true JP4009989B2 (en) | 2007-11-21 |
Family
ID=27745158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002022083A Expired - Fee Related JP4009989B2 (en) | 2002-01-30 | 2002-01-30 | Heating furnace operating method with narrow pitch heat storage burner group |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4009989B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4615045B2 (en) | 2008-12-16 | 2011-01-19 | 中外炉工業株式会社 | Combustion control method of heat storage combustion type heat treatment furnace |
-
2002
- 2002-01-30 JP JP2002022083A patent/JP4009989B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003222326A (en) | 2003-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102878817A (en) | Continuous combusting regenerative industrial furnace | |
JP4009989B2 (en) | Heating furnace operating method with narrow pitch heat storage burner group | |
CN102564127A (en) | Energy-saving type shuttle type kiln | |
CN1624159B (en) | Hot-blast stove heating from dual-end of air pipe of heat storage device set | |
JP2936449B2 (en) | Furnace operation method of heating furnace provided with regenerative alternating combustion burner system | |
JPH09287013A (en) | Device for utilizing heat in hot stove | |
JP3793276B2 (en) | Heat storage switching burner | |
JPH0828830A (en) | High temperature air burner | |
CN201149427Y (en) | Heat-accumulation heat-exchange type heating furnace | |
JP4445222B2 (en) | Reactor combustion control method and reactor | |
TWI640737B (en) | Structure of regenerative combustion furnace body | |
KR0118983B1 (en) | Combustion air preheating method of furnace | |
JP3767414B2 (en) | Operation method of regenerative burner furnace and regenerative burner furnace | |
CN210506204U (en) | Reheating equipment for side flame path of reheating coke oven | |
JP3852212B2 (en) | Billet heating method | |
JP3726526B2 (en) | Heating method with regenerative combustion burner | |
CN111964256B (en) | Low-rank fuel continuous combustion regenerative hot air device and process | |
JP2010071582A (en) | Method of providing regenerative burner as burner of heating furnace | |
JPH0593218A (en) | Method for controlling combustion of hot stove | |
JP3332306B2 (en) | Radiant tube heating device | |
TWI746691B (en) | Regenerative burner system | |
US20040068990A1 (en) | Method for the co-generation of heat & power in conjuction with high temperature heat needs | |
JPH1150138A (en) | Reconstruction of heating furnace and heating furnace | |
JP5573095B2 (en) | Operation method of hot stove facility | |
JPH06322432A (en) | Heating furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050916 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060313 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060316 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070710 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070824 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4009989 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |