JP3726526B2 - Heating method with regenerative combustion burner - Google Patents

Heating method with regenerative combustion burner Download PDF

Info

Publication number
JP3726526B2
JP3726526B2 JP01399999A JP1399999A JP3726526B2 JP 3726526 B2 JP3726526 B2 JP 3726526B2 JP 01399999 A JP01399999 A JP 01399999A JP 1399999 A JP1399999 A JP 1399999A JP 3726526 B2 JP3726526 B2 JP 3726526B2
Authority
JP
Japan
Prior art keywords
combustion
exhaust gas
burner
zone
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01399999A
Other languages
Japanese (ja)
Other versions
JP2000213736A (en
Inventor
恵一 塩尻
俊一 秋山
弘一 高士
俊男 笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP01399999A priority Critical patent/JP3726526B2/en
Publication of JP2000213736A publication Critical patent/JP2000213736A/en
Application granted granted Critical
Publication of JP3726526B2 publication Critical patent/JP3726526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2本1組で交番燃焼する蓄熱式燃焼バーナの複数組を1つの燃焼ゾーンとして複数の燃焼ゾーンを設け、各燃焼ゾーン毎に燃料の供給量を制御する流量制御弁および燃焼排ガスの排出量を制御する流量制御弁を設けた蓄熱式燃焼バーナ装置において、同一燃焼ゾ−ン内のいずれかの組の蓄熱式燃焼バ−ナに異常が発生した場合の加熱方法に関する。
【0002】
【従来の技術】
図4は蓄熱式燃焼バーナ41aおよび41bで交番燃焼する2本1組のバ−ナの組42A、42B、42C、42Dおよび42Eの5組を1つの燃焼ゾーンとして複数の燃焼ゾーン43を設け、それぞれの燃焼ゾーン43に燃料を供給する燃焼用空気ヘッダ−管44に、燃焼用空気の供給量を制御する流量制御弁45を、またそれぞれの燃焼ゾ−ン43の燃焼排ガスを排出する燃焼排ガスヘッダ−管46に、燃焼排ガスの排出量を制御する流量制御弁47を設けた蓄熱式燃焼バーナ装置を示すものである。
【0003】
この蓄熱式燃焼バーナ装置においては、各組の蓄熱式燃焼バーナ41aおよび41bには、三方切替弁48aおよび48bが設けられている。そして、燃料供給枝管49aの途中に設けた燃料遮断弁50aを開き、燃料供給枝管49bの途中に設けた燃料遮断弁50bを閉じて、蓄熱式燃焼バーナ41aに燃焼用空気を供給して、蓄熱式燃焼バーナ41aで燃焼を行なっているときには、蓄熱式燃焼バーナ41bで燃焼排ガスの排出をするように、三方切替弁48aは燃焼用空気を供給する側に、三方切替弁48bは燃焼排ガスを排出する側に切り替えられる。
【0004】
また、逆に燃料供給枝管49bの途中に設けた燃料遮断弁50bを開き、燃料供給枝管49aの途中に設けた燃料遮断弁50aを閉じて、蓄熱式燃焼バーナ41bに燃料を供給して、蓄熱式燃焼バーナ41bで燃焼を行なっているときには、蓄熱式燃焼バーナ41aで燃焼排ガスの排出をするように、三方切替弁48bは燃焼用空気を供給する側に、三方切替弁48aは燃焼排ガスを排出する側に切り替えられる。
【0005】
そして、このような切り替えは、一定の時間毎に繰り返される。
なお、図示していないが、蓄熱式燃焼バ−ナ41aおよび41bには、蓄熱体が設けられており、それぞれのバ−ナで燃焼排ガスを排出しているときには、燃焼排ガスの保有する顕熱を蓄熱体に蓄熱し、燃焼時に蓄熱した熱で燃焼用空気を予熱して、燃焼効率を高めるようにしている。
【0006】
上述したような蓄熱式燃焼バーナ装置においては、燃焼排ガスヘッダ−管46に合流する各バ−ナ組42A、42B、42C、42Dおよび42Eの燃焼排ガス分岐管51には、燃焼排ガス温度を測定する温度計52が設置されており、測定した燃焼排ガスの温度が、設定してある設定温度以上になると、その組の燃焼バ−ナを消火させるシステムが採用されている。これは、燃焼バ−ナの各機器が破損した時に、高温の炉内ガスが吸引され、後流の流量調整弁47や吸引ファン(図示せず)が熱で損傷されるのを防止するためである。
【0007】
そして、燃焼バ−ナを消火させるに際しては、破損した燃焼バ−ナが燃焼排ガスをそれ以上吸引して、排ガス温度をさらに上昇させないようにするために、図5に示すように、消火した燃焼バ−ナの組の燃料遮断弁50aおよび50bを閉じて消火させるとともに、前記三方切替弁48aおよび48bのいずれをも燃焼用空気供給側に切り替え、燃焼用空気を消火した燃焼バ−ナ41aおよび41bに供給し、消火している間に燃焼バ−ナ41aおよび41bが熱により、ダメ−ジを受けないようにして、点検や交換等の処置を行なうようにしている。そして、破損していない他の組の燃焼バ−ナでは、燃焼と燃焼排ガスの排気とを交互に行なう。
【0008】
【発明が解決しようとする課題】
しかしながら、上述した従来の異常バーナのみを消火する方法には、次のような問題点がある。
【0009】
異常燃焼バーナのみを消火するだけでは、燃焼排ガスの排出は燃焼ゾ−ンのバーナの全本数をN本とすると、残りのN−1本のバーナで行わねばならず、そのまま交番燃焼を継続すると、燃焼バーナ1本当たりの蓄熱体を通過する燃焼排ガス量は、N本の燃焼バーナで燃焼排ガスの排出を行っているときよりもN/(N−1)の割合で多くなる。
【0010】
このため、蓄熱式燃焼バ−ナの蓄熱体で燃焼排ガスの保有する顕熱を蓄熱しきれなくなるので、蓄熱体通過後の燃焼排ガスの温度が異常に高くなる。そのため、破損した燃焼バーナ以外の燃焼バーナも、燃焼排ガス温度が異常に高くなり、連鎖的に消火されるようになり、加熱炉の操業が不安定となる。
【0011】
この発明は、従来技術の上述のような問題点を解消するためになされたものであり、同一燃焼ゾ−ンの何れかの蓄熱式燃焼バ−ナが消火状態になっても、同一燃焼ゾ−ンの他の蓄熱式燃焼バ−ナに消火が波及しない、蓄熱式燃焼バ−ナによる加熱方法を提供することを目的としている。
【0012】
【課題を解決するための手段】
この発明に係る蓄熱式燃焼バ−ナによる加熱方法は、2本1組で交番燃焼する蓄熱式燃焼バーナの複数組を1つの燃焼ゾーンとして複数の燃焼ゾーンを設け、各燃焼ゾーン毎に燃焼用空気の供給量を制御する流量制御弁および燃焼排ガスの排出量を制御する流量制御弁を設けた蓄熱式燃焼バーナ装置による加熱方法であって、同一燃焼ゾ−ン内のいずれかの組の蓄熱式燃焼バ−ナに異常が発生した場合は、前記燃焼ゾ−ンの排ガス排出量を制御する流量制御弁を全閉にして燃焼用空気が予熱されずに供給される状態とし、前記異常が修復された後は、燃焼排ガスの排出量を制御する流量制御弁を開いて燃焼用空気を予熱して交番燃焼するようにしたものである。
【0013】
この蓄熱式燃焼バ−ナによる加熱方法においては、燃焼排ガスの異常温度上昇等によって、同一燃焼ゾ−ンの何れかの組の燃焼バ−ナが消火状態になったときには、同一燃焼ゾ−ンの他の組の燃焼バ−ナは、燃焼排ガスを吸引しないで、換言すれば燃焼用空気を予熱しない状態で、交番燃焼を行なう。このため、異常時には燃焼排ガスの保有する顕熱を蓄熱することはできなくなるが、短時間で異常の修復が行なえるので、大きな熱損失にはならない。
【0014】
したがって、燃焼排ガス排出管に設けた温度計で測定する燃焼排ガス温度は高くならないので、消火が他の燃焼バ−ナに波及することはない。
【0015】
【発明の実施の形態】
この発明の実施の形態を、図面を参照して説明する。
【0016】
図1は燃焼ゾ−ンを複数形成した鋼管等のような長尺材を加熱する加熱炉の説明図であり、図1(a)は加熱炉の概略平面図、図1(b)は加熱炉の概略断面図である。また、図2はこの加熱炉の燃焼制御系を示す制御系統図である。
【0017】
図1において、加熱炉20には、互いに対向する炉壁に多数の蓄熱式燃焼バ−ナが装着され、隣接する一対の蓄熱式燃焼バ−ナ21aと21b(22aと22b)とで交番燃焼するバ−ナ組21(22)が形成される。この加熱炉20においては、鋼管Pの炉内搬送方向に沿って、加熱帯23aと均熱帯23bに区分されている。そして、加熱帯23aは、鋼管Pの長手方向に沿って、入口帯A、中央帯Bおよび出口帯Cと3つの燃焼ゾ−ンに分割され、均熱帯23bも入口帯A′、中央帯B′および出口帯C′と同じく3つの燃焼ゾ−ンに分割されている。
【0018】
前記交番燃焼するバ−ナ組21および22は、それぞれの火炎F1およびF2が鋼管Pの長手方向と直交するするように、それぞれの炉壁に装着されている。
【0019】
そして、ある周期においては、図1(b)に示すように、一方の燃焼バ−ナが送風機27により供給された燃焼用空気を、蓄熱体によって予熱して燃焼を行ない、他方の燃焼バ−ナが燃焼排ガスを蓄熱体を通して排出用送風機28により排出し、蓄熱体に燃焼排ガスの保有する顕熱を蓄熱する。そして、次の周期では、それぞれの燃焼バ−ナが反対の動作を行なう。なお、図1(b)の符号25は排ガスを排出するための煙道、26は煙突である。
【0020】
このように、バ−ナ組21および22は、短い周期で交番燃焼するので、熱回収率が高いものとなる。
【0021】
次に、この加熱炉の燃焼制御系統について図2に基づき説明する。図2は、加熱炉の均熱帯23aの1つの燃焼帯(ゾ−ン)とその燃焼制御系を示したものである。加熱炉20の壁面に蓄熱式燃焼バ−ナ21aと21bとからなる複数のバ−ナ組211、212、…21n-1、21nが、鋼管Pを均一に加熱するように配置されている。そして、それぞれの蓄熱式燃焼バ−ナには、蓄熱体29が設けられており、燃焼排ガスが蓄熱体29を通過するときに、その顕熱が蓄熱され、燃焼用空気が蓄熱体29を通過するときに、燃焼用空気を予熱する。
【0022】
交番燃焼する蓄熱式燃焼バ−ナのバ−ナ組211、212、…21n-1、21nには、燃料供給系L1、燃焼用空気供給系L2、燃焼排ガス排出系L3および電気制御による切替制御系L4が設けられ、かつ燃焼用空気供給系L2と燃焼排ガス排出系L3とを切り替える1組の三方切替弁301、302、…30n-1、30nがそれぞれ設けられている。三方切替弁301、302、…30n-1、30nは、その切り替え操作によって、蓄熱式燃焼バ−ナのバ−ナ組のいずれかの側の燃焼バ−ナに燃焼用空気を供給し、いずれかの側の燃焼バ−ナから燃焼排ガスを排出かを設定できるようになっている。この切替制御は、各燃焼ゾ−ンの温度検出端T1、T2まあたはT3で検出したゾ−ン温度を基に、制御装置31からの制御信号によってなされている。
【0023】
なお、2つの三方切替弁とする代わりに、四方切替弁1個で同じ機能を満たすことができる。
【0024】
さらに、制御装置31からの制御信号によって、個々の蓄熱式燃焼バ−ナの燃料供給量と燃料供給制御弁の弁開閉制御が行なわれる。なお、他の燃焼ゾ−ンも同様な構成であるので、その説明は省略する。
【0025】
上述した加熱炉では、蓄熱式燃焼バ−ナを用い、一定時間、例えば30秒毎にバ−ナ組の燃焼するバ−ナを切り替えており、加熱炉の各燃焼ゾ−ンに燃料が供給されて、燃焼雰囲気が攪拌され、鋼管Pの長手方向の温度分布がより均一になる。
【0026】
また、同一燃焼ゾ−ンの蓄熱式燃焼バ−ナは、交番燃焼の周期を個々に調整したり、交番燃焼の燃焼時間と蓄熱時間の長さを調整したり、燃料供給量を調整することが可能であり、鋼管Pの長手方向の温度分布を調整することができるようになっている。
【0027】
また、交番燃焼する蓄熱式燃焼バ−ナは、蓄熱体としてセラミック製等の材質のものが用いられている。蓄熱体がセラミック製等高温に耐えられるものであるため、1000℃以上の高温の燃焼排ガスを蓄熱体に導入させることができるので、効率よく燃焼排ガスの保有する顕熱を回収することが可能である。例えば、燃焼排ガスの温度が1000℃のときには、燃焼用空気を900〜950℃に予熱することができ、熱回収効率が極めて高いものになる。
【0028】
次に、上述した複数の燃焼ゾ−ンを有する加熱炉において、燃焼ゾ−ン内のいずれかの燃焼バ−ナが何らかの理由により、消火した場合の燃焼方法を説明する。
【0029】
図3は、燃焼バ−ナの1組(2C)が消火した場合の蓄熱式燃焼バ−ナによる加熱方法を示す説明図である。
【0030】
この蓄熱式燃焼バ−ナによる加熱方法は、2本1組で交番燃焼する蓄熱式燃焼バーナ1aおよび1bの複数組(図3においては2A、2B、2C、2D、2Eの5組)を1つの燃焼ゾーン3として複数の燃焼ゾーン3を設け、それぞれの燃焼ゾーン3に燃焼用空気を供給する燃焼用空気ヘッダ−管4に、燃焼用空気の供給量を制御する流量制御弁5を、またそれぞれの燃焼ゾ−ン3の燃焼排ガスを排出する燃焼排ガスヘッダ−管6に、燃焼排ガスの排出量を制御する流量制御弁7を設けた蓄熱式燃焼バーナ装置において、同一燃焼ゾ−ン3内のいずれかの組の蓄熱式燃焼バ−ナ1aまたは1bに、燃焼バ−ナを消火させるような異常が発生した場合の加熱方法であって、燃焼排ガスヘッダ−管6に合流する各燃焼バ−ナ組2A、2B、2C、2Dおよび2Eの燃焼排ガス分岐管11に設けた温度計12により測定した燃焼排ガスの温度が、燃焼バ−ナの各機器の破損を防止するために設定してある設定温度以上となって、燃焼バ−ナが消火した場合、前記燃焼ゾ−ン3の排ガス排出量を制御する流量制御弁7を全閉にするとともに、異常が発生した組(図3の場合2C)の燃焼バーナ1aおよび1bは、この組2Cの燃料供給枝管9aおよび9bのそれぞれの燃料遮断弁10aおよび10bを閉じて、燃焼が停止されている状態にするとともに、三方切替弁8aおよび8bを燃焼用空気供給側に切り替えて、燃焼用空気のみが供給される状態とする。
【0031】
そして、異常が発生した組2C以外の組2A、2B、2Dおよび2Eの燃焼バ−ナ1aおよび1bには、燃料および燃焼用空気を交互に供給して、燃焼用空気を予熱しないで交番燃焼する。
【0032】
このようにして加熱するので、消火した蓄熱式燃焼バ−ナが熱によりダメ−ジを受けないとともに、同一燃焼ゾ−ンの他の蓄熱式燃焼バ−ナの蓄熱体を過剰な燃焼排ガスが通過しないので、燃焼排ガス分岐管11に設けた温度計12により測定した燃焼排ガスの温度が、燃焼バ−ナの各機器の破損を防止するために設定してある設定温度以上となることはなく、連鎖的に燃焼バ−ナが消火することはない。
【0033】
したがって、燃焼用空気を予熱しないので、燃焼効率が低下することはあるものの、多数本の燃焼バ−ナが消火して、加熱炉の操業停止に至るようなトラブルには発展しない。
【0034】
また、被加熱物の長手方向にゾ−ン分割され、ゾ−ン内が均一な温度分布となるので、長尺被加熱物の長手方向温度ムラの発生を防止することができる。
【0035】
【発明の効果】
本発明により、加熱炉の操業が安定して行なえるとともに、燃焼バ−ナの耐久性も向上する。
【図面の簡単な説明】
【図1】燃焼ゾ−ンを複数形成した加熱炉の説明図であり、(a)は加熱炉の概略平面図、(b)は加熱炉の概略断面図である。
【図2】燃焼ゾ−ンを複数形成した加熱炉の燃焼制御系を示す制御系統図である。
【図3】本発明の実施の形態の蓄熱式燃焼バ−ナによる加熱方法を示す説明図である。
【図4】従来の蓄熱式燃焼バ−ナによる加熱方法を示す説明図である。
【図5】従来の異常燃焼バ−ナの消火方法を示す説明図である。
【符号の説明】
1a、1b 蓄熱式燃焼バーナ
2A、2B、2C、2D、2E 蓄熱式燃焼バーナの組
3 燃焼ゾーン3
4 燃焼用空気ヘッダ−管
5 流量制御弁
6 燃焼排ガスヘッダ−管
7 流量制御弁
8a、8b 三方切替弁
9a、9b 燃料供給枝管
10a、10b 燃料遮断弁
11 燃焼排ガス分岐管
12 温度計
20 加熱炉
21a、21b 蓄熱式燃焼バ−ナ
22a、22b 蓄熱式燃焼バ−ナ
21、22 交番燃焼するバ−ナ組
211、212、…21n-1、21n 交番燃焼するバ−ナ組
23a 加熱帯
23b 均熱帯
25 煙道
26 煙突
27 送風機
28 排出用送風機
29 蓄熱体
301、302、…30n-1、30n 三方切替弁
31 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a plurality of combustion zones with a plurality of sets of regenerative combustion burners that alternately burn in one set as one combustion zone, and a flow rate control valve and combustion exhaust gas for controlling the amount of fuel supplied for each combustion zone The present invention relates to a heating method in the case where an abnormality occurs in any set of regenerative combustion burners in the same combustion zone in a regenerative combustion burner apparatus provided with a flow rate control valve for controlling the amount of exhaust gas discharged.
[0002]
[Prior art]
FIG. 4 shows a plurality of combustion zones 43 with five sets of two burners 42A, 42B, 42C, 42D and 42E that alternately burn in the regenerative combustion burners 41a and 41b as one combustion zone. The combustion air header pipe 44 for supplying fuel to each combustion zone 43 is provided with a flow rate control valve 45 for controlling the supply amount of combustion air, and the combustion exhaust gas for discharging the combustion exhaust gas of each combustion zone 43. 1 shows a regenerative combustion burner device in which a header pipe 46 is provided with a flow rate control valve 47 for controlling the discharge amount of combustion exhaust gas.
[0003]
In this regenerative combustion burner device, each set of regenerative combustion burners 41a and 41b is provided with three-way switching valves 48a and 48b. Then, the fuel cutoff valve 50a provided in the middle of the fuel supply branch pipe 49a is opened, the fuel cutoff valve 50b provided in the middle of the fuel supply branch pipe 49b is closed, and combustion air is supplied to the regenerative combustion burner 41a. When the combustion is performed by the regenerative combustion burner 41a, the three-way switching valve 48a is provided on the side for supplying combustion air and the three-way switching valve 48b is disposed on the combustion exhaust gas so that the combustion exhaust gas is discharged by the heat storage combustion burner 41b. Is switched to the discharge side.
[0004]
Conversely, the fuel cutoff valve 50b provided in the middle of the fuel supply branch pipe 49b is opened, the fuel cutoff valve 50a provided in the middle of the fuel supply branch pipe 49a is closed, and fuel is supplied to the regenerative combustion burner 41b. When the combustion is performed by the regenerative combustion burner 41b, the three-way switching valve 48b is on the side for supplying combustion air, and the three-way switching valve 48a is on the combustion exhaust gas so that the combustion exhaust gas is discharged by the heat storage combustion burner 41a. Is switched to the discharge side.
[0005]
Such switching is repeated at regular intervals.
Although not shown, the heat storage combustion burners 41a and 41b are provided with heat storage bodies, and when the exhaust gas is discharged from each burner, the sensible heat possessed by the combustion exhaust gas. Is stored in the heat storage body, and the combustion air is preheated with the heat stored during combustion to increase the combustion efficiency.
[0006]
In the regenerative combustion burner apparatus as described above, the combustion exhaust gas temperature is measured in the combustion exhaust gas branch pipes 51 of the burner sets 42A, 42B, 42C, 42D and 42E that join the combustion exhaust gas header pipe 46. A thermometer 52 is installed, and a system that extinguishes the set of combustion burners when the measured temperature of the combustion exhaust gas is equal to or higher than a set temperature is employed. This is to prevent the hot furnace gas from being sucked when each combustion burner device is damaged and the downstream flow rate adjusting valve 47 and the suction fan (not shown) from being damaged by heat. It is.
[0007]
Then, when extinguishing the combustion burner, in order to prevent the damaged combustion burner from sucking the combustion exhaust gas further and further raising the exhaust gas temperature, as shown in FIG. The combustion shutoff valves 50a and 50b of the set of burners are closed and extinguished, and both of the three-way switching valves 48a and 48b are switched to the combustion air supply side, and the combustion burner 41a and the combustion burner 41a are extinguished. While being supplied to 41b and extinguishing the fire, the combustion burners 41a and 41b are prevented from being damaged by heat, and measures such as inspection and replacement are performed. In another set of combustion burners that are not damaged, combustion and exhaust of combustion exhaust gas are alternately performed.
[0008]
[Problems to be solved by the invention]
However, the above-described conventional method for extinguishing only the abnormal burner has the following problems.
[0009]
If only the abnormal combustion burner is extinguished, the exhaust gas emission must be performed with the remaining N-1 burners, assuming that the total number of burners in the combustion zone is N. The amount of combustion exhaust gas passing through the heat accumulator per combustion burner is larger at a ratio of N / (N-1) than when combustion exhaust gas is discharged by N combustion burners.
[0010]
For this reason, the sensible heat of the combustion exhaust gas cannot be stored by the heat storage body of the regenerative combustion burner, so the temperature of the combustion exhaust gas after passing through the heat storage body becomes abnormally high. Therefore, the combustion burner other than the damaged combustion burner also has an abnormally high combustion exhaust gas temperature and is extinguished in a chain manner, and the operation of the heating furnace becomes unstable.
[0011]
The present invention has been made to solve the above-described problems of the prior art, and even if any one of the regenerative combustion burners of the same combustion zone is put into a fire extinguishing state, the same combustion zone is obtained. It is an object of the present invention to provide a heating method using a regenerative combustion burner that does not affect fire extinguishing to other regenerative combustion burners.
[0012]
[Means for Solving the Problems]
The heating method using the regenerative combustion burner according to the present invention provides a plurality of combustion zones with a plurality of regenerative combustion burners that alternately burn in pairs as one combustion zone, and is used for combustion in each combustion zone. A heating method by a regenerative combustion burner device provided with a flow rate control valve for controlling the supply amount of air and a flow rate control valve for controlling the discharge amount of combustion exhaust gas, wherein either set of heat storage in the same combustion zone When an abnormality occurs in the combustion burner, the flow control valve that controls the exhaust gas emission amount of the combustion zone is fully closed so that combustion air is supplied without being preheated. After the restoration, the flow rate control valve for controlling the emission amount of the combustion exhaust gas is opened to preheat the combustion air and perform alternate combustion.
[0013]
In this heating method using a regenerative combustion burner, when any set of combustion burners in the same combustion zone becomes extinguished due to an abnormal temperature rise of the flue gas, etc., the same combustion zone is used. The other set of combustion burners perform alternating combustion without sucking the combustion exhaust gas, in other words, without preheating the combustion air. For this reason, it is impossible to store the sensible heat held in the combustion exhaust gas at the time of abnormality, but since the abnormality can be repaired in a short time, there is no significant heat loss.
[0014]
Therefore, since the flue gas temperature measured by the thermometer provided in the flue gas exhaust pipe does not increase, fire extinguishing does not spread to other combustion burners.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is an explanatory view of a heating furnace for heating a long material such as a steel pipe formed with a plurality of combustion zones. FIG. 1 (a) is a schematic plan view of the heating furnace, and FIG. It is a schematic sectional drawing of a furnace. FIG. 2 is a control system diagram showing a combustion control system of the heating furnace.
[0017]
In FIG. 1, a heating furnace 20 is provided with a large number of regenerative combustion burners on opposite furnace walls, and alternating combustion is performed between a pair of adjacent regenerative combustion burners 21a and 21b (22a and 22b). A burner set 21 (22) is formed. The heating furnace 20 is divided into a heating zone 23a and a soaking zone 23b along the conveying direction of the steel pipe P in the furnace. The heating zone 23a is divided along the longitudinal direction of the steel pipe P into an inlet zone A, a central zone B and an outlet zone C, and three combustion zones. The soaking zone 23b is also divided into the inlet zone A 'and the central zone B. It is divided into three combustion zones as well as 'and outlet zone C'.
[0018]
The alternating burner sets 21 and 22 are mounted on the respective furnace walls so that the respective flames F 1 and F 2 are orthogonal to the longitudinal direction of the steel pipe P.
[0019]
Then, in a certain cycle, as shown in FIG. 1 (b), one combustion burner preheats the combustion air supplied by the blower 27 with a heat accumulator and burns it, and the other combustion bar. Na discharges the combustion exhaust gas through the heat storage body by the exhaust fan 28, and stores the sensible heat of the combustion exhaust gas in the heat storage body. In the next cycle, each combustion burner performs the opposite operation. In addition, the code | symbol 25 of FIG.1 (b) is a flue for discharging | emitting exhaust gas, 26 is a chimney.
[0020]
As described above, the burner sets 21 and 22 are alternately burned in a short cycle, so that the heat recovery rate is high.
[0021]
Next, the combustion control system of the heating furnace will be described with reference to FIG. FIG. 2 shows one combustion zone (zone) of the soaking zone 23a of the heating furnace and its combustion control system. A plurality of burner sets 21 1 , 21 2 ,... 21 n−1 , 21 n including regenerative combustion burners 21 a and 21 b are arranged on the wall surface of the heating furnace 20 so as to uniformly heat the steel pipe P. Has been. Each of the regenerative combustion burners is provided with a regenerator 29. When the combustion exhaust gas passes through the regenerator 29, the sensible heat is accumulated, and the combustion air passes through the regenerator 29. When preheating the combustion air.
[0022]
Burner sets 21 1 , 21 2 ,... 21 n−1 , 21 n of a regenerative combustion burner that performs alternating combustion include a fuel supply system L1, a combustion air supply system L2, a combustion exhaust gas discharge system L3, and an electric A control switching control system L4 is provided, and a set of three-way switching valves 30 1 , 30 2 ,... 30 n−1 , 30 n for switching between the combustion air supply system L2 and the combustion exhaust gas discharge system L3 are provided. ing. The three-way switching valves 30 1 , 30 2 ,... 30 n−1 , 30 n cause combustion air to flow to the combustion burner on either side of the burner set of the regenerative combustion burner. It is possible to set whether to discharge combustion exhaust gas from the combustion burner on either side. This switching control is performed by a control signal from the control device 31 based on the zone temperature detected at the temperature detection end T 1 , T 2 or T 3 of each combustion zone.
[0023]
In addition, it can satisfy | fill the same function with one four-way switching valve instead of using two three-way switching valves.
[0024]
Further, the fuel supply amount of each regenerative combustion burner and the valve opening / closing control of the fuel supply control valve are performed by the control signal from the control device 31. Since other combustion zones have the same configuration, the description thereof is omitted.
[0025]
In the heating furnace described above, a regenerative combustion burner is used, and the burner set burner is switched every certain time, for example, every 30 seconds, and fuel is supplied to each combustion zone of the heating furnace. Thus, the combustion atmosphere is stirred, and the temperature distribution in the longitudinal direction of the steel pipe P becomes more uniform.
[0026]
In addition, the regenerative combustion burner of the same combustion zone adjusts the cycle of alternating combustion individually, adjusts the combustion time and length of heat storage time of alternating combustion, and adjusts the fuel supply amount. The temperature distribution in the longitudinal direction of the steel pipe P can be adjusted.
[0027]
In addition, a regenerative combustion burner that performs alternating combustion uses a material such as a ceramic as a heat accumulator. Since the heat storage body can withstand high temperatures such as ceramics, combustion exhaust gas with a high temperature of 1000 ° C or higher can be introduced into the heat storage body, so it is possible to efficiently recover the sensible heat possessed by the combustion exhaust gas. is there. For example, when the temperature of the combustion exhaust gas is 1000 ° C., the combustion air can be preheated to 900 to 950 ° C., and the heat recovery efficiency is extremely high.
[0028]
Next, a combustion method in the case where any of the combustion burners in the combustion zone is extinguished for some reason in the heating furnace having the plurality of combustion zones described above will be described.
[0029]
FIG. 3 is an explanatory diagram showing a heating method using a regenerative combustion burner when one set (2C) of combustion burners extinguishes.
[0030]
In this heating method using a regenerative combustion burner, two sets of regenerative combustion burners 1a and 1b that alternately burn in one set (two sets of 2A, 2B, 2C, 2D, and 2E in FIG. 3) are 1 A plurality of combustion zones 3 are provided as one combustion zone 3, and a flow rate control valve 5 for controlling a supply amount of the combustion air is provided in a combustion air header-tube 4 for supplying combustion air to each combustion zone 3, and In a regenerative combustion burner apparatus in which a combustion exhaust gas header pipe 6 for exhausting combustion exhaust gas of each combustion zone 3 is provided with a flow rate control valve 7 for controlling the discharge amount of combustion exhaust gas, in the same combustion zone 3 Each of the heat storage type combustion burners 1a or 1b in the case where an abnormality that extinguishes the combustion burner occurs, and each combustion bar joined to the flue gas header pipe 6 is heated. -NA set 2A, 2B, 2C, Combustion exhaust gas temperature measured by a thermometer 12 provided in the combustion exhaust gas branch pipes D and 2E becomes equal to or higher than a set temperature set in order to prevent damage to each device of the combustion burner. When the burner is extinguished, the flow rate control valve 7 for controlling the exhaust gas emission amount of the combustion zone 3 is fully closed, and the combustion burners 1a and 1b of the group in which an abnormality has occurred (2C in FIG. 3). Closes the fuel shut-off valves 10a and 10b of the fuel supply branch pipes 9a and 9b of the set 2C so that the combustion is stopped, and sets the three-way switching valves 8a and 8b to the combustion air supply side. Switch to a state where only combustion air is supplied.
[0031]
Then, fuel and combustion air are alternately supplied to the combustion burners 1a and 1b of the sets 2A, 2B, 2D, and 2E other than the set 2C in which the abnormality has occurred, and the alternating combustion is performed without preheating the combustion air. To do.
[0032]
Since heating is performed in this manner, the extinguished regenerative combustion burner is not damaged by heat, and the heat storage body of another regenerative combustion burner in the same combustion zone is overheated by exhaust gas. Since it does not pass, the temperature of the combustion exhaust gas measured by the thermometer 12 provided in the combustion exhaust gas branch pipe 11 does not exceed the set temperature set in order to prevent damage to each device of the combustion burner. The combustion burner will not extinguish in a chain.
[0033]
Therefore, since the combustion air is not preheated, the combustion efficiency may be lowered, but the trouble that the many combustion burners extinguish and the operation of the heating furnace is stopped does not develop.
[0034]
Further, since the zone is divided in the longitudinal direction of the object to be heated and the inside of the zone has a uniform temperature distribution, the occurrence of uneven temperature in the longitudinal direction of the long object to be heated can be prevented.
[0035]
【The invention's effect】
According to the present invention, the operation of the heating furnace can be performed stably, and the durability of the combustion burner is also improved.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a heating furnace in which a plurality of combustion zones are formed, (a) is a schematic plan view of the heating furnace, and (b) is a schematic cross-sectional view of the heating furnace.
FIG. 2 is a control system diagram showing a combustion control system of a heating furnace in which a plurality of combustion zones are formed.
FIG. 3 is an explanatory diagram showing a heating method using a regenerative combustion burner according to an embodiment of the present invention.
FIG. 4 is an explanatory view showing a heating method by a conventional heat storage type combustion burner.
FIG. 5 is an explanatory view showing a conventional extinguishing method for an abnormal combustion burner.
[Explanation of symbols]
1a, 1b Thermal storage combustion burner 2A, 2B, 2C, 2D, 2E Thermal storage combustion burner set 3 Combustion zone 3
4 Combustion air header-pipe 5 Flow control valve 6 Combustion exhaust gas header-pipe 7 Flow control valves 8a, 8b Three-way switching valves 9a, 9b Fuel supply branch pipes 10a, 10b Fuel cutoff valve 11 Combustion exhaust gas branch pipe 12 Thermometer 20 Heating Furnace 21a, 21b Regenerative burner 22a, 22b Regenerative burner 21, 22 Burner set 21 1 , 21 2 ,... 21 n-1 , 21 n Alternate burner set 23a Heating zone 23b Soaking zone 25 Chimney 26 Chimney 27 Blower 28 Blower for discharge 29 Heat storage body 30 1 , 30 2 ,... 30 n−1 , 30 n three-way switching valve 31 Control device

Claims (1)

2本1組で交番燃焼する蓄熱式燃焼バーナの複数組を1つの燃焼ゾーンとして複数の燃焼ゾーンを設け、各燃焼ゾーン毎に燃焼用空気の供給量を制御する流量制御弁および燃焼排ガスの排出量を制御する流量制御弁を設けた蓄熱式燃焼バーナ装置による加熱方法であって、同一燃焼ゾ−ン内のいずれかの組の蓄熱式燃焼バ−ナに異常が発生した場合は、前記燃焼ゾ−ンの排ガス排出量を制御する流量制御弁を全閉にして燃焼用空気が予熱されずに供給される状態とし、前記異常が修復された後は、燃焼排ガスの排出量を制御する流量制御弁を開いて燃焼用空気を予熱して交番燃焼するようにしたことを特徴とする蓄熱式燃焼バ−ナによる加熱方法。Displacement of combustion exhaust gas by providing a plurality of combustion zones with a plurality of pairs of regenerative combustion burners that alternately burn in one set as one combustion zone, and controlling the supply amount of combustion air for each combustion zone A heating method by a regenerative combustion burner device provided with a flow control valve for controlling the amount, and if any abnormality occurs in any of the regenerative combustion burners in the same combustion zone, the combustion The flow rate control valve for controlling the exhaust gas emission amount of the zone is fully closed so that the combustion air is supplied without being preheated. After the abnormality is repaired, the flow rate for controlling the exhaust gas emission amount A heating method using a regenerative combustion burner characterized in that the control valve is opened to preheat the combustion air to perform alternating combustion.
JP01399999A 1999-01-22 1999-01-22 Heating method with regenerative combustion burner Expired - Fee Related JP3726526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01399999A JP3726526B2 (en) 1999-01-22 1999-01-22 Heating method with regenerative combustion burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01399999A JP3726526B2 (en) 1999-01-22 1999-01-22 Heating method with regenerative combustion burner

Publications (2)

Publication Number Publication Date
JP2000213736A JP2000213736A (en) 2000-08-02
JP3726526B2 true JP3726526B2 (en) 2005-12-14

Family

ID=11848939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01399999A Expired - Fee Related JP3726526B2 (en) 1999-01-22 1999-01-22 Heating method with regenerative combustion burner

Country Status (1)

Country Link
JP (1) JP3726526B2 (en)

Also Published As

Publication number Publication date
JP2000213736A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
KR970000103B1 (en) Steel heating furnace
JP3726526B2 (en) Heating method with regenerative combustion burner
JPH05256423A (en) Heat accumulating burner
JP4229502B2 (en) Thermal storage radiant tube burner
JP3332306B2 (en) Radiant tube heating device
JP3823403B2 (en) Radiant tube burner system and operation method thereof
KR100649323B1 (en) A method and an apparatus for preventing damage of fuel nozzle in a regenerative burner
JP3095964B2 (en) Combustion control method for regenerative combustion burner system
JP4938630B2 (en) Thermal storage combustion device
JP4009989B2 (en) Heating furnace operating method with narrow pitch heat storage burner group
JP3289437B2 (en) Combustion method of heating furnace using regenerative burner
JP3025937B2 (en) Thermal storage burner
TW201833505A (en) Regenerative burner system
CN212512535U (en) Steel band solution annealing furnace
JP4445222B2 (en) Reactor combustion control method and reactor
JP2766451B2 (en) Combustion method of regenerative radiant tube burner
KR0118983B1 (en) Combustion air preheating method of furnace
JPH07102326A (en) Continuous annealing furnace for metal strip
JP3767414B2 (en) Operation method of regenerative burner furnace and regenerative burner furnace
JP3286901B2 (en) Combustion control method for regenerative burner furnace
JP4060990B2 (en) Alternating combustion type regenerative burner system and heating furnace using the same
JP3414942B2 (en) heating furnace
JP2840534B2 (en) Thermal storage radiant tube burner
JP3417789B2 (en) Continuous annealing furnace
JP3852212B2 (en) Billet heating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees